George A. Jacoby,* Debra M. Mills, and Nancy Chow

Lahey Clinic, Burlington, Massachusetts

Received 23 January 2004/Returned for modification 6 March 2004/Accepted 22 April 2004

High-level resistance to ertapenem was produced by β -lactamases of groups 1, 2f, and 3 in a strain of *Klebsiella pneumoniae* deficient in Omp35 and Omp36. From a wild-type strain producing ACT-1 β -lactamase, ertapenem-resistant mutants for which the ertapenem MICs were up to 128 μ g/ml and expression of outer membrane proteins was diminished could be selected.

Ertapenem is a potent carbapenem antibiotic for most clinical isolates of *Klebsiella pneumoniae*, with a typical MIC at which 90% of the isolates tested are inhibited of 0.03 to 0.06 μ g/ml (6, 9), but occasional strains for which the MICs are \geq 16 μ g/ml have been detected (6, 7). In one such strain resistance was dependent on the presence of the plasmid-mediated extended-spectrum β -lactamase (ESBL) SHV-2 and additional host events presumably affecting ertapenem permeativity (7). Further studies were undertaken to elucidate the contribution of β -lactamase and host mutation to such exceptional resistance.

The K. pneumoniae strain for which the ertapenem MIC was 16 µg/ml was treated with ethidium bromide to cure the resident plasmid. The ertapenem MIC for the resulting strain, C2, was still elevated at 1 µg/ml, and the strain was found to be defective in expression of outer membrane porins OmpK35 and OmpK36 (10). To evaluate the influence of different β -lactamases on the ertapenem susceptibility of this strain, plasmids were introduced by mating with R⁺ derivatives of Escherichia coli J53 Azi^r (met pro; azide resistant) (8), with selection on medium lacking the growth requirements of the donor and containing an antibiotic to which the plasmid provided resistance, if possible a non- β -lactam so as to avoid inadvertent selection of additional mutations. A few nonconjugative plasmids were introduced by electroporation. MICs were determined by agar dilution on Mueller-Hinton medium with an inoculum of 10⁴ organisms per spot according to NCCLS protocols (12). E. coli ATCC 25922 was used for quality control. Antibiotics were obtained from Sigma (St. Louis, Mo.) (cefotaxime) and the pharmaceutical companies AstraZeneca (meropenem), Bristol-Meyers Squibb (cefepime), GlaxoSmith-Kline (ceftazidime), and Merck & Co. (cefoxitin, ertapenem, and imipenem).

In Table 1 the *K. pneumoniae* C2 derivatives are listed according to the β -lactamase classification scheme of Bush et al. (4). The highest ertapenem MICs (\geq 128 µg/ml) were achieved by β -lactamase group 1 enzymes ACT-1, DHA-1, and FOX-1 and by group 2f enzyme KPC-1. KPC-1 is a known carbapenemase (14) and was encoded by a multicopy plasmid, while group 1 enzymes have been reported to express carbapenem

resistance in strains lacking outer membrane porins (3, 10). Other group 1 enzymes provided a lesser degree of ertapenem resistance, with FOX-3 and FOX-5 β-lactamases conferring MICs of only 8 µg/ml. Group 1 enzymes providing ertapenem resistance also increased resistance to imipenem and meropenem but with diminishing effect: the highest imipenem MIC was 64 μ g/ml, and the highest meropenem MIC was 16 μ g/ml. With group 2be (ESBL) enzymes, ertapenem MICs of ≥ 16 µg/ml were conferred by several TEM-type ESBLs, but the maximum MIC with SHV- or CTX-M-type ESBLs was only 8 µg/ml. Susceptibility to imipenem and meropenem was less affected than that to ertapenem. Most group 2c and 2d enzymes had no effect on ertapenem susceptibility, but OXA-2 β-lactamase was exceptional in providing an ertapenem MIC of 32 µg/ml with little if any effect on imipenem or meropenem susceptibility. As expected, the group 3 metallo-*β*-lactamase VIM-2 elevated the ertapenem MIC for strain C2 to $64 \mu g/ml$, with concomitantly increased resistance to the other carbapenems.

