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Abstract
A primary assumption of environmental niche models (ENMs) is that models are both accu-

rate and transferable across geography or time; however, recent work has shown that mod-

els may be accurate but not highly transferable. While some of this is due to modeling

technique, individual species ecologies may also underlie this phenomenon. Life history

traits certainly influence the accuracy of predictive ENMs, but their impact on model trans-

ferability is less understood. This study investigated how life history traits influence the pre-

dictive accuracy and transferability of ENMs using historically calibrated models for birds. In

this study I used historical occurrence and climate data (1950-1990s) to build models for a

sample of birds, and then projected them forward to the ‘future’ (1960-1990s). The models

were then validated against models generated from occurrence data at that ‘future’ time.

Internal and external validation metrics, as well as metrics assessing transferability, and

Generalized Linear Models were used to identify life history traits that were significant pre-

dictors of accuracy and transferability. This study found that the predictive ability of ENMs

differs with regard to life history characteristics such as range, migration, and habitat, and

that the rarity versus commonness of a species affects the predicted stability and overlap

and hence the transferability of projected models. Projected ENMs with both high accuracy

and transferability scores, still sometimes suffered from over- or under- predicted species

ranges. Life history traits certainly influenced the accuracy of predictive ENMs for birds, but

while aspects of geographic range impact model transferability, the mechanisms underlying

this are less understood.

Introduction
Environmental niche models (ENMs) estimate the relationship between species records at sites
and the environmental and/or spatial characteristics of those sites, and extrapolate species
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distribution data in space and time based on a statistical model in order to represent the real-
ized environmental niche of species [1–4]. The accuracy of ENMs can be affected by the life
history characteristics of the organisms under study [5–9]. While many studies address how
life history traits impact model accuracy for different taxonomic groups, there are many fewer
studies that examine the influence of differing life histories on model transferability [6, 10, 11].
Model transferability refers to how well a model built using environmental parameters from
one geographic location or time performs when projected into a different geographic location
or time [12, 13]. Although ENMs generally perform well when predicting within the same envi-
ronment or climate [14, 15], when they are projected across geographic or climatic spaces they
can become less accurate and reliable [16], thus model transferability is an important consider-
ation in studies that involve forecasting or hindcasting [17, 18].

Within taxonomic groups, individual species differences greatly impact ENM transferabil-
ity, in fact, species differences have a greater affect on transferability than model choice for
some organisms such as found among plants [6, 11], mammals [19] and butterflies [11]. Hav-
ing a strong contextual framework for the role of differing life history characteristics can allow
us to make predictions of how well models will perform when they are forecast to the future or
hindcast to the past. This is particularly important to consider when forecasting ENMs for cli-
mate based conservation planning under projected climate change [20–22], or when hindcast-
ing ENMs to generate phylogeographic and biogeographic hypothesis [23]. If we have a solid
knowledge of the life history traits that impact transferability for a group of organisms, and an
understanding of how those traits affect transferability, then we have a framework for model
interpretation. For example, Dobrowski et al. [6] demonstrate that plant species with high dis-
persal capability are more easily modeled, projected, and interpreted because models for these
organisms have high predictive accuracy and transferability. Furthermore, Kharouba et al. [10]
found that models for butterfly species with narrower environmental niches were better pre-
dicted and projected than those with wider niches. This framework becomes critical when
model validation is not possible, such as when forecasting to future predicted climate change.

Devising means of testing transferability is not always simple. Projecting across climates is
complicated because model validation is much more difficult than when projecting within the
same conditions for which the model was built [24]. With forecasting, model validation is con-
founded by the fact that true model validation cannot happen without the passage of time [24].
Therefore, an understanding of how well the models perform under analogous (but likely
changing) climatic simulations is desirable to gain insight into model behavior. Under analo-
gous conditions, all else being equal, one would expect very high model transferability, espe-
cially when considered over shorter timeframes. However, there are few studies that have
examined this, and a recent study has identified this knowledge gap [25].

