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Abstract

The current era of targeted treatment has accelerated the interest in studying gene-treatment, gene-

gene and gene-environment interactions using statistical models in the health sciences. 

Interactions are incorporated into models as product terms of risk factors. The statistical 

significance of interactions is traditionally examined using a likelihood ratio test (LRT). 

Epidemiological and clinical studies also evaluate interactions in order to understand the 

prognostic and predictive values of genetic factors. However, it is not clear how different types 

and magnitudes of interaction effects are related to prognostic and predictive values. The 

contribution of interaction to prognostic values can be examined via improvements in the area 

under the receiver operating characteristic curve due to the inclusion of interaction terms in the 

model (ΔAUC). We develop a resampling based approach to test the significance of this 

improvement and show that it is equivalent to LRT. Predictive values provide insights into 

whether carriers of genetic factors benefit from specific treatment or preventive interventions 

relative to non-carriers, under some definition of treatment benefit. However, there is no unique 

definition of the term treatment benefit. We show that DeltaAUC and relative excess risk due to 

interaction (RERI) measure predictive values under two specific definitions of treatment benefit. 

We investigate the properties of LRT, ΔAUC and RERI using simulations and illustrate these 

approaches using published data on MC1R and sun exposure in melanoma.

Keywords

area under the receiver operating characterisitc curve; likelihood ratio test; relative excess risk due 
to interaction (RERI); resampling; treatment benefit

Introduction

During the past decade, the field of oncology has made considerable advances in the 

discovery of cancer-related genes [Sawyers 2008]. These successes have led to an explosion 

of research on preventive interventions and anticancer therapies focused on specific patient 

populations, and have led to the hypothesis that carriers of certain genetic variants are more 

likely to benefit from specialized treatments or interventions than non-carriers [Lerman et al. 
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2007; Amado et al. 2008; Karapetis et al. 2008]. This hypothesis has propelled 

investigations of targeted treatments through studies of gene-treatment, gene-environment, 

and gene-gene interactions using statistical models. One of the key objectives of these 

studies is to understand the prognostic and predictive values of a genetic factor such as a 

germline genetic variant or a somatic mutation [Sawyers 2008]. The objective of this paper 

is to examine the relationship between interaction terms in statistical models (henceforth 

referred to as statistical interactions or, simply, interactions) and prognostic and predictive 

values.

The term prognostic value refers to a genetic factor’s ability to project the natural history of 

disease in relation to another factor (such as treatment or environmental exposure or another 

genetic factor; henceforth referred to as treatment) by discriminating between good versus 

bad prognosis, thereby providing insights into whom to treat with novel modalities [Sawyers 

2008; Italiano 2011]. The prognostic value is measured as the area under the receiver 

operating characteristic curve (AUC; [Pepe et al. 2013]) of a statistical model that includes 

the genetic factor and treatment as explanatory variables. An important issue is whether the 

effect of treatment on the outcome changes according to the level of the genetic factor of 

interest, and how this change impacts the prognostic value. Changes in treatment effects 

according to a genetic factor are incorporated into statistical models as gene-treatment 

interaction terms. The issue then is to determine whether incorporating gene-treatment 

interactions into a statistical model improves the prognostic value.

Often we use the likelihood ratio test (LRT) to examine the significance of interaction terms 

in statistical models [Agresti 2002]. When there are no interactions, we say that the model is 

additive. The presence of interactions depends upon the scale on which disease risk is 

measured [Satagopan and Elston 2013]. If interactions exist when modeling data under a 

clinically meaningful scale of risk, then including them in the model is anticipated to 

improve the prognostic value of a genetic factor. This is equivalent to the model’s ability to 

explain the variation in disease risk and, thus, discriminate between low-risk and high-risk 

individuals [for example, Khoury et al. 2004; Moore and Williams 2009; Sun et al. 2014]. 