Cefepime MICs of \geq 32 µg/ml were produced in strain C2 with some TEM- and SHV-type ESBLs, by CTX-M-5 and M-14, and by KPC-1 β -lactamase. MICs of cefotaxime and ceftazidime were \geq 32 µg/ml with group 1 enzymes as well as some TEM- and SHV-type ESBLs, KPC-1 and VIM-2.

Carbapenem resistance decreased markedly when the plasmid host had a wild-type complement of porins. The native ertapenem MIC for a susceptible clinical isolate of K. pneumoniae (strain 002) was 0.015 µg/ml, which increased to 0.5 μ g/ml when plasmid pMG251, encoding ACT-1 β -lactamase (1), was introduced and to only 4 μ g/ml when plasmid-mediated KPC-1 was present. From 002(pMG251) making ACT-1 β-lactamase, spontaneous mutants could be selected on Mueller-Hinton agar containing 2 µg of ertapenem per ml at a frequency of 6×10^{-8} , for which the ertapenem MIC was 4 µg/ml. Such a first-step mutant gave rise to colonies on medium with 64 μ g of ertapenem per ml at a frequency of 8 \times 10^{-9} . The ertapenem MIC for a second-step mutant was 128 μg/ml. β-Lactamase production by the mutants was unchanged. Table 2 shows the susceptibilities of these strains to other *β*-lactams. Resistance to imipenem and meropenem increased along with that to ertapenem, while susceptibility to ceftazidime and cefepime was less affected.

Outer membrane proteins of strain 002(pMG251) and its two ertapenem-resistant derivatives were prepared (10) as so-

^{*} Corresponding author. Mailing address: Lahey Clinic, 41 Mall Rd., Burlington, MA 01805. Phone: (781) 744-2928. Fax: (781) 744-5486. E-mail: george.a.jacoby@lahey.org.

TABLE 1.	Susceptibilities	of porin	-deficient K.	pneumoniae	strain C2	containing	various	plasmid-1	nediated	β-lactamases