For birds, some of the life history traits that have been examined with regard to ENM per-
formance include range size, conservation status, migratory behavior, rarity, endemism, body
mass (size), habitat structure, and wetland affinity (reviewed in McPherson and Jetz [5]). Of
these traits, range size, migratory behavior, and wetland affinity have detectable impacts on
model performance for South African bird species. Narrow ranged species models performed
better than those for common species, non-migrant species models were better than those for
migrants, models for endemics outperformed models for non-endemics, non-wetland species
models outperformed wetland species models [5]. However, the characteristics that contribute
to a successful interpolative model (e.g. a model built and projected within the same climatic
and geographic environment), may not be the same as those that make for a successful extrapo-
lative model (e.g. a model built using one climatic and geographic environment and then pro-
jected to a different climatic or geographic environment) [6]. Therefore, transferability as it
relates to life-history characteristics should ideally be evaluated explicitly.
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Here I examine the relationship between life history characteristics and model accuracy and
transferability for a subset of North American birds. I use historical occurrence records in com-
bination with historical climate data to forecast to the current climate and to validate the mod-
els. Using historical data to assess model accuracy and behavior is a highly informative
approach to model validation, and is the only direct method to assess temporal transferability
[11, 15, 19, 24]. I quantify model accuracy, parameterization, and transferability, and then use
generalized linear models to relate differences in these measures to differences in life history
characteristics among species. This is done over a relatively short time period (50 years) in a
region where climate is roughly analogous, thus the expectation is that transferability should be
very high unless they are impacted by either artifacts of modeling or life history characteristics.
This study focused on species with relatively steady ranges over the past fifty years rather than
those with documented range shifts. By doing so it becomes more straightforward to disentan-
gle artifacts of modeling from the effects of life history traits on predictive accuracy and
transferability.

Methods

Species and Life History Characteristics
Included species encompass a range of distributions (e.g. widespread and commonWC, wide-
spread but rare WR, narrow endemic but common NEC, narrow endemic but rare NER), and
life-history characteristics (Table 1). To gain additional insight into the range characteristics
and habitat access for each species, I generated observed frequency maps using eBird [26]. The
ebird database records observations and includes site records both with the known distribution
as well as migrants, it provides a visual heuristic to assess which species might be impacted by
dispersal limitations that prevent them from accessing suitable environments. The other life
history characteristics include migratory status, habitat preferences, conservation status, popu-
lation trend, and body size. I categorized the migratory status of each species as neotropical
migrant for migration to tropical areas of Central or South America (N), temperate migrant for
migration within temperate North America (T), or resident if they persist in the same area year
round (R). Primary habitat preferences were categorized as scrub, woodland, grassland, wet-
land, desert, or shoreline habitats. Life histories were characterized with guidance from Gough
et al. [27], the All about Birds website [28] and the Birds of North America Online [29], body
mass data are from [30]. The IUCN Red List was used to assess conservation status and popula-
tion trends [31], and species identified as one of the National Audubon Society’s 20 common
birds in decline are indicated [32]. The two conservation traits (conservation status and popu-
lation trend) are emergent characteristics that should capture dynamics of range change
through time and have been used in other studies evaluating the role of species ecologies on
ENMs [5]. Species with threatened conservation status for example are often threatened by
limited range extent or small population size and may be as difficult to model as rare species
[5]. On the other hand, species that are undergoing a population decline or expansion are
potentially out of equilibrium and may present a different challenge for modeling [5, 18]. Since
population trend data for two species (Field Sparrow and Eastern Meadowlark) conflict, sepa-
rate analyses using both classification schemes were conducted.

Occurrence Data
The models built here are based on survey data from the National Audubon Society’s Christ-
mas Bird Count (CBC) [33]. The CBC is a yearly survey of bird species across North America.
CBC data are gathered and contributed by citizen scientists that carry out a 15-mile diameter
survey on a single day over a three-week period in December and January. Yearly surveys at
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Table 1. The species included in these analyses and their life history traits.

