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Abstract: The availability of whole-genome sequencing (WGS) as a tool for the diagnosis and
clinical management of tuberculosis (TB) offers considerable promise in the fight against this
stubborn epidemic. However, like other new technologies, the best application of WGS remains
to be determined, for both conceptual and technical reasons. In this review, we consider the
potential value of WGS in the clinical laboratory for the detection of Mycobacterium tubercu-
losis and the prediction of antibiotic resistance. We also discuss issues pertaining to data
generation, interpretation and dissemination, given that WGS has to date been generally per-
formed in research labs where results are not necessarily packaged in a clinician-friendly
format. Although WGS is far more accessible now than it was in the past, the transition from a
research tool to study TB into a clinical test to manage this disease may require further fine-
tuning. Improvements will likely come through iterative efforts that involve both the labora-
tories ready to move TB into the genomic era and the front-line clinical/public health staff who
will be interpreting the results to inform management decisions.
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Introduction
Owing to advances in technology and reductions

in cost, whole-genome sequencing (WGS) has

been transformed from a centralized service

used by a select few to interrogate single gen-

omes into a relatively decentralized lab tech-

nique used by many to detect and track

infectious pathogens [Long et al. 2014; Price

et al. 2014; SenGupta et al. 2014; Snitkin et al.

2012; Quick et al. 2014, 2015]. This transform-

ation has not spared the mycobacterial genus,

with a number of papers presenting its applica-

tion to the characterization of Mycobacterium

tuberculosis cases and outbreaks [Walker et al.

2013; Bryant et al. 2013; Gardy et al. 2011;

Lee et al. 2015; Casali et al. 2014; Jamieson

et al. 2014b; Stucki et al. 2015; Roetzer et al.

2013; Guerra-Assuncao et al. 2015]. In this

review, we will consider the opportunities pre-

sented by WGS for clinical management of

tuberculosis (TB) across two conceptual

spaces: diagnosis (M. tuberculosis detection)

and treatment (prediction of antibiotic resist-

ance). We recognize that the greatest utility for

WGS will likely lie in countries with the highest

TB burdens; however, as WGS requires

substantial financial and technical infrastruc-

ture, we have situated this review in the setting

of a high-resource country where this method

may be more imminently implemented.

A brief description of WGS
WGS begins at the bench, with the extraction and

purification of genomic DNA. In very brief detail,

this DNA is typically fragmented into shorter

pieces, which are then sequenced in ‘reads’ of

100�500 base pairs (bps) for bench-top sequen-

cers. There are a number of different sequencing

platforms available [Loman et al. 2012a; Kwong

et al. 2015; Heather and Chan, 2015]. The choice

of platform depends largely on the question,

which in turn is dictated by clinical needs. If the

aim is to identify unknown organisms or to char-

acterize a novel bacterium, one might prefer a

sequencer that generates longer reads (such as

the PacBio RS by Pacific Biosciences, Menlo

Park, CA, USA), as such reads enable more accur-

ate de novo assembly [Loman et al. 2012a]. If the

goal is to speciate the microorganism, determine

drug resistance or resolve transmission networks,

sequencers producing short reads can be used.

Among the benchtop sequencers generating
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short read data, the most accurate platform cur-

rently available is the Illumina MiSeq (Illumina,

San Diego, CA, USA) [Loman et al. 2012b]

(though whether the difference in accuracy com-

pared with another platform, the Ion Torrent

PGM from ThermoFisher Scientific, Waltham,

MA, USA, ultimately affects clinical inferences

has been questioned [Harris et al. 2013]). In the

analysis of such short read data, a reference-based

approach is preferred [Loman et al. 2012a],

wherein these reads are aligned (‘mapped’) to a

reference genome. This is ideal for analysis of

M. tuberculosis, given the absence of horizontal

gene transfer in this species and the existence of

complete, well-annotated reference genomes.

Such a workflow for M. tuberculosis is illustrated

in Figure 1.

With the Illumina MiSeq platform, short reads of

up to 300 bps in length are produced. To identify

the microorganism in question based on these

reads, a variety of tools can be utilized. The

Basic Local Alignment Search Tool (BLAST

[Altschul et al. 1990]) compares reads with exist-

ing microbial DNA databases and uses an

algorithm to identify the most likely microorgan-

ism. Other methods include classifying the

microorganism based on how well reads align to

conserved coding sequences within phyla or spe-

cies (‘clade-specific marker sequences’ [Segata

et al. 2012]) or k-mer-based approaches [Wood

and Salzberg, 2014]. In the latter, reads are

divided into segments of k bases in length

(called ‘k-mers’) that are compared with a data-

base of known k-mer sequences from selected

microorganisms. The best identification is deter-

mined as the microorganism with the highest

proportion of matching k-mers.

