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Abstract

In longitudinal studies, time-varying group membership and group effects are important issues that 

need to be addressed. In this article we describe use of cross-classified and multiple membership 

random-effect models to address time varying group membership, and dynamic group random-

effect models to address time-varying group effects. We propose new models that integrate 

features of existing models, evaluate these models through simulation, provide guidance on how to 

fit these models, and apply the models in two real data examples. The discussion focuses on 

challenges in the application of these models.

Keywords

Cross-Classified; Random-Effects Models; Multiple Membership; Dynamic Group Effects; SAS; 
SPSS; R

The design of many studies in the social sciences involves individuals who are measured 

over time and are members of groups (e.g., schools, families, therapy groups). In order to 

address the dependency or correlation among individuals within the same group it is now 

common practice to fit a multilevel model, otherwise known as a hierarchical linear model 

or mixed-effects model (Hedeker & Gibbons, 2006; Hox, 2002; Raudenbush & Bryk 2002; 

Snijders, & Bosker, 1999). In some studies however there is additional complexity 

introduced when individuals change groups over time. For instance, in a study comparing 

two types of treatments for an anxiety disorder some individuals may receive treatment from 

one therapist and then switch to another therapist during the course of the study. Given that a 

multilevel model that assumes individuals remain in the same groups over time would be 

inappropriate, cross-classified random-effect models were developed that allowed for group 

membership to be a time-varying random effect (Goldstein, 1987; Raudenbush, 1993). That 

is, these models allow for the dependency in observations within a group to be modeled 
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based on the group an individual belongs to at a particular point in time. Further extensions 

were developed to address people being members of more than one group simultaneously, 

which we refer to as multiple membership (e.g., Hill & Goldstein, 1998; Goldstein, 2003; 

Raudenbush & Bryk, 2002). Several simulations have shown that misspecification of a 

model with a population cross-classified or multiple membership structure can lead to 

inaccurate estimates of random effects and fixed effect standard errors (Chung & Beretvas, 

2012; Luo & Kwok, 2009, 2012; Myers & Beretvas, 2006; Roberts & Walwyn, 2012). How 

might this impact tests of the treatment effect in our hypothetical study comparing anxiety 

disorder treatments? If the standard error of the time by treatment interaction is 

systematically overestimated due to inappropriately modeling time-varying group effects 

(Luo & Kwok, 2012), then we risk having standard errors that are artificially high, decreased 

power to detect effects, and confidence intervals that are too wide. Moreover, it might be of 

interest to know how much of the variability in the outcome is attributable to the therapist or 

which therapists perform particularly good or bad. If the therapist variance is underestimated 

because we have misspecified the model with respect to group membership (Luo & Kwok, 

2012), then we risk understating the therapist effect and incorrectly identifying particular 

therapists with good or bad performance. Therefore, it becomes important that the model is 

specified as accurately as possible with respect to group membership.

A conceptually distinct issue from the one above is the effect of the groups over time. In a 

conventional multilevel model if an individual remains in the same group over time then that 

model assumes that the group exerts a constant force on that individual’s response (and all 

other individuals who belong to that group). It is important to distinguish the concept 

presented here from the one presented in the preceding paragraph. If an individual changed 

groups over time, then cross-classified and multiple membership random-effect models 

would allow for the different groups to affect the person’s response differently, but the effect 

of each group would still be assumed to be constant over time. A constant group effect is a 

tenuous assumption, given that characteristics of groups change over time, leading to an 

effect that depends on time. It might be reasonable, for example, to expect that the group 

effect for measurements taken closer together in time would be more similar than those 

taken farther apart. For instance, in a psychological treatment study, the effect of the 

therapist on the person’s outcome would likely be more similar if we compared their effect 

in the first and second months of therapy than if we compared the effect in the second and 

tenth month. Given the possibility of non-constant group effects, a distinct line of statistical 

research has developed models that allow for greater flexibility in how the effects of groups 

on individual responses are quantified, referred to as dynamic group models (Bauer, 

Gottfredson, Dean, & Zucker, 2013; Leckie & Goldstein, 2009, 2011; Paddock, Hunter, 

Watkins, & McCaffrey, 2011). Use of dynamic groups could be motivated by concerns 

related to misspecfication and its impact on model estimates, similar to those described 

above. Moreover, dynamic group models may offer additional insight into the impact of 

therapists, in particular the ability to evaluate the correlation of the therapist effect over 

time. For instance, a higher correlation for the therapist effect observed for measurements 

taken closer together in time than for measurements taken farther apart would suggest that 

good therapists stay good and bad therapists stay bad over short periods of time, but that the 

pattern attenuates over longer periods of time (Bauer et al., 2013). Collectively, dynamic 
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group models offer greater flexibility than conventional approaches, which may translate to 

more accurate parameter estimates and novel insights into the effect of groups over time.

In light of the methodological developments related to modeling group membership and 

group effects over time, the objective of this paper is to provide the reader with an 

introduction to these statistical models, but going beyond existing didactic resources (e.g., 

Goldstein, Browne & Rasbash, 2002; Raudenbush & Bryk, 2002; Rasbash & Browne, 2008) 

in several respects. In addition to a thorough presentation of the models, we show how 

aspects of these models can be integrated together, evaluate the models through simulation, 

illustrate how to use general purpose software to fit these models, and illustrate their 

application in two data sets.

Two Real Data Examples

In this paper we analyze data from two studies. The first is a longitudinal study designed to 

examine predictors (e.g., student gender, school-type) of growth in mathematics 

achievement of students during elementary and middle school, with some students changing 

schools during the study period. Therefore, we have students measured over time on their 

math achievement, with their school or “group” membership possibly changing from one 

time to the next. In order to maximize the chances that our model produces trustworthy 

results, perhaps most importantly for the fixed effects (e.g., gender by time interaction), it is 

important to incorporate the student’s changing school membership in the analysis. It might 

be especially important in this example to also consider the possibility that past group 

affiliations affect a student’s current achievement. This corresponds to the idea that at a 

particular point in time a student’s mathematics achievement is impacted by both their past 

and current school memberships, and this historical multiple membership shapes their 

achievement. In this study we also want to be cognizant of how the group effects are treated 

in any modeling approach, ascertaining whether these effects are constant or have some 

form of dynamic structure. If a dynamic structure is more appropriate we would seek to 

specify the structure as accurately as possible in order to minimize model specification 

errors, as well as to identify a structure that might tell us something about the schools 

themselves.

The second study examines clinician’s attitudes towards evidence-based practice over time, 

as part of an implementation study (i.e., studies focused on examination of factors that 

support broader adoption, use, and scale-up of evidence-based interventions in usual care 

settings; Aarons, Hurlburt, & Horwitz, 2011). The main question of interest is whether there 

is a change of these attitudes over time as a function of whether they are in one of four 

conditions, they administer the evidence-based practice (Yes/No) × they are monitored to 

ensure adequate administration (Yes/No). Clinicians are supervised and during the course of 

the study they may change from one supervision group to another. As with the first study, 

accurate accounting of supervision group membership over time, as well as possible 

dynamic group effects, is important to increase the likelihood that the model yields accurate 

results. Here we are primarily concerned with the condition by time interaction, but learning 

about the manner in which the groups change over time would be also be of interest.
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Time-Varying Group Membership

Nested vs. Crossed Effects

A nested factor is one in which any level of one factor can only be measured within a single 

level of another factor, whereas if any level of a factor can be measured across multiple 

levels of another factor, the two factors are crossed (West, Welch, & Galecki, 2007). 