Enzyme	β-Lacta-		MIC (µg/ml)							
group	mase	Plasmid	Cefepime	Cefotaxime	Cefoxitin	Ceftazidime	Ertapenem	Imipenem	Meropenem	
1	None ACC-1 ACT-1 CMY-2 DHA-1 FOX-1 FOX-3 FOX-5 LAT-1 MIR-1 MOX-1 MOX-2	pSLK54 pMG251 pMG250 pMG247 pGL3 ^a p1734 pMG252 pHP15 pMG233 pRMOX-1 pKOL	0.5 8 2 4 4 16 2 4 8 2 4 8	$\begin{array}{c} 0.5 \\ 128 \\ 128 \\ 128 \\ 256 \\ \ge 256 \\ 64 \\ \ge 256 \\ 64 \\ 32 \\ 64 \end{array}$	$\begin{array}{c} 64 \\ \geq 1,024 \end{array}$	$\begin{array}{c} 0.5 \\ \geq 256 \\ 64 \\ 128 \\ \geq 256 \\ \geq 256 \\ 128 \\ 128 \\ \geq 256 \\ 32 \\ 64 \\ 128 \end{array}$	$ \begin{array}{c} 1 \\ 32 \\ \geq 128 \\ 32 \\ 128 \\ 128 \\ 8 \\ 8 \\ 64 \\ 32 \\ 32 \\ 16 \\ \end{array} $	$ \begin{array}{c} 1\\ 8\\ 64\\ 32\\ 64\\ 64\\ 2\\ 32\\ 32\\ 32\\ 8\\ 2 \end{array} $	$\begin{array}{c} 0.25 \\ 4 \\ 16 \\ 8 \\ 8 \\ 16 \\ 2 \\ 1 \\ 16 \\ 8 \\ 8 \\ 2 \end{array}$	
2b	TEM-1 TEM-2	R1 RP1	0.5 4	0.5 0.5	64 64	0.5 1	2 8	1 2	0.5 2	
2be	TEM-3 TEM-4 TEM-5 TEM-6 TEM-7 TEM-8 TEM-9 TEM-10 TEM-10 TEM-11 TEM-12 TEM-12 TEM-16 TEM-19 TEM-20 TEM-21 TEM-22 TEM-24 TEM-25 TEM-26 TEM-25 TEM-61 TEM-71 TEM-88	pCFF04 pUD16 pCFF14 pMG226 pIF100 Plasmid from <i>E. coli</i> CF804 pMG228 pMG223 pMG244 pMG224 pMG274 Plasmid from <i>K. pneumoniae</i> CF1304 pMG289 pUD30 pUD31 Plasmid from <i>E. coli</i> HB101 TEM-22 Plasmid from <i>E. coli</i> CF1609 pMG225 pMG276 pMG290 pMG259 pMG272	$32 \\ 32 \\ 16 \\ 16 \\ 32 \\ 32 \\ 32 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 8 \\ 64 \\ 16 \\ 8 \\ 16 \\ 16 \\ 32 \\ 8 \\ 8 \\ 1 \\ 8 \\ 8 \\ 1 \\ 8 $	$128 \\ 128 \\ 16 \\ 4 \\ 2 \\ 16 \\ 16 \\ 4 \\ 2 \\ 2 \\ 64 \\ 4 \\ 64 \\ 32 \\ 128 \\ 64 \\ 32 \\ 128 \\ 64 \\ 32 \\ 32 \\ 4 \\ 32 \\ 4 \\ 32 \\ 4 \\ 0.5 \\ 32 \\ 32 \\ 4 \\ 0.5 \\ 32 \\ 32 \\ 4 \\ 32 \\ 4 \\ 32 \\ 32 \\ 4 \\ 32 \\ 32$	$\begin{array}{c} 64\\ 64\\ 64\\ 64\\ 64\\ 64\\ 64\\ 64\\ 64\\ 64\\$	$128 \\ 32 \\ 256 \\ \ge 256 \\ 64 \\ 64 \\ \ge 256 \\ \ge 256 \\ 64 \\ 16 \\ 256 \\ \ge 256 \\ 32 \\ \ge 256 \\ 64 \\ \ge 256 \\ 256 \\ 256 \\ 64 \\ \ge 256 \\ 256 \\ 64 \\ \ge 256 \\ 64 \\ \ge 256 \\ 256 \\ 64 \\ \ge 256 \\ 256 \\ 64 \\ \ge 256 \\ 25$	$\begin{array}{c} 8\\ 16\\ 16\\ 32\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 8\\ 8\\ 16\\ 4\\ 16\\ 16\\ 8\\ 8\\ 16\\ 8\\ 8\\ 16\\ 8\\ 16\\ 8\\ 16\\ 8\\ 16\end{array}$	2 2 4 1 2 2 4 2 2 2 2 1 4 2 2 2 1 4 2 2 2 1 4 2 2 4 2 2 1 4 2 2 4 2 2 2 1 4 2 2 2 2	$1 \\ 4 \\ 1 \\ 2 \\ 0.5 \\ 0.5 \\ 0.5 \\ 4 \\ 0.5 \\ 2 \\ 0.5 \\ 1 \\ 2 \\ 0.5 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.5 \\ 2 \\ 0.125 \\ 0.$	
2b	SHV-1	R1010	0.5	0.5	64	0.5	2	0.5	0.5	
2be	SHV-2 SHV-3 SHV-4 SHV-5 SHV-6 SHV-12 SHV-18 CTX-M-5 CTX-M-14	pMG258 pUD18 pUD21 pAFF2 pSLH47 pMG242 pMG266 pCLL3417" pMG267	16 32 8 16 1 4 128 32	4 64 16 32 0.5 4 8 ≥256 32	64 64 64 64 32 64 64 64	≥ 256 ≥ 256 ≥ 256 ≥ 256 32 ≥ 256 64 4 8	8 4 8 8 4 8 8 8 8	1 2 0.5 2 0.5 2 1 2 2	0.25 1 0.25 2 1 2 2 1 2 2 1 2	
2b	HMS-1	R997	0.5	0.5	64	1	2	0.5	1	
2c	PSE-1 PSE-4 CARB-3 CARB-4 SAR-1	pMG217 pUZ8::Tn <i>1405</i> pUZ8::Tn <i>1408</i> pUZ8::Tn <i>1413</i> pUK657	$0.5 \\ 0.5 \\ 1 \\ 0.5 \\ 0.5 \\ 0.5$	0.5 0.5 0.5 0.25 0.5	64 64 64 32 64	4 0.5 0.5 0.5 0.5	2 2 1 1 2	1 1 1 1	0.5 2 1 2 0.5	
2d	OXA-1 OXA-2 OXA-3 OXA-4 OXA-5 OXA-7 OXA-10 LCR-1	RGN238 R46 R55 pMG203 pMG54 pMG202 pUZ8::Tn <i>1404</i> pUZ8::Tn <i>1412</i>	$\begin{array}{c} 4 \\ 0.5 \\ 0.25 \\ 1 \\ 0.5 \\ 1 \\ 0.5 \\ 0.5 \end{array}$	$\begin{array}{c} 0.5 \\ 0.5 \\ 0.25 \\ 0.5 \\ 0.5 \\ 1 \\ 0.5 \\ 0.5 \\ 0.5 \end{array}$	64 64 64 64 32 64 64	$\begin{array}{c} 0.5 \\ 16 \\ 2 \\ 0.5 \\ 0.5 \\ 1 \\ 0.5 \\ 0.5 \\ 0.5 \end{array}$	2 32 1 1 1 2 2	$ \begin{array}{c} 1\\2\\0.5\\1\\1\\1\\1\\0.5\end{array} $	2 1 2 0.25 0.25 2 2 1	
2f	KPC-1	pBR322-catI-bla _{KPC-1} ^a	128	128	128	64	≥128	≥128	≥128	
3	VIM-2	pNOR2001 ^a	4	64	128	32	64	64	128	