Once reads have been assigned the identity ‘M.

tuberculosis’, they are subsequently mapped to the

corresponding sequence on the reference genome

to identify differences (i.e. variants) in the sample

compared with this reference. There are several

key considerations when performing such refer-

ence-based analyses. First, the choice of an

appropriate reference genome is crucial; if the

reference is too dissimilar from the isolate in

question, large numbers of reads will not be

mapped and these data (and all variation therein)

will be ignored. Second, alignment to GC-rich

repetitive regions can be difficult, as reads may

map to more than one location, thereby produ-

cing inconclusive matches. Such regions include

the PE-PPE family proteins, which comprise

�10% of the coding sequence of M. tuberculosis

[Cole et al. 1998]. To reduce the risk of false-

positive results, the PE-PPE regions and mobile

elements are typically excluded from analyses

[Comas et al. 2010; Roetzer et al. 2013].

Alternatively, one could perform targeted

sequencing using a platform capable of generat-

ing longer reads that span repetitive regions.

However, this would incur additional expense,

as well as technical/bioinformatics requirements,

and may not provide additional information of

use for clinical applications.

Using a reference-based approach, single nucleo-

tide polymorphisms (SNPs; i.e. a difference in a

single base in the genome compared to the refer-

ence) and insertions/deletions (indels) present in

the test isolate can be identified (‘called’) com-

pared with the referent. This process, the quality

control steps therein and the different tools used

for identifying SNPs are reviewed in detail else-

where in [Pabinger et al. 2014; Olson et al. 2015].

For the purposes of this work, we have focused

on the utility of WGS for the clinician and, in

particular, the use of these SNPs to predict

drug resistance. In M. tuberculosis research,

SNPs have also been used to extensively to delin-

eate transmission networks, however, an in-depth

discussion of this utility is beyond the scope of

this review. The interested reader is directed to

the several examples in the literature of its use in

TB outbreak investigations [Gardy et al. 2011;

Stucki et al. 2015; Lee et al. 2015; Torok et al.

2013; Kato-Maeda et al. 2013; Schurch et al.

2010; Ocheretina et al. 2015; Walker et al.

2013; Roetzer et al. 2013]. It is worth noting at

this point that genotyping is occasionally required

for clinical care, for instance, to rule out labora-

tory cross-contamination as a false-positive cause

of a positive culture, or when trying to determine

when a TB recurrence is due to relapse of the

original infection versus exogenous reinfection.

For both of these applications, the lessons of out-

break investigation indicate that WGS has higher

resolution than traditional typing methods, such

as spoligotyping, mycobacterial interspersed

repetitive units (MIRUs), or restriction fragment

length polymorphism (RFLP) [Gardy et al. 2011;

Lee et al. 2015; Walker et al. 2013; Roetzer et al.

2013]. Therefore, it can be inferred that, for both

situations, if the traditional method returns a

result of ‘different strain’, WGS is not necessary

to answer the clinical question. If, however, the

traditional typing method returns a matched

pattern, WGS may be required to confidently
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Figure 1. WGS workflow for Mycobacterium tuberculosis.
In brief, whole-genome sequencing (WGS) begins in the wet lab (top panel), wherein genomic DNA (gDNA) is
extracted. For a M. tuberculosis culture, this is done in a biosafety level 3 laboratory. After DNA extraction,
library preparation is conducted, wherein genomic DNA is fragmented into pieces. Uneven ends of gDNA are
blunted and adaptor sequences are added. After passing quality control, libraries are advanced to sequencing.
Further analysis occurs in the dry lab (bottom panel). Potential contamination is assessed and the quality of
sequencing is evaluated on a per isolate basis, including the examination of Phred quality scores of the
sequenced bases (where Phred¼�10*logPerror). FastQC, for example, is a software that can be used for
such quality control, and is applied directly on raw sequence data (available from http://www.bioinfor-
matics.bbsrc.ac.uk/projects/fastqc/, shown in the screenshot). Adaptors (and potentially low-quality base
pairs) are trimmed and reads of length under a prespecified limit (e.g. 70 base pairs used by the 1000
Genomes Project) may be excluded (not shown). High-quality reads are aligned to a reference genome (this
can be visualized in Integrative Genomics Viewer, also shown in screenshot [Thorvaldsdottir et al. 2013]), and
metrics such as genome coverage (the percentage of the reference genome that has at least one read mapped
to it) and depth of coverage (the average number of reads mapped to each locus) are evaluated. Isolates are
retained if a priori quality measures are met. Reads are excluded if they map to more than one locus in the
genome, and additional quality measures may be applied such as removing polymerase chain reaction dupli-
cates and local realignment around indels. Once quality control steps are conducted, single-nucleotide poly-
morphisms and indels can then be ‘called’ compared with the reference genome. Low-quality variants are then
removed using various filtering parameters to reduce the number of false positives. Genes are then annotated
and repetitive regions and mobile elements may be filtered out of further analyses.
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distinguish a related strain due to ancestry from

a true match, with the latter being observed

during laboratory cross-contamination or

relapse.