AOU Common Name Species Name Range Migratory
Status

Habitat Conservation &
Population

Body
Mass

AOU 10 Common Loon Gavia immer WC T E LC-d 4

AOU 172 Northern Pintail Anas acuta WC T E LC-d* 3

AOU 240 Broad-winged Hawk Buteo platypterus WC N W LC-i 2

AOU 242 Swainson's Hawk Buteo swainsoni WC N G LC 3

AOU 251 Golden Eagle Aquila chrysaetos WR T G LC 4

AOU 271 Prairie Falcon Falco mexicanus WC T G LC 3

AOU 295 Greater Sage Grouse Centrocercus
urophasianus

NER R S NT-d 4

AOU 302 Greater Prairie Chicken Tympanuchus cupido NER R G V-d 3

AOU 335 Clapper Rail Rallus longirostris WR R E LC-d 2

AOU 360 Sandhill Crane Grus Canadensis WC T E LC-i 4

AOU 376 Piping Plover Charadrius melodus NER T B NT-i 1

AOU 379 Mountain Plover Charadrius montanus NER N G NT-d 1

AOU 382 American Oystercatcher Haematopus palliates WR R E LC 3

AOU 412 Long-billed Curlew Numenius americanus WC N G LC-d 2

AOU 691 Burrowing Owl Athene cunicularia WR N G LC-d 2

AOU 939 Lewis' woodpecker Melanerpe lewis WR T E LC-d 2

AOU 971 Black backed woodpecker Picoides arcticus WR R W LC 1

AOU 1203 Eastern Kingbird Tyrannus tyrannus WC N G LC-d 1

AOU 1252 Loggerhead Shrike Lanius ludovicianus WC T W LC-d* 1

AOU 1317 Yellow-billed Magpie Pica nuttalli NEC R W LC 2

AOU 1341 Tree Swallow Tachycineta bicolor WC T E LC 2

AOU 1361 Boreal Chickadee Poecile hudsonicus WR R W LC-d* 1

AOU 1370 White-breasted Nuthatch Sitta carolinensis WC R W LC-i 1

AOU 1372 Brown-headed Nuthatch Sitta pusilla NEC R W LC 1

AOU 1425 Ruby-crowned Kinglet Regulus calendula WC T W LC-i 1

AOU 1483 Wood thrush Hylocichla mustelina WR N W LC-d 1

AOU 1575 Yellow Warbler Dendroica petechial WC N S LC 1

AOU 1595 Palm Warbler Dendroica palmarum WC N S LC-i 1

AOU 1804 Brewer's Sparrow Spizella breweri WC N S LC-d 1

AOU 1805 Field Sparrow Spizella pusilla WC T S LC-i* 1

AOU 1814 Grasshopper Sparrow Ammodramus savannarum WR N G LC-d* 1

AOU 1837 Chestnut-collared
Longspur

Calcarius ornatus NER T G NT-d 1

AOU 1880 Eastern Meadowlark Sturnella magna WC T G LC-i* 1

AOU 1916 Baltimore Oriole Icterus galbula WC N W LC 1

AOU 1931 Black Rosy-Finch Leucosticte atrata NER T O LC 1

AOU 1958 Evening Grosbeak Coccothraustes
vespertinus

WC T W LC-d* 1

AOU sms Saltmarsh Sparrow Ammodramus caudacutus NER T E V-d 1

Range Scenario categories are widespread common (WC), widespread rare (WR), narrow endemic common (NEC), and narrow endemic rare (NER).

Migratory status categories are neotropical migrant (N), temperate migrant (T), or resident (R). Habitat categories are scrub [S], woodland [W], grassland

[G], wetland [E], desert [D], shoreline [B]. Conservation refers to the IUCN Red List assessment for each species. Least concern (LC), vulnerable (V), near

threatened (NT). We further identified decreasing (-d), increasing (-i) population trends using the IUCN assessment data, and demarcated those species

identified by the National Audubon Society as one of the twenty common birds in decline with an *. Body mass was categorized as cat 1 �100g, cat 2

100-500g, cat 3 500-1000g, cat 4 �1000g.

doi:10.1371/journal.pone.0151024.t001
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some sites stretch back decades, and increased participation over the past several decades has
led to the initiation of many new CBC survey circles. Abundance data for each observed species
are then compiled for each circle surveyed. The CBC data capture the early winter ranges of
resident and migrant species. The long temporal and wide-spatial coverage of CBC data pres-
ent a unique foundation for investigating how North American birds have responded to histor-
ical and recent climate change. The CBC has expanded to include sites that fall outside of the
continental United States, however most of these survey sites are very recent additions, thus
there is a trade-off between spatial extent and temporal extent when using these data. Since the
focus of this study is on temporal transferability, and in order to maximize the length of time
that could be evaluated, sites outside of the continental United States were excluded.