This improvement is measured as the difference between the AUCs of two models: an 

additive model and a model including interaction terms. In this paper, we denote this 

difference as ΔAUC. Some studies noted that the inclusion of interactions did not lead to a 

considerable increase in the magnitude of ΔAUC [Aschard et al. 2012]. This raises several 

issues: (i) When an interaction is statistically significant, should its inclusion in a model be 

expected to improve ΔAUC by a considerable magnitude? (ii) Would a small ΔAUC be 

statistically significant when there is a statistically significant interaction? and (iii) What is 

the role of interaction on prognostic values? In this paper, we examine these questions by 

comparing the operating characteristics of LRT with those of a test for H0 : ΔAUC = 0 

against HA : ΔAUC ≠ 0. Since an additive model is nested within a model that includes 

interactions, the DeLong test for H0 [DeLong et al. 1988] is not valid [Vickers et al. 2011]. 

Other recent studies have proposed valid tests for ΔAUC when evaluating the incremental 

increase in AUC due to the inclusion of a new biomarker, without focusing on interactions 

in statistical models [Pepe et al. 2013; Seshan et al. 2013]. These tests are not applicable to 
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our setting where the focus is on interactions. Therefore, we develop a novel resampling 

procedure for testing H0 : ΔAUC = 0 in the interaction setting.

The term predictive value refers to a genetic factor’s ability to project the benefit of 

treatment under a suitable definition of the term benefit [Sawyers 2008; Italiano 2011]. 

When the magnitude of treatment benefit changes with the level of the genetic factor, a 

gene-treatment interaction can be included in a relevant statistical model to represent this 

change. Unlike prognostic values that are typically measured using AUC, there is no 

standardized way to measure treatment benefit and, hence, predictive values in the health 

sciences. Epidemiologists examine public health benefits of treatment using difference in the 

outcome (such as disease risk or response rate) between treated and untreated individuals. 

This difference can be calculated separately according to the levels of a genetic factor. The 

treatment benefit in a level of the genetic factor compared with the baseline level is referred 

to as the relative excess risk due to interaction (RERI; [Rothman et al. 2008]), and can be 

taken as a measure of predictive value. In contrast, recent clinical studies have examined 

predictive values of genetic factors in a two-step process: first, the statistical significance of 

the interaction effect in a model was examined using the LRT; next, the odds ratios for 

treatment were examined at each level of the genetic factor to identify the level(s) showing 

considerable risk reduction associated with treatment [Lerman et al. 2007; Amado et al. 

2008; Karapetis et al. 2008]. Here we examine the role of interactions on the properties of 

these two methods for measuring predictive values.

Our paper is organized as follows. In Section 2, we first establish the notations, define 

interaction effect, and describe how this definition relates to AUC, ΔAUC and RERI. We 

describe the concepts in the main text and provide details of the hypothesis test for ΔAUC in 

the context of interactions in the Supplementary Material. In Section 3, we conduct 

simulations under a variety of parametric configurations to investigate the role of 

interactions on prognostic and predictive values. We illustrate these methods using 

published data from a study of melanoma in Section 4, and conclude the paper with a 

discussion in Section 5.

Methods

We consider the setting of N independent individuals having a binary disease outcome (for 

example, affected and unaffected) and two categorical risk factors (which we shall refer to 

as genetic factor and treatment). The disease outcome of a person having the j-th level of 

genetic factor and k-th level of treatment has a Bernoulli distribution with probability πjk, 

which is modeled via logistic regression as:

(1)

where μ is the baseline risk, βj and δk are referred to as the main effects of the j-th level of 

the genetic factor and k-th level of treatment, and γjk are referred to as the interaction effects. 

Denoting 0 as the baseline level, we set β0 = 0 = δ0 and γ0k = 0 = γj0 for all j and k. This 

model can be expanded easily to accommodate covariates, additional risk factors, and higher 
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order interaction terms. When γjk = 0 in Equation (1), we refer to the resulting model as an 

additive model. The probability πjk is also referred to as disease risk corresponding to the j-

th level of the genetic factor and k-th level of treatment.