Regardless of the application, the quality of WGS

data depends on a number of factors, including

the desired length of the sequencing reads and

the cycle time [Quick et al. 2015]. These param-

eters in turn affect the turnaround time for

results. Considering the most frequently used

bench-top sequencers, raw sequencing results

can be available in a clinically attractive span of

just a few hours (for the Ion Torrent PGM) to as

much as 39 hours with MiSeq for paired end

250 bp reads. By adjusting the sequencing proto-

col for MiSeq, it may be feasible to reduce this

time frame without affecting key inferences, such

as species and strain assignments [Quick et al.

2015]. An important consideration when

making such adjustments is the ‘depth of cover-

age’; the more reads that span a position in the

reference genome, the more support there is for

the base identified. The optimal depth of cover-

age to detect clinically relevant variants needs to

be determined.

Another factor influencing the time to obtain

these data is whether samples are batched or

run independently. According to Quick and col-

leagues [Quick et al. 2015], the MiSeq can

sequence up to �100 isolates simultaneously. In

our experience, the MiSeq 250-bp paired-end

sequencing can generate a minimum of 10 mil-

lion reads; if 20� coverage is desired, only �57

isolates of M. tuberculosis can be run simultan-

eously [Lander and Waterman, 1988]. A batched

approach such as this is typical in research labs

and is clearly less expensive on a per-unit basis, as

running a single isolate would cost the same as

the whole collection of samples. Unfortunately,

waiting until a queue of specimens has accumu-

lated is not ideal for clinical labs, which need

to process samples immediately on arrival and

send reports 24 hours a day. A newer method,

the Nanopore MinIon (Oxford Nanopore

Technologies, Oxford, UK), offers much promise

in addressing this problem. The MinIon runs a

single sample at a time and was able to correctly

speciate two Salmonella enterica isolates as well as

place them in epidemiologic context within 2 h

[Quick et al. 2015]. Earlier diagnosis and detec-

tion of SNPs connoting drug resistance could

allow for more rapid initiation of treatment, com-

pared with waiting for results from a batched

analysis. However, the advantage of rapid results

offered by the MinIon is currently offset by high

error rates as reported by [Laver et al. 2015;

Mikheyev and Tin, 2014; Quick et al. 2015].

While sequencing chemistry is improving and

bioinformatics approaches are being developed

to increase accuracy [Jain et al. 2015], further

studies are needed to evaluate this method.

As of yet, the MinIon has not been utilized for

M. tuberculosis. It might be that these different

platforms offer complementary opportunities for

the clinical lab, for instance by using the

Nanopore technology to rapidly speciate patho-

genic organisms and the MiSeq for ongoing epi-

demiologic surveillance.

WGS for detection of M. tuberculosis, including
the prediction of drug resistance
In the clinical mycobacteriology lab, the goal is to

secure a diagnosis of active TB and to provide

clinicians with guidance on which antibiotics

they should or should not prescribe for their

patients. These two goals have classically been

achieved with phenotypic tests, some dating to

the 19th century. This begs the obvious question

of whether WGS can help modernize the TB lab,

with the goal of offering faster and more accurate

results.

The current clinical workflow for detection of

M. tuberculosis in Canada is illustrated in

Figure 2. Variations of this pathway may be

seen in comparable high-resource countries. For

more detailed reviews of M. tuberculosis labora-

tory diagnosis, the reader is referred to the litera-

ture [Parrish and Carroll, 2008, 2011;

Drobniewski et al. 2013; Noor et al. 2015]. In

brief, specimens from TB suspects are sent for

smear microscopy to ascertain the presence of

acid-fast bacilli. This test identifies the most

infectious patients (i.e. with ‘smear-positive’ dis-

ease) [Behr et al. 1999]. Results of smear micros-

copy should be available within 24 h of receipt

[Parrish and Carroll, 2011], however this

method has low sensitivity [Steingart et al.

2006a, 2006b] and cannot distinguish M. tuber-

culosis from non-TB mycobacterium. Regardless

of the results of microscopic examination, the

same specimens are processed for culture, as

detailed by Parrish and Carroll [Parrish and

Carroll, 2011]. The culture is usually done

using both solid and liquid media (typically

mycobacterial growth indicator tubes

[MGITs]), with growth usually observed in 1�3

weeks, depending on the mycobacterial inoculum

Therapeutic Advances in Infectious Disease 3 (2)
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in the sample [Chihota et al. 2010; Fadzilah et al.

2009]. Once growth is observed (on solid media)

or flagged by the machine (in the case of

MGITs), a positive culture can be assigned a pre-

sumptive identification as M. tuberculosis complex

using a DNA probe, usually within 24 h

[Ichiyama et al. 1997]. Cultures are then sent to

a reference laboratory for formal species confirm-

ation and for drug susceptibility testing (DST) by

phenotypic (i.e. growth-based) assays.