The CBC data were compiled from 1950 to 2010 and abundance information was collapsed
into a simple presence or absence for each circle surveyed in each year. Data were binned by
decade for each individual species, and only presence data were used here. Modeling was lim-
ited to presence data for multiple reasons; first since presence data are available for most
macro-organisms (e.g. vouchered museum samples) but absence data are largely lacking, using
the presence only data allows these results to be more generally comparable to modeling efforts
used for other taxa or datasets. Second, since absences can be either a true absence (e.g. the spe-
cies is not present in the survey site), or a false absence (e.g., the species is not detected although
it is present) either more complex modeling techniques or more complex survey techniques are
required to adequately characterize the nature of the absences [34]. To correct for species mis-
identifications, a conservative approach in which a 5% threshold was applied to each circle for
each species, thus if a species was recorded less than 5% of the years at that survey site it was
considered absent.

Environmental Data
Studies that predict species distributions under future climate change are almost exclusively
reliant on climatic data for forecasting, and although the paleontological record provides
insight into other potential environmental parameters, most ENM-based hindcasting analyses
are also limited to climatic data. Therefore, to make this study more broadly comparable, only
climate data were included in these analyses. Fortunately, climate has demonstrated utility in
predicting distributional changes [35]. Monthly climate data for the continental U.S. were
obtained for each year from 1950 to 1999 from the Parameter Regression of Independent Slope
Model (PRISM) climate group [36]. Decadal averages (using the mean) were then produced
for mean annual temperature, maximum temperature, and minimal temperature, and mean
annual precipitation, and then 19 bioclim variables were produced (S1 Table). Data were uti-
lized at 2.5 arc minutes.

Environmental Niche Models
In order to test the temporal transferability of ENMs, I build models using historical data from
fifty years of field surveys (1950 to 1999) in combination with historical climate data and proj-
ect them to the “future” (in this study “future” refers to 1960 to 1999). The projected models
were validated through comparison with survey data from the time period to which they have
been projected. Model validation using serial temporal sampling is becoming more common
(for recent examples [19, 25]), providing an independent means for assessing model accuracy
[24]. Since differences between modeling approaches are less impactful and insightful than
other factors when evaluating transferability [6, 7, 11], rather than focusing on the transferabil-
ity of different modeling techniques (see [11, 37] for recent reviews), I use a single model type
with high extrapolative ability. Using historical data in this manner provides a more robust

Life History Traits Birds

PLOS ONE | DOI:10.1371/journal.pone.0151024 March 9, 2016 5 / 22



framework for evaluating temporal transferability than consensus modeling approaches since
consensus approaches emphasis precision rather than accuracy [6].

Since there are recent studies investigating model variation with regards to geographic
transferability [37] and temporal transferability [11] and both have found strong support for
high transferability of MaxEnt models, I used MaxEnt 3.2e [38, 39] to build models and then
project them into the “future”. ENMs using matched decadal occurrence records and climate
data were generated for each decade, then projected forward in time, such that ENMs gener-
ated using 1950s occurrence points and 1950s climate, were projected to 1960s, 1970s, 1980s,
and 1990s climates (Fig 1). Interpolative models (Im), are developed using occurrence data
from a particular decade in conjunction with historical climate data from the same decade, and
are expected to be good representations of the species’ distribution [14]. The extrapolative
models (Em), which are the interpolative models projected onto a ‘future’ climate are more
prone to error because they are built using climate data that differs from the climate to which
they are projected [16].

A total of 555 models were constructed (15 models for each species). As previous analyses
have demonstrated equivalent model performance with full versus subsets of environmental
variables [16], and I had no a priori information by which to select variables across the mod-
eled set of species [40], I used 19 bioclimatic variables for model building (S1 Table). However,
there are two schools of thought regarding variable selection when using MaxEnt [41], one sug-
gests including all reasonable predictor variables [38, 42, 43], the other suggests removing col-
linear variables [41]. In MaxEnt, allowing more predictor variables allows more complex
model fitting, and by default MaxEnt determines which predictors to use based on the number
of occurrences in the dataset [44]. MaxEnt uses weighting for variable selection, as well as an
L1-regularization procedure that penalizes models in which predictor variables with little or no
contribution are included [41, 45], thus it is generally thought to be less sensitive to model
over-fitting than other methods [42, 43] (but see [46]). Furthermore, if the relationship among
variables is not constant over time, the inclusion of multiple collinear predictors has been
found to produce better performance and fit as compared to reduced variable models [47].
However, if variables are highly collinear, ecologically relevant predictors may be excluded if a
collinear variable better explains the response variable [40, 48]. From a purely statistical stand-
point, reducing collinear variables reduces the potential for mis-identification of critical vari-
ables [40]. To better understand the potential impact of collinearity among the predictor
variables in the maxent models, and the constancy of variable relationships across decades, I
calculated variance inflation factors (VIF) using the R package uSDM [49].