Interaction effect

Before proceeding further, it will be useful to explain interactions in relation to the scale of 

the outcome. Denote ηjk as the outcome summary for the j-th level of the genetic factor and 

the k-th level of treatment. The quantity ηjk − ηj0 measures the difference in the outcome 

summaries between the k-th level of treatment and its baseline level when the genetic factor 

is fixed at the j-th level. For each j = 0, ···, L1 − 1 and k = 0, ···, L2 − 1, we define the 

interaction effect, denoted ωjk, as the difference in the outcome summary between the k-th 

and the baseline levels of treatment when the genetic factor is at the j-th level, compared to 

when the genetic factor is at its baseline level [Scheffe 1999]:

(2)

The null hypothesis of no interaction is H0 : ωjk = 0 for all j = 1, ···, L1 − 1 and k = 1, ···, L2 − 

1. The choice of a summary measure for ηjk leads to different frameworks for evaluating 

interactions [Wang et al. 2010].

Suppose we define ηjk as the logarithm of disease odds i.e., . It follows 

from Equation (1) that ωjk = γjk, which is also referred to as multiplicative interaction. 

Testing the null hypothesis of no interaction is equivalent to testing H0 : γjk = 0 for all j and 

k in Equation (1), which can be done using the LRT. Under H0, the LRT has an asymptotic 

central chi squared distribution with (L1 − 1) × (L2 − 1) degrees of freedom.

Suppose we define ηjk as the disease odds i.e., . [Note that, when the disease is 

rare, ηjk ≈ πjk, which is the disease risk.] Using Equations (1) and (2), the interaction effect 

can be written as:

(3)

We shall write RERIjk = exp{βj + δk + γjk} − exp{βj} − exp{δk} + 1, which is referred to as 

the relative excess risk due to interaction corresponding to the j-th and k-th levels of the two 

factors of interest [Rothman et al. 2008]. When η00 ≠ 0, testing the null hypothesis of no 

interaction in this setting is equivalent to testing RERIjk = 0, which is also referred to as a 

test for additive interaction. When γjk = 0, we have RERIjk = exp{βj + δk} − exp{βj} − 

exp{δk} + 1, and RERIjk → 0 when βj → 0 or δj → 0 Thus, under an additive logistic 

regression model, we will have RERIjk ≠ 0 when the magnitudes of the effects of the genetic 

factor and treatment are not negligible. We can test H0 : RERIjk = 0 against HA : RERIjk ≠ 0 
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using a confidence interval method [Zou 2008] or a likelihood ratio test [Han et al. 2012]. 

Here we use the confidence interval method.

Interactions and prognostic value

Denote AUC1 as the AUC of the model given by Equation (1). Further, denote AUC0 as the 

AUC of the additive model (i.e., Equation 1 with γjk = 0). The contribution of interactions to 

the prognostic value can be measured as ΔAUC = AUC1 − AUC0. The theoretical value of 

AUC can be written by postulating a normal distribution for the logarithm of disease risk in 

the general population (i.e., log-normal distribution for disease risk) with some mean and 

variance σ2. Under this approach, the theoretical value of AUC is , where Φ(.) is 

the cumulative probability of a standard normal distribution. When the risk factors are 

independent and are centered and scaled to have mean 0 and variance 1, using Equation (1) 

we obtain  and , where 

 and  (see Supplementary 

Material A). Therefore, we have:

(4)

From Equation (4), ΔAUC = 0 if and only if γjk = 0 for all j and k. Since Φ(.) is a strictly 

monotonic function, this observation suggests that testing H0 : ΔAUC = 0 is equivalent to 

testing H0 : γjk = 0 for all j and k.

These observations suggest that, the properties of LRT for testing the null hypothesis of no 

multiplicative interaction are likely to be equivalent to those of a test for H0 : ΔAUC = 0. 