Correspondingly, if we consider one factor to be group membership and the other factor 

time within person, then if group membership remains the same for each person over time, 

then such a factor is referred to as nested. In contrast, if changes to group membership occur 

for some individuals over time then such an effect is referred to as crossed. In Table 1 we 

display the data for the first five people from a simulated dataset of 50 individuals, each 

measured on four occasions, who may be a member of one of 10 groups at any point in time. 

If each individual remained in the same group over time we would say that measurements of 

individuals over time (factor 1) are nested within group (factor 2). Clearly, this is not the 

case, since some individuals switch groups over time (persons 2, 3, & 4), and therefore we 

say that these two factors are crossed. The nested vs. crossed distinction applies equally well 

to either fixed or random effects, but we focus on how they pertain to modeling group 

random effects in this paper. The running example we will use to describe some of the 

statistical concepts in this article is based on the second empirical example of this paper, 

where clinicians are measured over time on their attitudes toward evidence-based practice, 

with some clinicians changing membership in supervision groups over time.

Nested Linear Mixed Models

Often when a crossed factor is present in one’s data and it is conceived as a random effect, a 

restrictive form of a linear mixed model is applied that treats the effect as if it were nested. 

One such model is a three-level model in which time is nested within person and people are 

nested in groups (Hedeker & Gibbons, 2006; Hox, 2002; Raudenbush & Bryk 2002; 

Snijders, & Bosker, 1999). For ease of presentation all models are presented as linear mixed 

models but use of generalized linear models with alternative distributions for outcomes will 

be addressed in the discussion. This model is displayed below:

Level1 Model

(1)

Level2 Model

Level3 Model
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where Yijk is the outcome for person j in group k at time i, π0jk is the expected score on the 

outcome for person j in group k at t =0, π1jk is the expected growth rate in the outcome for 

person j in group k, and eijk ~ N(0, σ2) is a random within–person residual assumed normally 

distributed with 0 mean and constant variance. Further, the θ s and γ s correspond to fixed-

effects in the model and the b s and c to random effects. We might also assume bivariate 

normality for the person-level random effects, , and 

normality for the random group intercept, . This model allows individuals to 

have randomly varying intercepts and slopes (and for them to covary) at the person level, 

and intercepts to vary randomly as a result of group membership. The model can also be 

augmented to include a random group effect for the slope, c10k, as well as other fixed and 

random effects. Generally, this type of model frequently serves as the default for analysis of 

crossed random effects because assuming a nested structure is conventional and easy to 

implement using existing software, but as we show these models can easily be adapted to 

allow for crossed random effects of people/time by groups.

Cross-Classified Random-Effects Models (CCREM)

Cross-Classified Random-Effects Models (CCREM) are models that were developed to 

allow for crossed random effects (Goldstein, 1987; Raudenbush, 1993). Raudenbush and 

colleagues (Raudenbush, 1993; Raudenbush & Bryk, 2002) describe CCREM for the 

analysis of longitudinal data with crossed random effects. These authors distinguish between 

two types of models in this context: acute-effects and cumulative-effects. In the acute-effects 

model the random group effects are modeled in such a way that the only the effect of being 

in a particular group at a particular time can influence the response at a fixed point in time, 

whereas in a cumulative-effects model both past and current group memberships can act on 

the response at a fixed point in time. From the running example the acute-effects model 

would translate to a supervision group only influencing the attitudes of a clinician at the time 

the clinician is a member of that group. In contrast, in a cumulative-effect model the 

attitudes of the service provider could be influenced by both current and past supervision 

group memberships.

Early formulations of the acute-effects CCREM (Raudenbush, 1993) displayed the group 

membership effect in the Level 1 portion of the model, corresponding to this effect varying 

with time (notation is based on the original article):

Level1 Model

(2)

Level2 Model
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where Yij is the outcome for person j at time i, π0j is the expected score on the outcome for 

person j at t = 0, π1j is the expected growth rate in the outcome for person j, and eij ~ N(0, 

σ2) is a random within–person residual assumed normally distributed with 0 mean and 

constant variance. The θ s represent the fixed-effects and the b s and c are random-effects. 

The b s in this model correspond to the person-level random intercept and slope effects, and 

as in (1) we assume . Further, we assume that 

 is a random-effect due to a person encountering a group at a particular time. 

The Dkij term is a dummy indicator with a value of 1 if person j encounters group k at time i, 

0 otherwise. The representation of the acute-effects model in (2) has more recently been 

abandoned in favor of displaying the group effects as part of the Level 2 portion of the 

model (the notation is based on Raudenbush & Bryk, 2002), possibly to highlight the impact 

that these random effects can have on the person (see below), although both formulations are 

equivalent:

Level1 Model

(3)

Level2 Model

One way to understand the acute effects model is to compare it to a model with group 

membership that does not change over time (nested). Specifically, we compare predictions 

from these two models for a single person who switches groups at each time, initially 

belonging to group 1 (Time 0), then group 2 (Time 1), and group 3 (Time 2), but could have 

belonged to any one of k such groups at a given point in time. The predictions would consist 

of:

Nested
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Acute-Effects CCREM

Notice that there is no difference in prediction between the two models at time 1, but at time 

2 the difference is c002 − c001, and at time 3 this difference is c003 − c001. Luo and Kwok 

(2012) provide a nice graphical display of this comparison, which we have adapted and 

present in Figure 1. What the equations and Figure 1 illustrate is that changes to group 

membership can impact or alter a person’s growth curve relative to a nested specification. 

Therefore these different model parameterizations can have different effects on the slope 

through how they treat group membership. This may not be apparent given that the random 

effect is written as part of the intercept portion of Level 2 in equation (3), but is nonetheless 

true. Lastly, it is important to note that the acute-effects model could be adapted to include a 

group random-effect for the slope as well, but this would imply that the group effects vary 

linearly with time, which may be too restrictive (Bauer et al., 2013) and why we consider 

alternatives in the section on time-varying group effects.

Further insight about the acute-effects model can be gained by comparing it to a nested 

model with respect to the random-effect design matrix and vector of random effects for 

group membership. Consider a matrix representation of (3) for the jth person:

(4)

with Xj representing the fixed-effects design matrix, θ the vector of fixed effects, Aj the 

random-effects design matrix for person effects (slope and intercept) and bj the 

corresponding vector of random effects, Zj the random-effects design matrix for group 

membership with cj the corresponding vector of random effects, and εj the vector of within-

person residuals. Consider a hypothetical person that changes groups three times over three 

time periods. The random-effect design matrix and vector of random effects for group 

membership are then:

Nested
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Acute-Effects CCREM

For the nested model, we assume that the person is retained in the first group over time. 

More importantly, what can be seen here is how the 1s in Zj activate the group effects, with 

the nested model activating the same effect at each time and the acute-effects CCREM 

allowing for the activation of different effects at each time.