For each model a random starting seed was used, and up to 500 iterations were employed,
10000 pseudo absence points were generated from within the contiguous US, and duplicate
presence points were removed such that each grid cell (~5km2) contained only a single point.
This bias correction approach reduces spatial aggregation among presence points, although it
does not correct for sampling gaps, it has been demonstrated to be an efficient and reliable
means to correct for geographically biased sampling [50]. I used a conservative two-fold ran-
dom cross validation approach (e.g. dividing the data into two groups) by randomly retaining
25% of the occurrence points for testing. The regularization value to minimize over-parameter-
ization of the models was set to the MaxEnt default value based on findings from [42, 51] (but
see [52] for further discussion).

AUC (area under the receiving operating characteristic curve) [53] is a metric commonly
used to assess model performance in GIS modeling, since it is unbiased and threshold indepen-
dent [54, 55]. The AUC is (or nearly is) prevalence independent [53, 56, 57], and instead
depends on the probability of the model correctly ranking presence vs. absence sites [56, 58–
60]. Although there are a number of potential problems with the AUC statistic [55] it is widely
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used as a metric for model fit since it is well understood [24], and it is the recommended metric
for studies assessing the influence of life history characteristics on model performance [57].
Numerous recent studies evaluating transferability have validated the use of the AUC as an
appropriate performance measure [10, 13, 61]. Although studies comparing across modeling
approaches need to apply corrections to account for the different degree to which they cover
the range of commission errors, this study uses a single modeling approach that calculates
AUC scores on the full range of commission errors [46], therefore, AUC scores should be

Fig 1. Themodeling steps and validation procedure used to generate and compare the 555 ENMs that form the basis of analyses.Depicted are
ENMs for the Eastern Meadowlark built for the 1950s and 1960s. The left column shows interpolative ENMs built using matched historical occurrence points
and climate data, while the right column depicts extrapolative model that is built with data and climate from the 1950s and projected to the 1960s climate.
Circles represent the occurrence points obtained from the CBC surveys during each decade.

doi:10.1371/journal.pone.0151024.g001
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comparable. AUC scores for both the testing and training datasets were retained for further
analyses. Clamping and multivariate environmental similarity surfaces (MESS) were also eval-
uated for each projected model to ensure that the climates to which data were projected were
within the range of environments sampled by the training data [18]. The equal specificity and
sensitivity threshold was used to create a binary presence or absence matrix for each cell. While
the choice of threshold criterion is somewhat arbitrary, this particular threshold was selected
because it equalizes the model’s ability to correctly predict a presence if the species is present,
and to correctly predict an absence when the species is absent [53, 62].

Many studies examining the impact of life history traits have recovered a pattern whereby
models for narrow ranging, endemic species have higher model accuracy than those for wide-
spread species as assessed by AUC scores [5, 10, 63, 64]. However, for species occupying a
restricted range relative to the extent of the background area modeled, AUC scores can be ele-
vated as an artifact of modeling due to sampling prevalence and sample size [57], and pseudo-
absences [14, 65, 66]. By explicitly evaluating the effect of background extent on AUC scores
for these species, the artifacts that arise from modeling should become evident [66]. To untan-
gle artifacts of modeling from effects of life history traits, I generated a second set of models for
narrow ranging endemics using a reduced background extent (extent restricted to states where
a CBC circle recorded a presence) and then compared the AUC scores from the two models
sets using t-tests to assess if background extent impacted estimates of model performance.
Since sampling size and the number of background points were held constant, and therefore
neither sampling prevalence or sample size should be affecting differences among the sets of
models, a significant difference between the models (full extent versus reduced extent) suggests
that pseudo-absence selection influences AUC scores. If the models do not differ statistically,
the higher AUC scores recovered for narrow ranged species may reflect a true effect of the
underlying species ecology.