Our observations also align with those of (Pepe et al.) [2013] who demonstrated the 

equivalence of several null hypotheses when testing the significance of the incremental 

improvement in AUC due to the inclusion of a new biomarker in a statistical model. Here we 

have shown the equivalence between two hypothesis tests in the context of interactions. The 

LRT for testing H0 : γjk = 0 for all j and k is readily available in most statistical software 

packages. However, a statistic for testing H0 : ΔAUC = 0 in the context of interactions is 

needed.

We develop a resampling-based approach for this test. Briefly, this is a parametric bootstrap 

approach and proceeds as follows. For binary outcomes, interaction measures the association 

between gene and treatment in the affected individuals relative to the unaffected individuals. 

Our approach is to first estimate this association in the observed data set by fitting a model 

for the genetic factors given the disease outcome and treatment. This model will provide 

estimates of the magnitudes of association between gene and treatment in the affected and 

unaffected individuals. Next, we generate data sets under the null hypothesis of no 

interaction via a resampling procedure using these estimated effects. Retaining the disease 

outcome and treatment assignment as observed, we randomly sample genetic factors for 

each individual such that the association between gene and treatment among affected and 

unaffected individuals is the same (i.e., the interaction effect is 0). We estimate ΔAUC for 
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this data set. This is one realization from the null distribution of ΔAUC. We repeat this 

sampling procedure multiple times and estimate the p-value as the proportion of these 

ΔAUCs that are larger than that for the observed data. Detailed steps for this resampling 

procedure are provided in Supplementary Material B.

Interactions and predictive value

The predictive value depends upon the definition of treatment benefit. For the j-th level of 

genetic factor, denote Bjk as the benefit of the k-th level of treatment compared to the 

baseline treatment level. We consider two definitions of Bjk.

First, for the j-th level of the genetic factor, we define Bjk in terms of odds ratio: Bjk = 

{πjk/(1 − πjk)} / {πj0/(1 − πj0)}. From Equation (1), we have Bjk = exp {δk + γjk}. We define 

the predictive value of the j-th level of the genetic factor for the k-th level of treatment, 

denoted Pjk, as treatment benefit for the j-th level of the genetic factor relative to its baseline 

level: Pjk = Bjk/B0k. It then follows from Equation (1) that Pjk = exp {γjk} i.e., the 

multiplicative interaction is a measure of predictive value in this setting. When Pjk = 1, it 

means that the the benefits of the k-th level of treatment is the same for the j-th and baseline 

levels of the genetic factor. The null hypothesis that the j-th level of the genetic factor does 

not predict treatment benefit is given by H0 : Pjk = 1. The null hypothesis that no level of the 

genetic factor predicts treatment benefit is H0 : Pjk = 1 for all j and k. Under the above 

definition of treatment benefit, this is equivalent to the null hypothesis of no multiplicative 

interaction: H0 : γjk = 0 for all j and k i.e., H0ΔAUC = 0.

Next, for the j-th level of the genetic factor, suppose we define Bjk as the excess disease 

odds for the k-th level compared to the baseline level of treatment i.e., Bjk = {πjk/(1 − πjk)} − 

{πj0/(1 − πj0)}. We define Pjk as the excess treatment benefit for the j-th level compared to 

the baseline level of the genetic factor i.e., Pjk = Bjk − B0k. Under this definition of treatment 

benefit, it follows from Equation (1) that Pjk ∝ RERIjk. The null hypothesis that the j-th 

level of the genetic factor does not predict treatment benefit is: H0 : Pjk = 0 i.e., H0 : RERIjk 

= 0.