Superimposed on this classic workflow (smear

microscopy, culture, then DST), laboratories

have overlaid molecular testing over the past

two decades, using a variety of different platforms

and clinical strategies. The first molecular tests

approved were only licensed for the speciation of

smear microscopy-positive samples [Parrish and

Carroll, 2011], so their key role was in assigning a

microbial name to such a sputum sample

[Vuorinen et al. 1995; Carpentier et al. 1995].

Then, with time and experience, it became recog-

nized that nucleic acid amplification testing could

be offered on smear-negative samples where

there was a high clinical suspicion of TB

[Centers for Disease Control and Prevention

(CDC) 2009]. To reduce costs of controls,

these ‘rapid’ first generation tests were generally

batched and as a result, might only have been

done twice or three times per week, depending

on laboratory volume. More recently, the

GeneXpert (Cepheid Inc., Sunnydale, CA,

USA) has offered a random-access real-time

nucleic acid amplification test, which can be

done on a single sample, without having to wait

for samples from other patients. GeneXpert is

conducted directly on the clinical specimen to

detect both the presence of M. tuberculosis DNA

and mutations in the rpoB gene that predict

resistance to the first-line drug, rifampin. In prin-

ciple, results can be available in under 2 h

[Boehme et al. 2010]. In practice, turn-around

time depends on logistics; most testing is done

in laboratories rather than clinics, necessitating

delays due to shipping and handling [Alvarez

et al. 2015]. The specificity of GeneXpert for

M. tuberculosis detection is high, reported at

>98%, but the sensitivity varies by smear status

[Boehme et al. 2010; Steingart et al. 2014; Sohn

et al. 2014], site (e.g. respiratory versus extrapul-

monary) and type of sample (e.g. lymph node

versus pleural [Maynard-Smith et al. 2014;

Denkinger et al. 2014]). While GeneXpert is cur-

rently the fastest and arguably most useful diag-

nostic test in many parts of the world, it may be

that its enduring legacy is catalyzing a paradigm

shift away from phenotypic testing, towards gen-

etic detection of M. tuberculosis as the primary

DNA probe 

Smear 
microscopy

GeneXpert 

1) Clinical specimen

Liquid 

Solid 

3) Antibiogram2) Culture 

Figure 2. Clinical diagnostic workflow for Mycobacterium tuberculosis.
The three main steps in the current diagnostic workflow for M. tuberculosis are shown. As described in the
text, whole-genome sequencing may have a potential role at each of these steps: (1) by being applied directly to
the unprocessed clinical specimen or (2) by being conducted on the positive culture to predict drug resistance.
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goal of the TB lab. If true, then the same pre-

analytic principles (collecting sputum, delivering

to lab, rendering the sample safe, extracting

DNA) can serve as the basis for a more compre-

hensive interrogation of the mycobacterial

genome, going beyond the rpoB gene to charac-

terize the complete genome of the causative

organism.

WGS for diagnosis
Until recently, the utility of WGS for de novo

diagnosis of M. tuberculosis was unclear. WGS

had relied exclusively on enriched DNA obtained

from a pure bacterial culture, at which point the

patient would have already been diagnosed. More

recently, studies have examined the feasibility of

sequencing M. tuberculosis directly from the clin-

ical specimen [Doughty et al. 2014; Brown et al.

2015]. Sequencing eight smear positive samples,

Doughty and colleagues obtained only 0.002� to

0.7� depth of coverage, with 20�99% of reads

sequenced mapping to the human genome rather

than M. tuberculosis [Doughty et al. 2014]. Brown

and colleagues obtained similar results when

sequencing directly from clinical samples, but

when an oligonucleotide enrichment protocol

was applied, they were able to obtain at least

20� depth of coverage on 20/24 smear positive,

culture positive isolates, providing sufficient

sequence depth to confidently speciate the organ-

ism present [Brown et al. 2015].

If WGS is to be applied on the patient sample,

the conceptual advantage is a more rapid result.

However, the vast majority of samples are nega-

tive for M. tuberculosis, even in a high-incidence

setting [Demers et al. 2012], so some form of tri-

age is needed to select the samples most likely to

benefit from direct WGS. Furthermore, sputum

is contaminated with host and other bacterial

DNA, complicating bioinformatic analyses and

reducing the overall depth of coverage obtained

for the M. tuberculosis genome [Doughty et al.