In a cumulative-effects CCREM model both past and current group memberships can affect 

a person’s response at a particular point in time. To see this consider the cumulative-effects 

model (Raundebush & Bryk, 2002):

Level1 Model

(5)

Level2 Model

Here again, we have adopted the notation of Raudenbush and Bryk (2002), who change 

notation from the acute-effects model to accommodate the carryover of random effects over 

time. In this context time is represented by t, person by j, and group by k. Dhjk is a dummy 

indicator, 1 if person j is in group k at time h, 0 otherwise. The double summation allows the 

group effects to carry over time. This model is similar to the acute-effects models, except at 

each time point group-specific deviations from previous time points are carried forward. We 

can see this by examining the predictions from this model for the same set of circumstances 

described above:

Cummulative-Effects CCREM
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If we compare the predictions from this model to the acute-effects model, we see that there 

is no difference in prediction between the two models at time 1, but at time 2 the difference 

is c001, and at time 3 this difference is c002 + c001. This is illustrated in Figure 1. What the 

equations and figure are conveying is that relative to the acute-effects parameterization, the 

cumulative-effects model can have a different effect on the person’s growth curve by 

carrying forward the effect of previous group memberships. The random effect design 

matrix and the vector of random effects for group membership for the cummulative-effects 

CCREM based on (4) would consist of:

Cummulative-Effects CCREM

Note that the random effects design matrix is for the same hypothetical person as illustrated 

for the nested and acute effects model, but in this case the design matrix is activating 

multiple group effects at the second and third time points, such that group effects from 

previous time points are being carried forward. This is characteristically different than the 

nested and acute-effects model which only activate a single group effect at each time point.

Multiple Membership Models

An often cited alternative to CCREM are multiple membership models. We introduce these 

models for two reasons. First, given that multiple membership models might be used instead 

of CCREM, it is important to understand their differences so that an informed decision can 

be made about which to use. Second, understanding the features of multiple membership 

models can be important when encountering a situation that requires a model with such 

features. At a conceptual level multiple membership models are defined as lower-level units 

being members of more than one higher-level unit at the same time (Hill & Goldstein, 1998; 

Goldstein, 2003). From this point of view these models can be viewed as generalizations of 

acute-effects CCREM, because the latter only allow for a lower-level unit (person) to be a 

member of a single higher-level unit (group) at a time. This would not apply to 

cummulative-effects CCREM however because such models do allow for multiple 

memberships (i.e., both current and historical memberships), therefore they may be regarded 
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as a kind of multiple membership model. From the perspective of model parameterization, 

CCREM and the conventional multiple membership model applied to longitudinal studies 

(Goldstein, Rasbash, Browne, Woodhouse, & Poulain, 2001; Goldstein 2003; Goldstein, 

Burgess, & McConnell, 2007; Roberts & Walwyn, 2012) are quite disparate because in the 

latter time is not explicitly part of the model, there are no fixed or random effects to 

represent a time effect. This is fundamentally different from the CCREM we have 

considered thus far, where the effect of time is explicitly modeled with fixed and random 

effects. Rather, the role of time in multiple membership models is implicit, playing a role in 

the selection of weights used to weigh the random effects (and fixed group effects).

To better understand how weights are used in longitudinal multiple membership models, 

consider the following simplified multiple membership model:

Level1

(6)

Level2

At level 1, Yjk is outcome for individual j in group k, π0k is the expected score on the 

outcome for individual j in group k, and ejk ~ N(0, σ2) is a random within–subject residual. 

At level 2, θ00 represents the average score on the outcome, with c0k a level 2 residual, 

, and Wjk representing a weight. In a longitudinal study, such as we have in 

our running example, one possibility for the selection of weights is the proportion of time 

clinician j spends in supervision group k, with the restriction that the weights for each 

clinician sum to 1 (Goldstein et al., 2001; Goldstein 2003; Goldstein et al. 2007; Roberts & 

Walwyn, 2012). For example, consider person 1 from Table 1, who only belongs to group 1 

(k=1) during the course of the study, the random level-2 portion for this person would 

consist of : . Contrast this with person 2, who spends one-

fourth of their time in group one (k=1) and three-fourths in group five (k=5), the random 

part of level 2 would look like: . Collectively, we 

can see that multiple membership models and CCREM are quite different with respect to the 

how they are specified.

Cafri et al. Page 10

Psychol Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although different, by combining an acute-effects CCREM with weights similar to those 

found in multiple membership models, it is possible to obtain a model akin to a cumulative-

effects CCREM. Notably, combinations of CCREM with multiple membership have been 

undertaken in the past (Goldstein et al., 2007; Grady & Beretvas 2010), although our model 

parameterization here is different in order to draw a closer connection with the cumulative-

effects CCREM presented thus far. Specifically, we substitute Whjk into (5) to obtain:

Level1 Model

(7)

Level2 Model

The restriction in the weights above indicates that at a particular point in time t the weights 

for the jth person sum to one. This restriction on the weights isn’t a necessary modeling 

constraint, but as indicated above is consistent with respect to how multiple membership 

models are often parameterized. If we seek a model comparable to the cummulative-effects 

CCREM we might select weights that lead to the following random-effects design matrix 

(for the same individual previously considered) :

Multiple Membership CCREM

As mentioned earlier, one general option for the weights is to take on values to represent the 

proportion of time an individual has spent in a group in the past up through the time they are 

assessed (Goldstein et al., 2001; Goldstein 2003; Goldstein et al. 2007; Roberts & Walwyn, 

2012). A variation on this theme is to use the square root of the weight, since the weight will 

be squared when used to calculate the variance of the random effect. Alternatively, weights 

may take on values that weigh more heavily group memberships that are closer to the 

present time or equally weigh group membership in the past and present (Goldstein et al., 
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2007). The extent to which these parameterizations yield model estimates that are different 

from one another or a cumulative-effects CCREM is unclear, however simulations with a 

model comparable to that presented in (7) do not suggest substantial differences in model 

fixed and random effects when the weights are correctly vs incorrectly specified (Wolff 

Smith & Beretvas, 2014). Nevertheless, as pointed out by an anonymous reviewer, this 

specification is much more flexible than the simple active/inactive or cumulating random 

effect structures implied in the acute- and cummulative-effects models, which may have 

utility in other applications.

Features of multiple membership models might also be usefully combined with CCREM for 

situations when a person is actively a member of two or more groups at one time. Such a 

context can arise when evaluating efficacy/effectiveness of a treatment provided to a person 

simultaneously by several groups (i.e., clinicians or doctors) over time. For instance, in one 

trial that compared treatments for chronic fatigue syndrome, patients were randomized to 

either medical care (from a doctor) alone or in combination with one of the following 

administered by a clinician: cognitive behavioral therapy, graded exercise therapy, or 

adaptive pacing therapy (White et al., 2011). Patients were evaluated at baseline, 12, 24, and 

52 weeks on several questionnaires, including a measure of fatigue. The analysis consisted 

of assigning each person to only one doctor or therapist (whoever saw the patient most 

frequently) when considering the effect of group membership on the person’s response. At 

the very least patients in the combined treatment arms will belong to two groups during the 

course of the study (possibly more if the same doctor/clinician doesn’t administer the 

treatment to the person over time), one based on the doctor administering medical care and 

the other based on the clinician administering the other treatment received. A model that 

includes weights could be used to account for these multiple group memberships by 

allowing each person to have multiple weighted group residuals at each time they are 

assessed.