Taken together, these observations suggest the following results: (i) H0 : γjk = 0 for all j and 

k and H0 : ΔAUC = 0 are equivalent; (ii) this is also equivalent to the null hypothesis of no 

predictive value of a (genetic) risk factor when treatment benefit is defined based on odds 

ratios; (iii) H0 : RERIjk = 0 is equivalent to the null hypothesis that the j-th level of the 

genetic risk factor does not predict the benefits of the k-th level of treatment, when treatment 

benefit is defined based on differences between disease odds; and (iv) when γjk = 0 for some 

j and k in Equation (1), RERIjk ≠ 0 only when both βj and δk are not small. We performed 

simulation studies to assess the operating characteristics of the above tests. Table 1 lists the 

hypotheses being tested.

Simulation study

We simulated a genetic factor X with L1 levels and a treatment Z with L2 levels for N 

independent individuals, and generated their disease risk using the following model:
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(5)

where μ is the baseline risk; I(.) is an indicator variable taking value 1 when the condition in 

the parentheses is true and taking value 0 otherwise; 

; β and δ are the main effects of the genetic factor 

and treatment, respectively; γ is the interaction effect; px = P(X ≥ C1); and pz = P(Z ≥ C2). 

The gene and treatment contribute to disease risk only when their levels are at least C1 and 

C2, respectively. Further, G and T denote the standardized gene and treatment variables, 

respectively. In our simulations we also generated data under different magnitudes of 

correlations (denoted ρ) between X and Z, and under two types of interactions - quantitative 

and qualitative (Supplementary Figure S1). When the interaction is quantitative, the 

magnitude of the treatment effect, but not its direction, differs according to the level of the 

genetic factor. In the presence of a qualitative interaction, both the magnitude and direction 

of the treatment effect differ according to the level of the genetic factor. In such cases where 

the direction of treatment effect changes, we expect that omitting the interaction term from 

the model may result in incorrect prognostic and predictive values, potentially leading to 

inappropriate decisions about treatment benefits. We chose the parameters of Equation (5) 

such that the theoretical AUCs were set at some desired values and ΔAUC ranged between 

0.05 and 0.15. Further details of the simulation setup, model, and parametric configurations 

are given in the Supplementary Material C and Supplementary Table S1.

We analyzed the simulated data sets using Equation (1) and using an additive model. While 

the true risk model was based on Equation (5), we analyzed the data without assuming 

knowledge of the true model generating the disease. We estimated AUC0, AUC1, and ΔAUC, 

and tested the significance of ΔAUC using our proposed resampling procedure. We also 

tested the significance of interactions using a LRT. We also estimated RERI for various 

levels of the genetic risk factor. Under each parametric configuration, we calculated type I 

error and power of the LRT, and for the ΔAUC and RERI tests.

A common aim of clinical and epidemiological studies is to increase the prognostic value of 

models by including novel genetic factors and/or interactions of the genetic factors with 

other risk factors. However, few studies have reported an increase in AUC of considerable 

magnitude. In order to obtain insights into the properties of the estimated AUCs, we also 

fitted the true risk model (Equation 5) to our simulated data and calculated the AUCs, which 

we refer to as the attainable AUCs. Note that the estimated AUCs are obtained via non-

parametric ranking procedure. The attainable AUCs are also obtained in a similar manner 

and, thus, serve as a benchmark in our comparison of the estimated ΔAUC against its 

theoretical value.

Results

Type I error—The type I errors of LRT and the test for ΔAUC were similar under all 

parametric configurations considered (Table 2). In general, the type I error of the test of 

ΔAUC was controlled around the nominal value of 0.05 for all values of N and ρ. There was 
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a slight departure from the nominal rate of 0.05 for LRT (and ΔAUC) in some scenarios, 

which has also been previously reported in other simulation studies [Allison et al. 1999]. 