2014]. While low coverage may not preclude

the ability to confidently detect M. tuberculosis,

it could seriously undermine the capacity to

detect mutations associated with drug resistance

(as shown by Doughty and colleagues [Doughty

et al. 2014]), where the greatest clinical value of

WGS may lie. In sum, these studies provide

proof-of-principle that WGS of M. tuberculosis

directly from clinical specimens is feasible, but

the cost of the enrichment protocol (USD$350

per sample), the requirement for technical

expertise and equipment, and the need for

real-time bioinformatics to convert sequence

files into clinically meaningful lab reports all pre-

sent challenges to WGS supplanting smear

microscopy and nucleic acid amplification as

the primary test performed on clinical specimens.

If instead WGS is applied on the positive culture,

then the benefit of rapidity has been lost, as the

patient should already be isolated and started on

treatment, based on either smear microscopy, a

nucleic acid amplification test or the Accuprobe

result on the culture. In this case, WGS may offer

a different opportunity, which is a more rapid

identification of antibiotic resistance.

WGS for resistance
In 2013, 3.5% of incident TB cases worldwide

(95% confidence interval [CI] 2.2�4.7%) were

estimated to have multidrug-resistant (MDR)

TB, with an enrichment to 20.5% in cases with

previous treatment (95% CI 13.6�27.5%)

[World Health Organization, 2015]. As there is

no evidence for ongoing acquisition of foreign

DNA by M. tuberculosis, resistance occurs due

to mutations in the chromosomal DNA, some

of which have been mapped and mechanistically

linked to the resistance phenotype [Nebenzahl-

Guimaraes et al. 2014]. Phenotypic testing of a

positive culture (called indirect DST) is the cur-

rent gold standard for M. tuberculosis. The need

for level 3 containment facilities and the require-

ment to perform an appropriate number of tests

to maintain competence, however, have con-

spired to direct this most clinically meaningful

assay to reference labs, entailing delays due to

transport and handling. Therefore, while it is

stated that first-line susceptibility results can be

obtained in 2-4 weeks [Perkins and Cunningham,

2007; Migliori et al. 2008], such estimates reflect

the time for work to be performed in the refer-

ence lab. When considering the time from sample

acquisition to a final report, others provide longer

timeframes, up to 2 months [Parrish and Carroll,

2008]. Until this information is available, the

clinician faces an immediate dilemma, which is:

‘What do I prescribe now?’. Inappropriate treat-

ment risks generating further drug resistance, but

delaying treatment until a final report is provided

risks deleterious treatment outcomes [Park et al.

1996]. While one option is to attempt phenotypic

testing directly on the patient sample (called

‘direct DST’), there are still delays with the

time to obtaining cultures, and susceptibility test-

ing on the sputum sample brings its own chal-

lenges, since it is difficult to standardize the

Therapeutic Advances in Infectious Disease 3 (2)
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inoculum for such assays. It is at this moment of

indecision that a molecular test could provide the

most immediate clinical guidance, as exemplified

by the GeneXpert test. For examples of molecu-

lar tests, along with sensitivity and specificity for

respective drugs, see Table 1.

As most rifampin-resistant isolates are also iso-

niazid-resistant, the GeneXpert uses rpoB muta-

tions associated with rifampin-resistance as a

proxy for multi-drug resistance. However, not

all rifampin-resistant organisms are isoniazid-

resistant (i.e. there can be rifampin mono-

resistance) and indeed, not all isolates predicted

to be rifampin-resistant are confirmed on pheno-

type-based testing [Steingart et al. 2014]. In add-

ition, not all rifampin-resistant isolates are

detected based on the currently assessed muta-

tions [Sanchez-Padilla et al. 2015; Jamieson et al.

2014a]. Finally, GeneXpert may fail to detect

hetero-resistance, i.e. resistance-connoting muta-

tions present in subpopulations within the patient

[Zetola et al. 2014]. For all of these reasons, a

broader-based assay, such as WGS, could offer

the greatest clinical utility at this point in the

diagnostic process, by looking beyond the targets

of the current molecular assays.

By sequencing the whole genome, in theory all

resistance-connoting mutations that can guide

clinical treatment can be identified by comparing

the genome of the patient isolate with detailed

databases of known resistance markers

[Sandgren et al. 2009; Flandrois et al. 2014]. In

practice, this will work, if (a) these markers

accurately predict in vitro phenotypic resistance,

and (b) these markers predict clinical outcome.

For the latter, we are unaware of studies that have

directly assessed the utility of WGS data for pre-

dicting patient response to treatment. For the

proximal goal of linking WGS to phenotypic

resistance, there are emerging data which present

a mixed message. Using online databases, supple-

mented with an updated search of the literature,

Coll and colleagues [Coll et al. 2015] developed a

mutation library and examined the concordance

between genotypic predictions and phenotypic

data for 788 isolates from diverse geographic set-

tings. Among the drugs with sufficient pheno-

typic data (rifampin (RIF), isoniazid (INH),

ethambutol (EMB), pyrazinamide (PZA) and

streptomycin (STR)) as well as second-line

drugs (amikacin (AMK), capreomycin (CAP),

ethionamide (ETH), kanamycin (KAN), moxi-

floxicin (MOX), ofloxacin (OFX)), the sensitivityT
a
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of WGS for predicting resistance was highest for

INH and RIF at 92.8% (95% CI 89.9�95.7) and

96.2 (95% CI 93.9�98.5). At the other end of the

spectrum, the sensitivity of WGS for PZA-resis-

tance was only 70.9% (95% CI 62.4�79.4).