Time-Varying Group Effects

An important recent advancement in the analysis of repeated measures data for individuals 

nested within groups is dynamic group modeling (Bauer et al., 2013). With few exceptions 

(Leckie & Goldstein, 2009, 2011; Paddock et al., 2011) a frequent assumption made when 

modeling such data is that groups are static over time, when in fact there are several factors 

that should lead us to regard groups as dynamic entities. Among these are changes to the 

structure of the group (e.g., individuals leaving or being added to the group), events 

impacting one or more individuals in the group, natural changes in group dynamics that 

occur over time (e.g., evolution of interpersonal interactions), or some combination of these 

(Bauer et al., 2013). In the running example, if the supervision group exerted the same effect 

on the clinician over time then this would correspond to a group effect that is static, but 

otherwise the presence of any non-constant effect would be regarded as a group effect that is 

dynamic. It should be clear that the issue of static vs. dynamic group effects applies equally 

to nested mixed models as it does to CCREM. Bauer et al. (2013) apply dynamic group 

models to nested data, and we show here how they might also be incorporated into CCREM.
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Consider either the nested or time-varying group membership models described thus far in 

which there is only a random group effect for the intercept, with the assumption that 

. Bauer et al. (2013) consider what such a model would imply about the 

group effect over time by changing the subscripting of c00k in these models to c00ik to reflect 

that the value of the group residual now depends on time (recall i indexes time in these 

models). By extension assume that these residual are distributed as multivariate normal, c00k 

~ N(0, Σc00), so that for I time points, there are I distinct values that c00k can take on, such 

that c00k = (c001k, c002k,…c00Ik)'. This implies that the covariance matrix of the group 

residuals over time can be expressed as (with I =4):

(8)

By separating the group variance, , from the correlation matrix, we can see that such a 

model implies perfect correlations over time. In the running example this would translate to 

a supervision group effect at any one point in time being exactly the same as the effect at 

any other point in time, a tenuous assumption at best. It is important to note the addition of a 

random group effect for the slope would imply that the group effects vary linearly with time, 

c00ik = c00k + c10k ti, but the deterministic nature of this relationship combined with an 

inability to examine the viability of different correlation structures makes it less appealing 

than other dynamic group models (Bauer et al., 2013). While Bauer et al. (2013) only 

considered nested dynamic group models, we see that such models can just as easily be 

applied in situations with time-varying group membership.

Many covariance structures for Σ are possible, including but not limited to: unstructured, 

toeplitz, stabilized banded, compound symmetric, first-order autoregressive, and first-order 

autoregressive with heterogeneous variances. Here we review only a few structures that are 

most pertinent to the simulations and empirical examples considered later on. The most 

general structure is an unstructured covariance matrix, which allows for the variances and 

covariances or correlations to be distinct at each time point/lag. This structure with four time 

points is:

(9)

In their review of covariance structures, Bauer et al (2013) do not favor this structure 

because it is not parsimonious, may not be computationally feasible (i.e., may not converge), 

and is not as informative about how the group effects change over time, relative to other 

covariance structures. One important advantage of this model however is that it makes no 

assumption about the temporal structure of the group effect and therefore is not prone to 

model misspecification. Furthermore, in the case of only a few time points, such a model 

may be more computationally feasible and interpretable. Therefore, such a model should not 
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be disregarded a priori. Lastly, a model with an unstructured covariance matrix is 

particularly useful for unequally spaced time measurements because it does not assume 

equal correlations within the same lag. For instance, Time 1–4 may represent measurements 

taken at 0,1,3,5 years, respectively (see Example 1). An unstructured matrix does not 

assume that measurements Lag 1 apart have equal correlations (ρ12 ≠ ρ23 ≠ ρ34) or Lag 2 

(ρ13 ≠ ρ24).

At the other extreme is a compound symmetry covariance structure:

(10)

Despite its lack of flexibility it can be used with unequally spaced measurements because it 

assumes the same correlation irrespective of the lag. Nevertheless, this covariance structure 

seems implausible in most applications. A more plausible covariance structure is first-order 

autoregressive, which allows for decreasing association with increasing lag:

(11)

An even more flexible version of this matrix is one that allows the variances to change over 

time as well, known as a heterogeneous first-order autoregressive structure:

(12)

The first-order autoregressive structures are appealing for use with equally-spaced time 

measurement data because they are plausible and parsimonious in how they model the 

correlation among repeated measurements. These structures assume equal correlations for 

measurements within the same lag, therefore they are inappropriate for unequally-spaced 

measurements. A more general version of a first-order autoregressive structure called spatial 

power, can be used with unequally spaced time measurements. The idea with spatial power 

is to allow for the correlation to attenuate with increasing distance in time between 

measurements. The correlation between any two time points is based on ρdij, where dij is the 

distance in time between the ith and jth time points, with i ≠ j:

(13)
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For instance, if measurements are taken at 4 time points corresponding to years 0,1,3,5 

(Example 1) the result is the following covariance structure:

(14)

Model Application: Data Formatting & Analysis, Model Selection, and 

Software Functionality

One impediment to the application of CCREM and multiple membership models is an 

absence of guidance on how to fit these models using general purpose software. While such 

examples are available for cross-sectional models (e.g., Myers & Beretvas, 2006), the same 

is not true of longitudinal models. In Web Appendix A on the journal website we describe 

estimation of longitudinal acute-effect CCREMs using SAS, SPSS, and R. We also illustrate 

how to fit cumulative-effect CCREMs/multiple membership models with SAS. Fitting 

dynamic group effect models for nested mixed models is relatively straightforward (see 

Appendix of Bauer et al., 2013), but we show in our Appendix how to combine an acute-

effects CCREM with the dynamic group effects. Therefore, we first describe the general 

formatting of data required to fit these models, the general logic of the syntax needed, a 

strategy for selecting among several competing models, and describe the strengths and 

weakness of several of the software programs and the specific procedures/functions 

contained therein.

We begin by describing generically the approach required to fitting these models with 

general purpose computer software. The layout of the dataset can generally be described as 

“long” or “person-period”. Table 1 provides an illustration of the layout using the first five 

observations from a simulated dataset (the full dataset is obtainable as part of the online 

material, see appendix for details about how these data were generated and syntax that can 

be used to analyze the data). Most importantly, the data are organized in such a way that 

each row represents an observation at a point in time on a particular person. The data in 

Table 1 are sorted first by person and then by time to highlight the layout that is required. In 

addition to variables identifying the person and time period, we require three other variables, 

the group the person belongs to at a particular point in time, a predictor with a fixed effect of 

interest (here a binary variable ‘x’), and an outcome ‘y’. The group variable is particularly 

important, notice how it can change for a particular person over time. This is in contrast to 

the values the group variable would take on if a nested model were being fit, in that case a 

person would be restricted to belonging to a single group over time. Therefore, the general 

layout of the data is the same for a nested and CCREM, but the values of the group variable 

will be different.