The Type I error for RERI was maintained at 0.05 when the effect of at least one of the risk 

factors was small (for example when δ = 0.1). The probability presented in Table 2 is the 

probability of rejecting the null that RERI = 0 under the assumption that γjk = 0. However, 

when both the risk factors have non-negligible main effects (e.g. β = 0.75, δ = 0.6) we are in 

a setting where RERI ≠ 0. As expected in this specific scenario we did not reject H0 : RERI = 

0, and hence the type I error was considerable larger than the nominal value of 0.05 (type I 

error of 0.70 when ρ = 0, β = 0.75, δ = 0.60, and 500 affected and 500 unaffected 

individuals).

Power—Figure 1 shows the power of LRT and the ΔAUC test for data simulated with ρ = 

0. As expected, power increased with sample size. Further, power increased as the 

theoretical value of ΔAUC increased. The plots indicate that even with a sample size of 200, 

we can attain power of 1 to detect a ΔAUC of 0.05. However, whether a ΔAUC = 0.05 

increase is clinically meaningful is a topic of debate (see Discussion). Note that ΔAUC = 

AUC1 − AUC0, where AUC0 is the AUC under the null hypothesis that interactions do not 

contribute to the prognostic value. For a given value of ΔAUC, the power also depended 

upon the magnitude of AUC0. For example, detecting ΔAUC = 0.05 when AUC0 = 0.55 had 

power of 0.77 and 0.61 under quantitative and qualitative interactions respectively; whereas, 

the power increased to 0.97 and 0.95 under these two types of interactions when AUC0 = 

0.65. The last row of Figure 1 suggests that, in general, LRT and ΔAUC tests had similar 

power, although ΔAUC test had slightly lower power than LRT under a few parametric 

configurations. Power for simulations with ρ = 0.5 showed similar patterns (detailed results 

not shown).

Estimated and attained AUCs—The estimated and attained AUCs and ΔAUCs are 

shown in Table 3 for sample size of 1000 individuals (500 affected). In general, the 

estimated ΔAUC values were smaller than the theoretical ΔAUC values. This was 

particularly the case for large value of theoretical AUC0 (for example, AUC0 = 0.7). The 

attainable ΔAUCs were closer to the estimated ΔAUC than to the theoretical value. These 

observations suggest that the inclusion of interactions in a model may not increase ΔAUC by 

a considerable magnitude even when the interaction effects (and, hence, the prognostic and 

predictive value) are significantly different from 0. This can happen particularly when AUC 

of the additive model is already large (for example, theoretical AUC0 ≈ 0.70 and ΔAUC ≈ 

0.10 in our simulations). Similar results were obtained for sample size of 400 individuals 

(200 affected; Supplementary Table S2).

Data Example

We illustrate the proposed concepts and methods using published data from an 

epidemiology study of melanoma [Kricker et al. 2010]. In this study, the outcome is binary, 

denoting the presence/absence of a second primary melanoma. Sun exposure and variants in 

the pigmentation gene MC1R are among the important known risk factors for melanoma. 

Table 4 shows the melanoma data with MC1R as a binary variable denoting the presence/

absence of the R allele (i.e., red hair color variant) and sun exposure measured as a binary 
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variable in terms of: (i) beach and water activities from age 15; (ii) average annual lifetime 

ambient ultraviolet (UV) exposure; and (iii) early life ambient UV exposure.

For each data set, we fitted logistic regression models to the outcome in relation to MC1R 

and sun exposure and tested the null hypothesis of no interaction between gene and sun 

exposure using a LRT, and tested H0 : ΔAUC = 0. We also calculated RERI and tested H0 : 

RERI = 0. In clinical studies, it is meaningful to refer to preditive values in terms of 

probability that a genetic factor projects treatment benefit [Sawyers 2008]. In our setting, 

this is equivalent to the probability that ΔAUC and RERI exceed certain threshold. To obtain 

insights into this, we calculated P(ΔAUC > 0) and max {P(RERI > 0), P(RERI < 0)} (since 

RERI can be positive or negative). We generated 10,000 bootstrap samples of the data, 

estimated ΔAUC and RERI for each sampled data set and calculated P(ΔAUC > 0) as the 

fraction of data sets for which the estimated ΔAUC was positive, and estimated max 

{P(RERI > 0), P(RERI < 0)} as the maximum of the fraction of data sets having negative 

and positive estimates of RERI (see Table 4 and Supplementary Figure S2).