Thus, if WGS replaced phenotypic testing, one-

twelfth of INH-resistant and one-third of PZA-

resistant cases would receive these potentially

hepatotoxic drugs, with little or no benefit.

Specificity of WGS was highest for INH and

RIF at 100% (95% CI 100�100%) and 98.1%

(95% CI 96.8�99.4%), respectively, but for other

drugs, specificity was as low as 81.7% (EMB).

In the same manuscript [Coll et al. 2015], Coll

and colleagues also compared the performance of

their database with KvarQ, a software that uses

pre-specified ‘testsuites’ of known resistance-

connoting mutations and other regions of interest

to predict resistance [Steiner et al. 2014]. Using

phenotypic data as the gold standard, sensitivity

was substantially lower for nearly all drugs using

the KvarQ method (though 95% CIs overlapped

for all except EMB and KAN). Among first-line

drugs, only RIF yielded similar point estimates to

those obtained with Coll and colleagues’ muta-

tion library, with sensitivity of 95.8% (95% CI

93.4�98.2%), while sensitivity for INH was

only 86.9% (95% CI 83.1�90.7%). No results

were available for ETH and CAP using the

KvarQ software. Specificity was generally higher

using KvarQ, though this difference was only sig-

nificant for EMB and STR. Specificity for RIF

was similar to that obtained with the mutation

database, at 97.9% (95% CI 96.5�99.3%).

In a similar study [Walker et al. 2015], Walker

and colleagues selected 23 candidate resistance-

associated genes from the literature [Sandgren

et al. 2009] and then used an algorithm to char-

acterize mutations (SNPs and indels) within

these genes and their promoter regions as resis-

tance-connoting or benign. In a training dataset

of 2099 isolates, 120 resistance-connoting muta-

tions were identified, 772 were classified as

benign and 101 could not be classified as either

(called ‘uncharacterized’). The resistance-

connoting and benign mutations identified in

this training dataset were then used in a valid-

ation study on an additional 1552 genomes,

29% of which were resistant to at least one

drug on drug susceptibility testing (DST).

Using these mutations, authors were able to pre-

dict 89.2% of phenotypes as resistant or suscep-

tible. 10.8% of phenotypes could not be

predicted, as these contained mutations that

had not been characterized. Among those where

phenotype could be predicted and considering

predictions for each drug independently, 112 of

6892 with drug-sensitive DST were predicted to

be resistant based on WGS (1.6%), while 94 of

1221 with drug-resistant DST were erroneously

predicted to be drug-sensitive (7.7%). The latter

may be due to mutations with unknown function

outside the 23 candidate genes interrogated. This

is similar to Farhat and colleagues [Farhat et al.

2013]; in this study, authors performed targeted

deep sequencing of known resistance genes to

verify that resistance mutations were absent in

subpopulations within isolates. They found that

13/47 isolates with phenotypic resistance had no

previously known mutations. Unexplained resist-

ance, wherein phenotypic resistance is present

but known resistance-connoting mutations are

absent has been most pronounced for PZA

[Hewlett et al. 1995] and second-line drugs.

For example, Farhat and colleagues [Farhat

et al. 2013] found that, among isolates resistant

to ciprofloxacin, KAN and CAP, 2/3, 6/18 and 1/

6 isolates, respectively, had unexplained resist-

ance. As the reliability of phenotypic testing is

least well established for these drugs [Horne

et al. 2013], this is where there is the greatest

need for WGS, but presently also the greatest

knowledge gap.

In clinical medicine, the physician wants to

know whether the isolate has a resistance-con-

noting mutation or not, so that treatment can be

tailored accordingly. Indeterminate test results

offer little clinical guidance, and often steer clin-

icians to other antibiotics, where feasible. While

it is logical to exclude isolates with uncharacter-

ized mutations from a scientific paper that aims

to understand resistance, in a clinical laboratory,

these have to reported one way or the other.

Analyses that classified such uncharacterized

mutations as predictive of phenotypic suscepti-

bility greatly affected test parameters; the sensi-

tivity of WGS for INH and RIF resistance

dropped from 94.2% (95% CI 91.1�96.5%)

and 96.8% (95% CI 94.1�98.5%) with unchar-

acterized mutations excluded to 85.2% (95% CI

81.1�88.7%) and 91.7% (95% CI 87.9�94.5%)

with uncharacterized mutations included,

respectively. Sensitivity for PZA resistance in

the latter analysis was the lowest overall, at

only 24% (95% CI 17.9�30.9%). Until such

mutations can be confidently assigned to the

appropriate phenotype, it would seem that
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parallel, or at the least, sequential phenotypic

testing should remain part of the diagnostic

pathway.