In terms of analysis, the software programs are sufficiently similar with respect to syntax 

that a general description can be provided, at least for the acute-effects CCREM. All 

programs require for random effects that two parts be specified, an effect and a subject. In a 
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growth model with random intercepts and slopes for the person, the effects are intercept and 

slope, and the subject is the person. In a nested model with a random intercept for the group, 

the intercept is the effect and the subject is the group. Exactly the same is true in the acute-

effects CCREM, the intercept is the effect and the subject is the group. The only differences 

of course are the values that the group variable takes on in the nested vs. acute-effects 

CCREM.

Incorporating dynamic group effects into an acute-effects CCREM is straightforward. The 

way to do this is to change the effect from ‘intercept’ to ‘time’ while keeping group as the 

subject. Time refers to a variable that captures the time at which the person or group is 

measured, but importantly, this variable should be interpreted by the program being used as 

a multi-valued nominal variable. Lastly, a covariance structure needs to be specified for this 

time effect (e.g., first-order auto regressive).

Some complexity is introduced when attempting to fit a cummulative-effects CCREM. In 

general what is required is that past group memberships are carried forward in time. The 

approach we take (see Web Appendix A on the journal website) is to construct this random-

effects design matrix for group membership from scratch and to feed that into the software 

program to make it fit the cummulative-effects CCREM. Specifically, for each person we 

construct the random-effects design matrix for group membership in such a way that if the 

person switches groups, the matrix would have values of 1 in multiple columns and in at 

least one row there would be more than one value of 1. This design matrix is captured by the 

addition of columns/variables to the existing dataset (the number of columns/variables 

equals the number of groups), and collectively these variables are used to define a random 

effect. The random effect will generally be for the intercept with group being the subject. 

This approach is appealing because it can easily be applied in other contexts. For instance, in 

the study by White et al. (2011) described in the multiple membership model section, where 

individuals are members of multiple groups at the same time, the random effects design 

matrix for group membership would have 1s whenever a patient was a member of a group 

and 0 otherwise, allowing for a person to be a member of more than one group at a point in 

time. We note that while it would be desirable to combine dynamic group effects with a 

cummulative-effects CCREM, we were unable a way to implement such a model in any of 

the general statistical packages we considered.

In light of the large number of models considered in this paper, it is worthwhile to consider 

how to decide among them. If group membership is time-varying, then to address this aspect 

of the data there is a choice that needs to be made between acute-effects and cummulative-

effects CCREM, and possibly variations on the cummulative-effects model (e.g., using 

weights that sum to 1 within person, using weights that weigh later memberships more 

heavily, see model (6)). Irrespective of whether group membership is time varying, time-

varying group effects should be evaluated. If time measurements are unequally spaced then 

only a select number of covariance structures are applicable, whereas if they are equally 

spaced then there are a large number of covariance structures that can be fit. We suggest 

considering the most flexible and restrictive dynamic group models, and some structures that 

are in between. Specifically, the most flexible dynamic group model is the unstructured 

matrix, the most restrictive is compound symmetry (the stable group model is more 
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restrictive), and a first-order auto regressive structure would be an example of being in the 

middle on the flexibility spectrum. One way to guide selection of models with intermediate 

covariance structures is to examine the estimated variance-covariance/correlation matrices 

of these group-time effects and select a covariance structure that most closely (and 

parsimoniously) resembles the observed structure. When group membership is time-varying 

and group effects are considered time-varying, this leads to a larger number of models that 

can be evaluated, but as we show in Examples 1 & 2, the number can be manageable. There 

are several useful tools in selecting among models. For nested models, a likelihood ratio test 

is possible. For non-nested models, fit statistics can be compared. Importantly, there are two 

ways to calculate the number of parameters with fit statistics (e.g., Akaike’s Information 

Criterion (AIC), AIC finite sample correction (AICC), Bayesian Information Criterion 

(BIC)) when restricted maximum likelihood is used, one uses only the number of random 

parameters and another uses both the number of fixed and random parameters (West et al., 

2007). Also, the manner in which sample size enters into calculation of these indices can 

vary, either using the number of total observations (i.e., observations at Level 1), the number 

of clusters, or the value of 1 (Beretvas & Murphy, 2013). The choices about how to calculate 

these fit statistics can affect model selection, but a reasonable approach is to use the number 

of random parameters and the total number of observations in calculation of these fit 

statistics (Beretvas & Murphy, 2013).

Given the wide variety of software programs available for the analysis of data with time-

varying group membership and time-varying group effects, including such specialized 

mixed model software programs like HLM and MLwiN, it may be difficult to choose among 

them. A general and recent review of software for mixed models is very informative for 

choosing among software programs to fit the models described in this paper (see Table 1, 

West & Galecki, 2011). Here we briefly discuss our own experience with fitting the models 

described in this paper using three general purpose software programs: SAS, SPSS, and R. 

SAS has four procedures for fitting mixed models: Mixed, Glimmix, Hpmixed, Nlmixed, 

but we only describe the first three. For linear mixed models all procedures can fit the acute-

effects CCREM, but only Glimmix can fit the cummulative-effects CCREM and 

longitudinal multiple membership models. Among the three procedures Hpmixed is the 

fastest for linear mixed models because it implements a sparse matrix algorithm. Only 

Glimmix can be used for generalized linear mixed models. All procedures can fit dynamic 

group models, but among these procedures Hpmixed has a somewhat more limited selection 

of covariance matrices that can be used. SPSS has much the same functionality as the 

procedures available in SAS through its two procedures, Mixed and Genlinmixed. The 

Mixed procedure is for linear mixed models and is comparable to the Mixed procedure in 

SAS in terms of its functionality. Genlinmixed is comparable to a hybrid of the Glimmix 

and Hpmixed procedures of SAS insofar as it is fast (i.e., utilizes a sparse matrix algorithm), 

can be used with non-linear models, but has fewer covariance structures to select from 

relative to the Mixed procedure. We have not been able to determine if SPSS has the 

capability to fit the cummulative-effects CCREM and other longitudinal multiple 

membership models. Lastly, we consider lme (nlme package), lmer and glmer (lme4 

package) functions of R. The lme and lmer functions are for linear mixed models. While lme 

does offer flexibility in specifying a covariance structure for the group random effects, there 
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is no off-the-shelf way to estimate a CCREM, but through some manipulation it appears that 

it can be used for this purpose (Lockwood, Doran, McCaffrey, 2003). Both lmer and glmer 

are fast and can be used to easily estimate an acute-effects CCREM (but not a cummulative-

effects CCREM or other longitudinal multiple membership models), with glmer designed 

for generalized linear mixed models. One of the biggest drawbacks of lmer/glmer is an 

inability to model a covariance structure for the time-varying group effects, apart from 

possibly the most basic structures (e.g., unstructured). For models with both time-varying 

group membership and group effects we generally recommend SAS, but if only either time-

varying group membership or group effects are of interest, any of the three software 

programs will suffice.