There was a significant interaction between MC1R and sun exposure from beach and water 
activity (LRT = 4.60, d.f = 1, p-value = 0.03). The magnitude of the estimated ΔAUC was 

small (AUC1 = 0.557, AUC0 = 0.560, ΔAUC = 0.003). However, as expected, it was 

significantly different from 0 (p-value = 0.021). This suggests that interaction contributed 

significantly to the prognostic value. Further, when treatment benefit was defined in terms of 

odds ratios, this result suggests that MC1R significantly predicts the benefits of reducing sun 

exposure from beach and water activity. In particular, the benefit of reducing sun exposure 

was 1.244 (= 438 × 236/(644 × 129)) for carriers of an R variant and 1.891 (= 380 × 248/

(733 × 68)) among non-carriers. These results suggest that non-carriers had significantly 

higher benefit in terms of reduced risk of second primary melanoma associated with 

reducing sun exposure than carriers (estimated predictive value is P11 = 1.52 = 1.891/1.244). 

However deciding whether this benefit is clinically actionable will require more rigorous 

investigations based on further studies (see Discussion). The estimated value of RERI was 

−0.4038 (95% confidence interval: −1.314, 0.151), which was not significantly different 

from 0. This suggests that, when treatment benefit was defined in terms of excess disease 

odds (or excess disease risk), reduction in melanoma risk due to reducing sun exposure from 

beach and water activity was higher for non-carriers than carriers of an R variant, although 

this was not statistically significant. The bootstrap estimates of predictive values were 

P(ΔAUC > 0) = 0.29 and max {P(RERI > 0), P(RERI < 0)} = 0.89. Since LRT and the test 

for ΔAUC were significant, we would, in principle, expect the estimated P(ΔAUC > 0) to be 

large. The seemingly small estimated probability of 0.29 may be due to the small number of 

non-carrier cases without sun exposure from beach and water activities (68 multiple primary 

melanomas). Even though RERI was not significantly different from 0, our bootstrap 

approach showed that the predictive value of MC1R was approximately 89% when treatment 

benefit was defined in terms of differences between disease odds.

There was no significant interaction between MC1R and annual average lifetime UV (LRT 

= 0.0034, d.f = 1, p-value = 0.95). As expected interaction did not contribute to the 

prognostic value (ΔAUC ≈ 0, p-value = 0.94). When treatment benefit was defined in terms 

of odds ratios, the benefits of reducing annual average lifetime UV were 2.24 and 2.22 
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among carriers and non-carriers, respectively, of an R variant. Hence, the predictive value 

was P11 = 1.01 = 2.24/2.22. The estimated value of RERI was 0.4818 (95% CI: −0.183, 

1.121), suggesting that MC1R does not significantly predict the benefits of reducing annual 

average lifetime UV when benefit is defined in terms of differences between disease odds. 

Based on the bootstrap approach, P(ΔAUC > 0) = 0.05 and max {P(RERI > 0), P(RERI < 

0)} = 0.93. Thus, even though RERI was not significantly different from 0, the bootstrap 

estimate of predictive probability based on RERI was greater than 90%. Similar results were 

obtained for the interaction between MC1R and early life ambient UV (Table 4).

Discussion

In studies of targeted treatment/intervention, often the goal is to understand how treatment 

benefits vary according to genetic predisposition [Lerman et al. 2007; Keedy et al. 2011]. 

This has accelerated the investigations of gene-treatment, gene-environment, and gene-gene 

interactions using statistical models in the health sciences. Interactions depend upon the 

scale on which the outcome is measured [Wang et al. 2010; Satagopan and Elston 2013]. In 

this paper we have examined the relationship between interactions (measured on two 

different scales) and prognostic and predictive values of (genetic) risk factors.