^a Multicopy recombinant plasmid.

TABLE 2. Su	ceptibilities (of <i>K</i> .	pneumoniae	002(pMG251) and :	its (derivatives	to	β-lactams
-------------	-----------------	---------------	------------	------------	---------	-------	-------------	----	-----------

Star in	MIC (µg/ml)								
Stram	Cefepime	Cefotaxime	Cefoxitin	Ceftazidime	Ertapenem	Imipenem	Meropenem		
002(pMG251)	0.125	2	512	8	0.5	2	0.125		
002(pMG251) Ertapenem ^r MIC 4 ^a	1	32	≥1,024	16	4	16	1		
002(pMG251) Ertapenem ^r MIC 4 carrying pQE7K ^b	0.5	16	≥1,024	8	2	2	0.5		
002(pMG251) Ertapenem ^r MIC 4 carrying pSHA25K ^c	0.125	2	512	8	0.25	2	0.125		
002(pMG251) Ertapenem ^r MIC 128 ^d	2	32	≥1,024	≥32	128	≥128	16		
002(pMG251) Ertapenem ^r MIC 128 carrying pQE7K	1	32	≥1,024	≥32	16	8	2		
002(pMG251) Ertapenem ^r MIC 128 carrying pSHA25K	0.06	1	512	8	0.25	2	0.125		

^a Ertapenem^r MIC 4, resistant derivative for which the ertapenem MIC was 4 µg/ml.