Simulation

In this section we consider three studies related to the models described in this paper, study 

one is related to time-varying group membership, study two is related to time-varying group 

effects, and study three combines features of studies one and two. Study one is motivated by 

an absence of information related to the performance of longitudinal CCREM in the context 

of studies with smaller sample sizes, such as those often found in psychology. Luo and 

Kwok (2012) present the results of simulations evaluating time-varying group membership 

(acute-effects CCREM) with a relatively large number of clusters and cluster sizes. The 

primary aim of study one is to explore the performance of the acute-effects CCREM with a 

smaller numbers of clusters and cluster sizes. The aim of study two is to evaluate the 

performance of models with time-varying group effects. Lastly, in study three we evaluate 

the performance of models with both time-varying group membership and group effects.

Simulation 1 Data Generation Process

SAS 9.4 was used to generate and analyze the data. The data were generated according to 

the following model:

Level1 Model

(15)

Level2 Model

The model is the same as presented in (3) with the same definition of parameters, except 

with the addition of two fixed effects, θ01 and θ11. The effects are person-level covariates 

intended to represent the effect of receiving treatment on the intercept and slope. Treatj was 

generated as Bernoulli(.5), with θ01 = θ11 = θ10 = .5 and θ00 = .1. In terms of the random 
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parameters, eijk ~ N(0,.40), , and 

with  being a design factor that was manipulated (see below).

Our study consisted of manipulating several factors including: the amount of mobility in and 

out of groups over time, magnitude of the group variance, number of clusters, and the cluster 

size. Mobility was based on allowing a person to have some probability of changing groups 

at each point in time, based on Bernoulli(p) with p = .05, .20, or .35. The group variance was 

set to . This corresponds to ICCs for the smaller and larger group variance 

conditions of .17 and .29, respectively. The number of clusters was set to 10 or 30, and the 

cluster size was set to either 5 or 15. Therefore our design was a 3×2×2×2 design, resulting 

in a total of 24 conditions. With the exception of the number of clusters and cluster size, the 

parameters held fixed and manipulated were based on those used in simulation two of Luo 

and Kwok (2012). The justification they provide for the values used are also reasonable for 

many psychological studies. For instance, in our experience ICCs in these types of studies 

are often in the range of .17 to .29, although in some applications may be smaller. In 

example one the conditional ICC after fitting a simple acute-effects CCREM was estimated 

to be .19 and in example two .09. The number of clusters and cluster sizes also correspond 

to the range observed in our research experience, 10 clusters with 5 observations per cluster 

on the low end and 30 clusters with 15 observations on the higher end.

For each condition we evaluated performance of an acute-effects model (correct model) and 

a nested model (incorrect model). We also evaluated a nested model for data with no person 

mobility over time, which may provide a reference point for the performance of the acute-

effects model. For each condition and model we evaluated the percent relative bias and root 

mean square error (RMS) for the random parameters of the model, as well as the standard 

error percent relative bias for the time by treatment interaction (the standard error for this 

parameter is of greatest interest in this type of study). Percent relative bias is defined as: (θ̂ − 

θ)/θ, averaged over the simulations and multiplied by 100. RMS is the (θ̂ − θ)2 averaged 

over the simulations and square-rooted. Standard error (SE) percent relative bias was 

calculated as , averaged over the simulations and multiplied 

by 100, where  is the standard deviation of the standard error estimates from the 

correct model. For each condition we evaluated 1000 simulated cases.

Simulation 2 Data Generation Process

The data generation process was based on the nested model described in (1), but with the 

addition of two person-level fixed effects to represent treatment, as in study 1:

Level1 Model

Level2 Model
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(16)

Level3 Model

Treatj was generated as Bernoulli(.5), with θ01 = θ11 = θ10 = .5 and θ00 = .1. In terms of the 

random parameters, eijk ~ N(0,.40), , and c00k ~ 

N(0,Σc00).

Our study manipulated magnitude of the group variance, number of clusters, cluster size, 

and the covariance matrix of group effects over time (Σc00). We considered two covariance 

matrices, first-order autoregressive (AR) as in (11) and first-order autoregressive with 

heterogeneous variances (ARH) as in (12). In both cases, ρ = .8. Note that this value of rho 

was chosen based on the result of Example 2 of this paper and Example 2 in Bauer et al. 

(2013). For the AR structure we considered two group variances, . For ARH 

the variances at times 1–4 were fixed at: .1, .12, .14, .16. Small to moderate combinations of 

cluster and cluster sizes were based on crossing the number of clusters (10 or 30) with the 

cluster size (5 or 15), with a larger combination based on 50 clusters and a cluster size of 50. 

For each condition we evaluated performance of the correctly specified dynamic group 

model and the incorrectly specified stable group model. For each condition and model we 

evaluated the percent relative bias and root mean square error (RMSE) for the random 

parameters of the model, as well as the standard error percent relative bias for the time by 

treatment interaction. For each condition we evaluated 1000 simulated cases.

Simulation 3 Data Generation Process

The data were generated according to the following model:

Level1 Model

(17)

Level2 Model
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Treatj was generated as Bernoulli(.5), with θ01 = θ11 = θ10 = .5 and θ00 = .1. In terms of the 

random parameters, eijk ~ N(0, .40), , and c00k ~ 

N(0,Σc00). We fixed Σc00 to an AR structure with ρ = .8 and mobility was based on a 20% 

chance of changing groups at each point in time, Bernoulli(.2). We manipulated magnitude 

of the group variance, number of clusters, and cluster size. The group variance was set to 

either .1 or .2. Small to moderate combinations of cluster and cluster sizes were based on 

crossing the number of clusters (10 or 30) with the cluster size (5 or 15), with a larger 

combination based on 50 clusters and a cluster size of 50.

For each condition we evaluated performance of the correctly specified acute-effects 

dynamic group model and the incorrectly specified nested stable group model. For each 

condition we evaluated 1000 simulated cases.

Summary of Simulation Results

Detailed results of the simulation are presented in Web Appendix B on the journal website. 

Simulation one identified underestimation of the group variance and overestimation of the 

slope and residual variances in the misspecified nested model, resulting in the standard error 

of the time by condition interaction being overestimated. In contrast the acute-effects 

CCREM has much less bias and greater overall accuracy in estimating the random 

parameters. These findings are consistent with those of Luo and Kwok (2012), suggesting 

that the acute-effects CCREM performs well and superior to a nested model even with 

smaller numbers of clusters and cluster sizes. In simulation two we observed that the 

incorrectly specified stable group model has more bias and greater inaccuracy in estimating 

the random parameters of the model relative to the correctly specified dynamic group AR 

model, specifically underestimation of the group variance and covariance and 

overestimation of the slope and residual variances. However, these biases did not translate to 

bias in the standard error of the time by condition interaction, as they did in study one. In 

simulation three, which combined features of simulations two and three with respect to time-

varying group membership and dynamic group effects, we found increased inaccuracy and 

bias in the variance estimates in the incorrectly specified nested model relative to the 

correctly specified CCREM with dynamic group effects. The one exception is with respect 

to accuracy in estimating the group variance, which was superior in the correctly specified 

model only with more modest number of clusters (30 clusters) and cluster sizes (15 

observations per cluster).