Specifically, we examined whether including interaction terms in the model improves the 

prognostic value i.e., increases ΔAUC by a significant magnitude. We showed that testing 

the null hypothesis that ΔAUC = 0 is equivalent to testing the null hypothesis of no 

multiplicative interaction, and developed a resampling approach to test the statistical 

significance of ΔAUC in relation to interactions. Although previous work has demonstrated 

the equivalence of several null hypotheses when evaluating whether a new biomarker has 

significant prognostic value [Pepe et al. 2013], we have shown the equivalence of two null 

hypotheses in the specific context of interactions. Kerr and Pepe [2011] studied the 

properties of receiver operating characteristic (ROC) curves in the context of interactions by 

evaluating ROC curves separately among carriers and non-carriers of the genetic factor of 

interest by fitting an additive logistic regression model. Our work is distinct from this in that 

it focuses specifically on how interaction terms in logistic regression models relate to 

ΔAUC.

It has been noted that including interactions in a model does not increase the AUC by a 

considerable magnitude [Aschard et al. 2012]. To obtain insights into this, we used 

simulation studies, which showed that, even when the true disease risk model is known, the 

attainable ΔAUCs are considerably smaller than the theoretical ΔAUCs. Our simulations also 

show that the power to reject H0 : ΔAUC ≠ 0 of a certain magnitude in the context of 

interactions also depends upon the magnitude of AUC0, which also aligns with recent work 

that examined model performance in the context of evaluating a new biomarker [Kerr et al. 

2012]. To obtain insights into this, consider, for example, the case where AUC0 = 0.70. The 

theoretical value of σ0 is . Then, a 10% increase in σ0 will result in a 2% 

increase in AUC since . We will need 55% and 100% increases 

in σ0 to attain ≈ 10% and 15% increases in AUC when AUC0 = 0.70. Whether such 

increases in the magnitude of σ0 can be achieved through the inclusion of interactions in a 

Satagopan et al. Page 10

Genet Epidemiol. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model is an important question, but one that will require investigations in a broad range of 

real data sets.

While ΔAUC is a commonly used measure for evaluating prognostic values, there is no 

consensus on a measure of predictive values. The RERI is an important statistic in 

epidemiology for evaluating additive interactions, and is a measure of predictive value when 

treatment benefit is defined in terms of difference between disease odds or disease risk 

[Rothman et al. 2008]. However, recent epidemiology studies have reported predictive 

values of genetic factors based on the statistical significance of interactions without 

specifically reporting a measure of treatment benefit. For example, (Lerman et al.) [2007] 

used the statistical significance of a multiplicative interaction between bupropion treatment 

and the CYP2B6 gene in a logistic regression model to show that carriers of a variant allele 

may be more vulnerable to abstinance symptoms and smoking relapse. Here we have shown 

that multiplicative interaction (equivalently, ΔAUC) is a measure of predictive value when 

treatment benefit is defined based on odds ratios.

An important practical question for future study is: what values of ΔAUC and RERI would 

be clinically meaningful? Addressing this question is outside the scope of our work. Further 

investigations based on rigorous study designs with validation data sets are needed to 

evaluate clinically actionable magnitudes of prognostic and predictive values and compare 

their properties with other emerging measures in the setting of interactions in statistical 

models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Power of the likelihood ratio test (LRT; top row) and the resampling-based ΔAUC test 

(middle row), and a comparison of the powers of these two tests with the 45-degree line 

shown as a benchmark (bottom row). The left and right columns correspond to results for 

data simulated based on quantitative and qualitative interactions, respectively. These results 

are shown for sample sizes of 500 cases and 500 controls (bold lines in the top and middle 

rows with points in all the panels shown as “x”) and 200 cases and 200 controls (dashed 

lines in the top and middle rows with points in all the panels shown as a closed circle)
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