Furthermore, these publications generally

included biased samples, with relatively high pro-

portions of drug-resistant isolates. As many

clinical labs identify primarily drug-sensitive iso-

lates, the operating parameters of WGS for this

purpose may change when evaluated against

more representative samples. While authors had

generally high specificity for most drugs, the pre-

dictive value depends on the underlying preva-

lence of drug resistance. In a country such as

Canada, which detected RIF resistance among

only 17 of 1380 M. tuberculosis complex isolates

analyzed in 2013 [Public Health Agency of

Canada, 2015], a specificity of 98.1�99.2% and

sensitivity of 91.7�96.2% based on the results of

Coll and colleagues [Coll et al. 2015] and Walker

and coworkers [Walker et al. 2015] would equate

to�18 false positives per year, with a positive pre-

dictive value of only �46%. Without subsequent

phenotypic testing, these cases would be subject

to second-line treatment, with prolonged,

unnecessary hospitalization. Thus, WGS may be

best reserved only for individuals in which there

was a higher pretest probability of resistance

(based on some a priori criteria for the use of

WGS, e.g. previous treatment).

Despite these limitations, it is clear that WGS

offers magnitudes more information than the

molecular methods listed in Table 1, with the

potential of greatly advancing clinical diagnostics

for M. tuberculosis. While the WGS database of

Coll and colleagues [Coll et al. 2015] performed

similarly to GeneXpert for RIF resistance, it also

allowed for determination of INH mutations, and

had an overall accuracy of 95.8%, as compared to

93.1% for MTBDRplus (Hain Lifescience,

Nehren, DE) (p< 0.0004). Accuracy was also

higher for second-line drugs compared with

MTBDRsl (Hain Lifescience, Nehren, DE)

(96.3% versus 93.7%, p< 0.0047). Walker and

colleagues [Walker et al. 2015] showed similar

sensitivity and specificity of their algorithm for

determining the correct phenotype using WGS

as the collective results of MTBDRplus,

MTBDRsl and AID (AID Diagnostika,

Strassberg, DE) line probe assays (LPAs). In add-

ition, while synonymous SNPs can present as false

positives on both LPA or GeneXpert, Walker and

colleagues were able to classify these as benign.

Overall, these data support the great potential of

WGS as a tool to predict resistance. However,

databases of M. tuberculosis genomes, along with

associated phenotypic data, are essential to iden-

tify unrecognized and emerging mutations.

In addition, our ability to accurately predict

phenotypic resistance is limited by our under-

standing of epistasis (the interaction between

mutations, which can influence phenotype

[Trauner et al. 2014]); mutations associated

with resistance have been found in phenotypically

sensitive bacteria [Walker et al. 2015], in some

cases potentially due to interaction with other

mutations in the genome. Until additional data

are gathered, it can be foreseen that WGS may

serve as an added, rather than a replacement test,

on the diagnostic pipeline (Figure 2). This would

incur added costs to the lab, something that is

clearly less attractive than WGS simply replacing

drug susceptibility testing (DST), with all its

labor and reagent costs. One need look no further

than the example of HIV treatment to imagine a

world where genotype-based data are used to pre-

dict drug resistance, and hence treatment deci-

sions. However, for all of the aforementioned

reasons, we submit that reference labs need to

maintain competence in phenotypic DST for

the foreseeable future.

Another issue for clinical application of WGS is

timeliness of reporting. As of yet, two papers

reported on the application of WGS in ‘real-

time’ to clinical cases: a case report of a patient

[Köser et al. 2012] with extremely drug-resistant

(XDR) TB (defined as MDR TB plus resistance

to an injectable second-line drug and a fluoro-

quinolone) and a prospective cohort of patients

in the United Kingdom suspected of having XDR

TB [Witney et al. 2015]. Köser and colleagues

successfully obtained sequence data from a 3-

day-old MGIT culture, identifying two concur-

rent but distinct strains of M. tuberculosis [Köser

et al. 2012]. Predicted resistance and sensitivity

concurred with phenotypic results for all drugs

tested, while WGS predicted resistance to an

additional five drugs. While WGS results had

no impact on treatment, WGS did identify a

mutation in the gene activating PAS in the minor-

ity strain, despite a phenotypic determination of

PAS-S. Unfortunately, the functional impact of

this was unknown. Witney and colleagues

[Witney et al. 2015] selectively applied WGS to

six cases with potential XDR TB, identified over

6 years in London, with multiple isolates

sequenced per patient. Results for five out of six
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cases were available in a clinically actionable time

frame. Genotypic and phenotypic resistance were

100% concordant for INH and RIH, while dis-

crepancies were reported in PZA, EMB, fluoro-

quinolones (OFX and MOX), AMK, KAN,

CAP, PRO and PAS. In terms of clinical utility,

WGS data helped guide treatment decisions by

confirming PZA resistance in one case, and refut-

ing an XDR diagnosis in favor of MDR in

another. For another case, clinicians decided to

continue with treatment with EMB, despite

development of phenotypic resistance, as WGS

failed to identify mutations in embA or embB

that could explain the change in DST.