Real Data Examples

Example 1: Modeling Childhood Mathematics Achievement

The first example uses data from the Early Childhood Longitudinal Study–Kindergarten 

Cohort (ECLS-K). This is a longitudinal study designed in part to examine predictors of 

growth in mathematics achievement during elementary and middle school years. Some 

students change schools during the study period, therefore this dataset has been used in the 

past to illustrate fitting of CCREM (Grady & Beretvas 2010; Luo & Kwok, 2012). Luo and 

Kwok (2012) identified a sample of 4,301 children with complete information on the 
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response, predictors, and school membership, and use three waves of data (kindergarten, 1st 

grade, and 3rd grade). We use a subset of 500 children for our analysis and include a fourth 

wave of data (5th grade). The use of a smaller subset of children is intended to decrease the 

time required to fit some models, and a larger number of time points is used to fit a wider 

range of dynamic group covariance structures. In our restricted dataset, between 

kindergarten and 1st grade 4.8% of the children changed schools, between 1st and 3rd grade 

8.6% changed schools, and between 3rd and 5th grade 8.0% changed schools. Math 

achievement is the outcome with student gender and school type (public vs. private) the 

predictors.

The stable group acute-effects model is:

Level1 Model

(18)

Level2 Model

We fit three dynamic group alternatives, such that c00k ~ N(0,Σc00), with the following 

covariance structures for Σc00: Unstructured (UN), Compound Symmetric (CS), and Spatial 

Power (SP). We also consider stable group cummulative-effects CCREMs. We do not 

consider dynamic group alternatives to the cumulative-effects CCREM, because unlike the 

acute-effects CCREM, it was not possible to fit such models. One cumulative-effects 

CCREM is:

Level1 Model

(19)

Level2 Model
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An alternative specification of the cumulative-effects CCREM is one that uses weights in 

formulation of the random effects, as described in (7). Here we use weights that equally 

weigh past and present group membership:

Level1 Model

(20)

Level2 Model

The notation indicates that weights are only applied to the random effects in this model. We 

could fit a model that incorporates weights into the fixed school type effect, an approach 

undertaken elsewhere (Grady & Beretvas 2010), but we do not pursue such a model here 

because our focus is exclusively on comparison of models with different specifications of 

random effects. Sample codes for fitting Models 18–20 are included in Web Appendix A on 

the journal website.

We can see in Table 2 that among the stable group models, the acute- vs. cumulative-effects 

specification does not substantially change the fit according to the information criteria (AIC, 

AICC, BIC). The dynamic group acute-effects models resulted in substantially improved fit 

relative to the stable group acute-effects models according to likelihood ratio tests, for 

example stable group acute-effects vs. unstructured dynamic group, χ2 (9) = 176.41, p < .05. 

Among the dynamic group models, the unstructured model provided the best fit according to 

the likelihood ratio tests, unstructured vs. compound symmetric, χ2 (8) = 56.65, p < .05, 

unstructured vs. spatial power, χ2 (8) = 57.18, p < .05, and therefore we rely on this model 

for interpretation. The covariance and correlation matrices are presented in Table 3. Based 

on this Table we see the school variance is largest in 1st grade, 3rd grade, 5th grade, and 
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Kindergarten, respectively. Furthermore, we can see a decline in the correlations over time, 

although the pattern is not a function of distance in terms of the spacing of measurements 

over time, as specified by the spatial power model. Generally, higher correlation for the 

school effect are observed for measurements taken closer together in time than for 

measurements taken further apart, suggesting good schools stay good and bad schools stay 

bad over short periods of time, but that the pattern attenuates over longer periods of time. In 

terms of the magnitude of the cross-classified random effect, a comparison of its time-

specific variance to the variance of the growth rate (Raudenbush & Bryk, 2002) yields ratios 

of 2.6, 12.09, 8.4, 6.8 for Kindergarten through 5th grade, respectively, suggesting that at a 

given point in time the effect of school contributes more to the variability in math 

achievement scores than the variability in individual growth rates among students. Finally, 

with respect to the fixed effects we see that public schools were associated with lower math 

achievement scores than private schools (Table 4).

Example 2: Modeling Clinician Attitudes Towards Evidence-Based Practice

This example involves a study of the implementation of an evidenced-based practice (EBP) 

designed to reduce child neglect in the state of Oklahoma. There are four levels of data: 

time, clinician, supervision group, and region. The study is a 2×2 design in which regions in 

Oklahoma were experimentally assigned to either SafeCare (i.e, the EBP or hereafter “EB”) 

or services as usual (SAU), and within each region, supervision groups were randomized to 

fidelity monitoring or no monitoring. Therefore, both region and supervision groups were 

randomized. The design of the trial remained intact for the first four waves of data 

collection, thereafter regions originally assigned to the SAU condition began to adopt 

SafeCare. Thus, we utilized only the first four waves of data. The current study involves 

data collected from 208 clinicians over four bi-annual waves, with membership in a 

supervision group changing for some clinicians over time. Of interest is how clinician 

attitudes towards evidenced-based practice change over time as a function of the condition 

they are in. The outcome being evaluated in the present study is provider attitudes toward 

evidenced-based practices (Aarons et al., 2010).

A couple of points are noteworthy. First, for the purposes of this example what defines a 

supervision group as a distinct entity that can be tracked over time is the supervisor. Second, 

because a clinician may change supervision groups over time, they may also change study 

conditions, therefore our models described below allow these fixed effects to vary over time 

(i.e., are part of Level 1 portion of the model), but only 8 of the 208 switch conditions. 

Third, although supervision groups are nested in regions, our models do not include random 

region effects because the variance is near zero. Lastly, because the design of the study 

involves rolling admission of clinicians into supervision groups, with respect to modeling 

clinician effects, time is the number of years the clinician has been enrolled in the study (0, .

5, 1, and 1.5, years). In contrast, for the group random effects time is the number of years 

the group has existed since the study began. Between 0 years and .5 years 13.6% of the 

clinicians changed supervision groups, between .5 years and 1 year 20.7% of the clinicians 

changed groups, between 1 year and 1.5 years 11.2% changed groups.

The acute-effects CCREM with stable group effects is:
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Level1 Model

(21)

Level2 Model

We fit six dynamic group alternatives to this model, such that c00k ~ N(0,Σc00), with the 

following covariance structures for Σc00: Unstructured (UN), Toeplitz (TOEP), Stabilized 

Banded-Lag 2 (SB-2), Compound Symmetric (CS), First-Order Autoregressive (AR), and 

First-order Autoregressive Moving Average (ARMA).

As in Example 1, we also consider two stable group cumulative-effects CCREM.

Level1 Model

(22)

Level2 Model

An alternative specification of the cumulative-effects CCREM is one that uses weights in 

formulation of the random effects. Here we use weights that equally weigh past and present 

group membership:
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Level1 Model

(23)

Level2 Model

Sample codes for fitting Models 21–23 are included in Web Appendix A on the journal 

website.

We can see in Table 5 that among the stable group models, the acute-effects specification 

provides slightly better fit according to the information criteria (AIC, AICC, BIC). Among 

the dynamic group acute-effects models the autoregressive structure appears to provide the 

overall best fit according to the information criteria. A comparison of the stable group acute-

effects model to the first-order autoregressive acute-effects model is not quite significant by 

a likelihood ratio test, χ2 (1) = 3.82, p = .051, but we chose to interpret the latter model 

nevertheless. We observe that the correlation among supervision groups on the response 

decays over time: .761 (Lag 1), .579 (Lag 2), .441 (Lag 3), suggesting that supervision 

groups that have higher ratings of evidence-based practice and those with lower ratings stay 

that way over short periods of time, but that the pattern attenuates over longer periods of 

time. In terms of the magnitude of the cross-classified random effect, comparing its variance 

to the variance to the growth rate (ratio of 2.17) suggests that supervision group membership 

at a given point in time contributes more to the variability in responses than the variability in 

individual growth rates among clinicians.