^b Codes for OmpK36.

^c Codes for OmpK37.

^d Ertapenem^r MIC 128, resistant derivative for which the ertapenem MIC was 128 μ g/ml.

dium lauryl sarcosinate (2%)-insoluble material from cell envelopes obtained by sonication of bacteria after growth in nutrient broth (Difco) and were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis by using the Phast-System with PhastGel 12.5 medium (Pharmacia Biotech). Two protein bands were seen with strain 002 at about 35 and 36 kDa, probably corresponding to an OmpA-like protein and a porin, respectively. The upper band was lost in both of the ertapenem-resistant mutants (Fig. 1).

To elucidate the events responsible for ertapenem resistance further, plasmids pSHA25K, encoding OmpK36, and pQE7K, encoding OmpK37 (5), were introduced into the ertapenemresistant *K. pneumoniae* 002(pMG251) derivatives by electro-

FIG. 1. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of outer membrane proteins with protein standards of 97, 66, 49, and 30 kDa (lane A), *K. pneumoniae* C2 (lane B), *K. pneumoniae* 002(pMG251) (lane C), the *K. pneumoniae* 002(pMG251) ertapenemresistant derivative for which the MIC was 4 μ g/ml (lane D), and the *K. pneumoniae* 002(pMG251) ertapenem-resistant derivative for which the MIC was 128 μ g/ml (lane E).

poration. Both plasmids determine kanamycin resistance, as does pMG251, but neomycin could be used to select for plasmid acquisition. Transfer of plasmid pSHA16K, encoding OmpK35 (5), was also attempted, but despite being based on the same vector as the other Omp constructs, pSHA16K proved to be incompatible with pMG251 as either the entering or resident plasmid.

Acquisition of either pSHA25K or pQE7K increased β -lactam susceptibility for both the first- and second-step ertapenem-resistant mutants. Plasmid pSHA25K had the greater effect (Table 2). Porin loss was thus clearly involved in mutations to enhanced ertapenem resistance, but since both high- and low-level resistance mutants had susceptibility restored, the sequence of events responsible for the two resistance levels has not been established. Enhanced β -lactam efflux might be involved, but compounds reported to inhibit quinolone efflux in *K. pneumoniae* or other organisms, such as 25 µg of reserpine (Sigma) per ml (13), 100 µM carbonyl cyanide *m*-chlorophenylhydrazone (Sigma) (11), or 80 µg of Phe-Arg β -naphthylamide (Sigma) per ml (2), failed to block ertapenem resistance in the *K. pneumoniae* 002(pMG251) derivatives.

Ertapenem resistance in *K. pneumoniae* thus depended on production of particular β -lactamases and defects in permeability. In most strains loss of susceptibility was more marked for ertapenem than for imipenem or meropenem. Additional clinical isolates with this resistance phenotype have recently been reported (D. L. Paterson, R. A. Bonomo, J. Kolano, S. Patel-Brown, K. M. Hujer, L. B. Rice, and V. L. Yu, Abstr. 42nd Intersci. Conf. Antimicrob. Agents Chemother., abstr. C2-1886, 2002; J. P. Quinn, A. M. Hujer, C. R. Bethel, P. Schreckenberger, and R. A. Bomomo, Abstr. 43rd Intersci. Conf. Antimicrob. Agents Chemother., abstr. C1-671, 2003).

This study was supported in part by a grant from Merck & Co., Inc. We thank A. Doménech for providing plasmids pQE7K, pSHA16K, and pSHA25K.

REFERENCES

- Alvarez, M., J. H. Tran, N. Chow, and G. A. Jacoby. 2004. Epidemiology of conjugative plasmid-mediated AmpC β-lactamases in the United States. Antimicrob. Agents Chemother. 48:533–537.
- 2. Baucheron, S., H. Imberechts, E. Chaslus-Dancla, and A. Cloeckaert. 2002. The AcrB multidrug transporter plays a major role in high-level fluoroquin-

olone resistance in *Salmonella enterica* serovar typhimurium phage type DT204. Microb. Drug Resist. 8:281–289.