The Witney and colleagues study also illustrated

that for WGS data to be used clinically, the

results need to be analyzed rapidly and presented

in a clear, easily interpretable manner. Several

groups have produced online tools (e.g.

‘PhyResSE’ [Feuerriegel et al. 2015] and ‘TB

Profiler’ [Coll et al. 2015]) wherein raw sequen-

cing data for an isolate can be uploaded and ana-

lyzed for resistance-connoting mutations. As

mentioned previously, the KvarQ software can

also predict resistance from raw sequencing

data; in contrast to PhyResSE and TB Profiler,

this can be done on a local server [Steiner et al.

2014]. Yet, despite efforts to make these reports

accessible to the wider scientific community, a

knowledge of genomics and/or bioinformatics is

still required to interpret results. As an example,

the quality of SNPs is provided with details such

as depth of coverage, a parameter that most clin-

icians would be uncomfortable judging.

Presently, PhyResSE and TB profiler are expli-

citly for research purposes only, which poses

regulatory hurdles to the delivery of results des-

tined for the clinical chart. Witney and colleagues

[Witney et al. 2015] piloted a WGS report during

the course of their study, but, unfortunately, clin-

ician perception of this report and its interpret-

ability was not assessed. Furthermore, though

‘best practices’ have been proposed for identify-

ing SNPs [Olson et al. 2015], the current bio-

informatics workflows used to analyze WGS

data remain largely unstandardized. For imple-

mentation in the clinical lab, appropriate quality

control measures [Clinical and Laboratory

Standards Institute, 2014] and a standardized

workflow need to be established. The lessons of

the past five decades of emerging antibiotic resist-

ance have demonstrated that even a simple

dichotomous test result, i.e. resistant or suscep-

tible, does not always predict appropriate care.

Therefore, the application of WGS-based results

to clinical care may benefit from evaluations done

by experts in implementation science, rather than

genomics or microbiology.

Conclusion
Offering increased resolution and substantially

more data compared with conventional methods,

WGS has revolutionized the arena of molecular

epidemiology. Now, it seems poised to do the

same for the clinical microbiology laboratory.

The appeal of WGS for M. tuberculosis (and

other pathogens) lies in the quantity of data pro-

vided; with one test, an organism can be speciated,

resistance mutations can be detected and the

strain can be placed in the context of the local

epidemiology. The challenge of WGS also lies in

the quantity of data provided; the same test can

occupy a team of bioinformaticians, yet generate

results that few clinicians can currently interpret.

Furthermore, for WGS data to be clinically useful,

results must be available in sufficient time to guide

patient care. Recent advances such as sequencing

directly from clinical samples and the rapid work-

flow of the Nanopore MinIon may facilitate this.

The decision to whom this ‘test’ will be applied is

also critical. Though no studies to date have

examined cost-effectiveness of implementing

WGS, it can be predicted that application of this

test to all, unselected samples without removing

other steps in laboratory workflow could be pro-

hibitively expensive. Therefore, it can be foreseen

that WGS will be applied selectively, for instance,

on patients with Rifampin resistance mutations

detected by the GeneXpert assay.

The issues raised above are only further amplified

when contemplating the countries of the world

that suffer the greatest burden of TB and have

the highest prevalence of drug-resistant strains.

While it is clearly feasible to ship sequencing

machines around the world, as has already been

done with the GeneXpert platform, it is not as

simple to distribute the technical and bioinfor-

matic expertise required for next-generation

sequencing where it is needed. A potential solu-

tion to the latter is open-source coding and

online data treatment, but this is currently lack-

ing for clinical use, even in settings with expertise

in these methods. Ultimately, what is needed is

an easy-to-use software complete with a graphical

user interface that is capable of converting data-

intense sequence files into a simple, concise clin-

ical message. As done with GeneXpert [Theron

et al. 2014b], these outputs then need to be
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field-tested in settings with a sufficient burden

of drug-resistant TB to enable evaluation of

whether test results altered treatment decisions

and clinical outcomes. The relatively small

number of MDR TB patients in countries such

as Canada may preclude a formal evaluation of

patient outcomes, simply due to sample size con-

siderations. In order to assess its clinical utility

for resource-rich countries where its use has

been pioneered, we may need to first embed

WGS in treatment studies conducted in the

developing world, where the challenge posed by

TB and drug resistance remains the greatest.
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