Model Parameterization, Performance, and Transferability
AUC scores from the testing (AUCtest) and training (AUCtrain) data sets were interpreted
using the general guidelines outlined by Swets [67]: AUC< 0.9 = excellent, 0.9> AUC>

0.8 = good, 0.8> AUC> 0.7 = fair, 0.7> AUC> 0.6 = poor, and 0.6> AUC = fail. When
used together AUCtrain and AUCtest provide additional insight into model fit and validation
[54]. For each model I performed an internal model evaluation (IE) by using the ratio of
AUCtest and AUCtrain (IE = AUCtest /AUCtrain). In this ratio, a value greater than 1, may indi-
cate that the model is over-parameterized. I also used the difference between AUCtest and
AUCtrain (AUCDiff = AUCtrain-AUCtest) as a measure of model over-fit [52]. The differences
in model fit and validation as measured by IE and AUCDiff between interpolative and extrapo-
lative models were assessed using paired t-tests.

To gauge model transferability I examine the magnitude of over- or under- prediction and
assess the overlap between modeled ranges. This approach assumes that the Im better repre-
sents the true distribution than does the Em [16, 68]. External model evaluation was performed
using two AUC -based Transferability Indices to gauge the accuracy of the extrapolative mod-
els. Both TIH (TIH = AUC(Em) / AUC(Im)), developed by Heikkinen et al. [37] and TIW (TIW =
(1-(AUCDiff(Em))) /(1-(AUCDiff(Im))) developed here, are simple ratios in which values less than
one indicate that the interpolative models are providing more accurate predictions than the
extrapolative models. Values close to one are indicate equivalent accuracy of interpolative and
extrapolative models. The second index, TIW differs from TIH by incorporating the internal
evaluation into the ratio. I also use metrics to quantify mismatch between the interpolative
models (Im) and the extrapolative models (Em). The metrics used here are from [69] and
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include the relative range size (RRS) and the overlap index (OI). They are intended to provide
insight into the performance of the transferred extrapolative models (Em) relative to the inter-
polative models (Im). The relative range size (RRS) (if Im< Em RRS = Em/Im -1, else RRS =
-1(Im/Em-1) is a measure of the over- or under- prediction of suitable area of the Em relative
to the Im. A positive number means that the Em over-predicts the range, a negative value
means it under-predicts the range, and a value close to 0 indicates model similarity [16]. The
Overlap Index (OI) (OI = (O/Im)) quantifies agreement between the predicted and projected
species range. OI records the amount of congruence between the Im and Emmodels. It is a
simple ratio that quantifies the overlap between the Im and Em models with respect to the Im.
Values range from zero to one. A value close to one indicates that the Em performs well in pre-
dicting the species range. A low value indicates little agreement between the models.

Life History Characteristics, Model Accuracy, and Transferability
The next step in these analyses is to relate differences in model accuracy and transferability to
differences in life history strategies among species. Specifically addressing (a) which life history
characteristics influence model performance and (b) which life history traits influence model
transferability. Contingency tables were used to examine interactions among life history char-
acteristics (migratory status, range status, habitat type, conservation status, population trend,
and body size). The relationship between life history characteristics and ENMs was assessed
using generalized linear models (GLMs). Homogeneity among residuals and other assumptions
for application of GLMs were checked using graphical methods following guidance from Zuur
et al. [70]. GLMs were implemented using the Gaussian family with the identity link. Five vari-
ables that measure model accuracy (AUCavg) and transferability (RSS, OI, TIH, TIW) were
treated in turn as the response variable and modeled using the drop1 function in R [71] which
gives the significance of each variable after all remaining variables are controlled for. Predictor
variables included body mass, range (wide or narrow), range (common or rare), migration sta-
tus, habitat, conservation status, and population trend. Significance was assessed using analysis
of deviance with the Chi Square distribution, and the best-fit model was determined using the
likelihood ratio test of the AIC scores. I then used the non-parametric Wilcoxon test to evaluate
both model accuracy and transferability as they relate to range components, and the Kruskal-
Wallis test to examine differences among model performance as measured by the mismatch
statistics and with respect to each of the life-history and range characteristics.