Next we turn to the primary research question of interest, are there differences among the 

treatment groups. Based on the significant EB by Monitoring by Time interaction (Table 6), 

we sought to determine if the condition receiving monitoring only was significantly different 

from each of the other three conditions in terms of their growth rates. To test these 

hypotheses, we re-specified the model in such a way that the no monitoring/ no EB was the 

reference group for each of three dummy coded variables representing the four conditions. 

The results of this model indicate a significant difference between no monitoring/ no EB 

with each of the following groups in terms of their growth rates: monitoring/EB, b = .158, se 

=.068, p = .024, no monitoring/ EB, b = .144, se =.064, p = .027, and monitoring/no EB, b 
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= .226, se =.080, p = .006. As might be expected, individuals in either of the two EB 

conditions have more favorable rates of growth in EBPAS scores relative to no monitoring 

combined with no EB condition. Unexpectedly, monitoring combined with no EB also had 

more favorable rates of growth in EBPAS scores relative to no monitoring combined with 

no EB condition.

Discussion

Changes in group membership and group effects over time are important issues to address in 

longitudinal studies. In the presence of time-varying group membership we encourage 

researchers to use either CCREMs or multiple membership models. There is little 

justification for using nested random-effect models given that the implementation of the 

acute-effects CCREM is just as simple as a nested model with general purpose software 

programs, and our simulations and others (Luo & Kwok, 2012) suggest greater accuracy of 

the acute-effects CCREM in estimating the random model parameters and standard errors of 

the fixed effects. We also encourage researchers to fit models with time-varying group 

effects. Models with stable group effects are on face value implausible and our simulations 

indicate they lead to errors in estimation of the random parameters similar to those resulting 

from fitting a nested model in the presence of time-varying group membership. Models with 

time-varying group effects are also simple to implement, therefore this should not impede 

their use. Lastly, we propose, evaluate through simulation, and apply models that allow for 

both time-varying group membership and group effects. These models generally perform 

better than nested stable group alternatives and are also quite easy to put into practice. It 

should be noted however that we did not exhaust in our simulation designs all situations that 

might be encountered in applied settings (e.g., very small degrees of group variance) and 

therefore our simulations are limited in this regard.

The models advocated in this paper raise some interesting challenges and areas for future 

development. First, the choice among an extensive selection of dynamic group models can 

seem daunting. For this reason we recommend testing models at the extremes of the 

spectrum of restrictiveness, and a few models that are more intermediate. Second, the 

models presented assume linear growth over time. A more flexible alternative is to fit 

models with a piecewise constant specification of time (Pallardy, 2010). Incorporating 

features of such a model to those already proposed would be an important area of future 

development. Third, we were unable to identify a way to estimate a model with both 

cummulative cross-classified random effects and dynamic group effects, but this would be 

an important area to pursue. Lastly, there may be situations where there is more than one 

group that individuals are crossed with and we think of these crossings as random variables. 

This would be a relatively straightforward extension of the models and programming logic 

provided, which would only involve adding separate random effects that correspond to any 

additional crossing of individuals with groups. While extensions to other response 

distributions would generally be straightforward, this may not be the case with modeling 

time to event data with crossed random effects. One possible solution involves a grouped-

time survival analysis approach, in which survival time is treated as an ordinal outcome or a 

binary response with a set of dichotomous indicators (Hedeker, Siddiqui, & Hu, 2000). If the 
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survival times are continuous these models can still be applied if survival times are 

separated into event time deciles (Liu & Huang, 2008).

The implementation of the models described in this paper was with general purpose 

software, in particular SAS because it offers the greatest amount of flexibility in fitting 

models with both time-varying group membership and group effects. There are several other 

specialized software packages that researchers might want to consider using, such as HLM 

and MLwiN. There can be a variety of reasons for using these software packages. For 

instance HLM makes it especially easy to fit both acute- and cummulative- effects CCREM 

and MLwiN allows for easy use of multiple membership models and Bayesian estimation 

using Markov Chain Monte Carlo. In general, the choice of software package will be 

motivated by a variety of factors, but as long as the software can effectively address the 

issues described in this paper, the choice of which program to use becomes less important.

There is increasing emphasis on appropriately modeling longitudinal data in psychological 

studies. The models advocated in this paper can be viewed as taking researchers one step 

closer to more accurately modeling their data, and in turn to providing better answers to 

research questions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A Pictoral Comparison of HLM, Acute-Effect and Cummulative-Effect CCREM

Note: This figure assumes that c001 < c002 < c003
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Table 1

Illustration of Crossed Factors

Person Time Group x y

1 0 1 1 0.53

1 1 1 1 2.86

1 2 1 1 4.40

1 3 1 1 6.06

2 0 1 0 0.28

2 1 5 0 0.62

2 2 5 0 2.19

2 3 5 0 2.80

3 0 1 1 1.38

3 1 1 1 2.10

3 2 1 1 2.96

3 3 4 1 4.63

4 0 1 1 0.79

4 1 7 1 1.95

4 2 7 1 3.57

4 3 7 1 3.81

5 0 1 1 0.34

5 1 1 1 2.24

5 2 1 1 3.03

5 3 1 1 4.47

Note: Bold values indicate changes in group membership for a particular individual from a previous time point.
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Table 4

Results for Acute-Effects CCREM with Unstructured Covariance Matrix from Example 1

Fixed Effects Estimate SE P

Intercept, θ0 35.83 1.82 <.001

Time, θ1 16.12 0.47 <.001

Female, β01 −0.89 0.91 .327

Public, β02 −6.09 1.35 <.001

Female*Time, β11 −0.37 0.29 .210

Random Effects

Initial Status, .

67.22 6.82 -

Growth Rate, 

6.74 1.59 -

Covariance, initial status & growth rate σb10, b00 12.69 0.74 -

Residual Error, σ2 37.67 -

Group Effect, Σc00 See Table 3
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Table 6

Results for Acute-Effects CCREM with First-Order Autoregressive Covariance Matrix from Example 2

Fixed Effects Estimate SE P

Intercept, θ0 2.880 .082 <.001

Time, θ1 −.117 .051 .023

EB, π2jk −.172 .110 .125

Monitoring, π3jk −.037 .120 .760

EB*Monitoring, π4jk .096 .167 .568

EB*Time, π5jk .144 .064 .027

Monitoring*Time, π6jk .226 .080 .006

EB*Monitoring*Time, π7jk −.212 .099 .036

Random Effects

Initial Status, 

.121 .023 <.001

Growth Rate, 

.012 .007 .051

Covariance, initial status & growth rate σb10, b00 −.003 .011 .801

Residual Error, σ2 .095 .016 <.001

Group Variance, 

.026 .013 .020

Group Correlation (Lag 1), ρ .761 .181 <.001
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