- Bradford, P. A., C. Urban, N. Mariano, S. J. Projan, J. J. Rahal, and K. Bush. 1997. Imipenem resistance in *Klebsiella pneumoniae* is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase, and the loss of an outer membrane protein. Antimicrob. Agents Chemother. 41:563– 569.
- Bush, K., G. A. Jacoby, and A. A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39:1211–1233.
- Doménech-Sánchez, A., S. Hernández-Allés, L. Martínez-Martínez, V. J. Benedí, and S. Albertí. 1999. Identification and characterization of a new porin gene of *Klebsiella pneumoniae*: its role in β-lactam antibiotic resistance. J. Bacteriol. 181:2726–2732.
- Fuchs, P. C., A. L. Barry, and S. D. Brown. 2001. In vitro activities of ertapenem (MK-0826) against clinical bacterial isolates from 11 North American medical centers. Antimicrob. Agents Chemother. 45:1915–1918.
- Jacoby, G., P. Han, and J. Tran. 1997. Comparative in vitro activities of carbapenem L-749,345 and other antimicrobials against multiresistant gramnegative clinical pathogens. Antimicrob. Agents Chemother. 41:1830–1831.
- Jacoby, G. A., and P. Han. 1996. Detection of extended-spectrum β-lactamases in clinical isolates of *Klebsiella pneumoniae* and *Escherichia coli*. J. Clin. Microbiol. 34:908–911.
- Livermore, D. M., M. W. Carter, S. Bagel, B. Wiedemann, F. Baquero, E. Loza, H. P. Endtz, N. van den Braak, C. J. Fernandes, L. Fernandes, N. Frimodt-Moller, L. S. Rasmussen, H. Giamarellou, E. Giamarellos-Bour-

boulis, V. Jarlier, J. Nguyen, C. E. Nord, M. J. Struelens, C. Nonhoff, J. Turnidge, J. Bell, R. Zbinden, S. Pfister, L. Mixson, and D. L. Shungu. 2001. In vitro activities of ertapenem (MK-0826) against recent clinical bacteria collected in Europe and Australia. Antimicrob. Agents Chemother. 45:1860– 1867.

- Martínez-Martínez, L., A. Pascual, S. Hernández-Allés, D. Alvarez-Díaz, A. I. Suárez, J. Tran, V. J. Benedí, and G. A. Jacoby. 1999. Roles of β-lactamases and porins in activities of carbapenems and cephalosporins against *Klebsiella pneumoniae*. Antimicrob. Agents Chemother. 43:1669–1673.
- Mazzariol, A., J. Zuliani, G. Cornaglia, G. M. Rossolini, and R. Fontana. 2002. AcrAB efflux system: expression and contribution to fluoroquinolone resistance in *Klebsiella* spp. Antimicrob. Agents Chemother. 46:3984–3986.
- NCCLS. 2003. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 6th ed. Approved standard M7-A6. NCCLS, Wayne, Pa.
- 13. Ribera, A., A. Jurado, J. Ruiz, F. Marco, O. Del Valle, J. Mensa, J. Chaves, G. Hernández, M. T. Jiménez de Anta, and J. Vila. 2002. In vitro activity of clinafloxacin in comparison with other quinolones against *Stenotrophomonas maltophilia* clinical isolates in the presence and absence of reserpine. Diagn. Microbiol. Infect. Dis. 42:123–128.
- 14. Yigit, H., A. M. Queenan, G. J. Anderson, A. Domenech-Sanchez, J. W. Biddle, C. D. Steward, S. Alberti, K. Bush, and F. C. Tenover. 2001. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of *Klebsiella pneumoniae*. Antimicrob. Agents Chemother. 45:1151–1161.