Results

Model Performance and Transferability
Thirty-seven North American bird species were evaluated using the CBC data (Table 1).
Clamping was non-existent in these analyses, and there was very little dissimilarity of multivar-
iate environments. VIF scores indicate that there is some collinearity among the predictor vari-
ables (Table 2). For all five decades we found consistent evidence for collinearity for annual
mean temperature (bio 1), min temperature of the coldest month (bio 6), precipitation of the
wettest quarter (bio 16), and precipitation of the driest quarter (bio 17). Three additional vari-
ables were also identified as collinear during different decades: max temperature of warmest
the month (bio 5), mean temperature of the warmest quarter (bio 10), and annual precipitation
(bio 12) (Table 2). Over the short time examined here, the relationships among variables were
not constant.

Both testing and training AUC values had high discriminatory power for Im were excellent
for 255 models, good for 72 models, fair for 35 models, poor for 8, and failed for 0. For the Em
AUC values were excellent for 511 models, good for 156 models, fair for 60 models, poor for
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10, and failed for 3. When averaged across decades AUCtest values were excellent for 22, good
for eight, and fair for seven species. For AUCtrain values were excellent for 28, good for eight,
and fair for one species. The internal and external validations suggest that the Im and Emmod-
els are similarly parameterized and well calibrated (S2 Table). Both of the transferability indices
generally provide similar results and suggest that the models are highly transferable (S2 Table).
The RRS statistic found that many models had values close to 0 indicating strong agreement
between the Im and Em, however there were a number of models that suffered from over- and
under-prediction (S2 Table). While under-prediction was more common than over-prediction,
the magnitude of over-prediction was larger (S2 Table). The OI statistic revealed that for many
models there was high-predicted overlap between the Im and Emmodels, although there were
some exceptions (S2 Table). While most of the metrics suggest that the models are accurate,
well fit, and transferable, there are some Em that either over or under-predicted the Im, as well
as some Em that had low overlap with the Im, suggesting that these discrepancies arise either
as an artifact of modeling, or that some other factor potentially related to life history character-
istics affects model prediction and transferability.

Life History Characteristics
Of the species included in these analyses, eleven had stable population trends while twenty-six
had unstable population trends (eight increasing and eighteen decreasing), nine were residents,
twelve were Neotropical migrants, and sixteen were temperate migrants (Table 1). Range status
and migratory status were not independent, with temperate migrants mainly falling within the
WC range status group (Chi-square test yielded a p-value of 0.036). Habitat preference, body
size, and conservation status were all independent. Maps from ebird suggest that all but 5 species
(Sage Grouse, Prairie Chicken, Yellow-billed Magpie, Saltmarsh Sparrow, Mountain Plover) have
access to and disperse through a large proportion of the extent of the area modeled in this study.

Model accuracy was significantly affected by several life history characteristics (Table 3).
Range, migration and habitat were important predictors of model accuracy.

For range, widespread versus narrow species distributions but not the commonness or rarity
of the species impacted the model accuracy, with narrowly distributed species having higher
model accuracy than widespread species (Fig 2). To determine if this finding reflects an artifact
of modeling or an effect of life history trait, AUC scores for models for narrowly distributed
species were re-evaluated with a reduced background extent and then compared to models
with the full background extent. The two sets of models were found to be statistically signifi-
cantly different (AUCtest: t = 5.4379, p-value = 0.000) which suggests that these differences
arose as an artifact of modeling.

Table 2. Collinear environmental predictor variables for each decade detected by VIF analyses with a
threshold of 0.9.

Decade Collinear Environmental Predictors (>0.90)

1950s 1, 5, 6, 16, 17

1960s 1, 6, 12, 16, 17

1970s 1, 6, 10, 16, 17

1980s 1, 6, 10, 12, 16, 17

1990s 1, 6, 10, 16, 17

Variable Key: 1 = annual mean temperature, 6 = min temperature of the coldest month, 16 = precipitation of

the wettest quarter, 17 = precipitation of the driest quarter, 5 = max temperature of warmest the month,

10 = mean temperature of the warmest quarter, and 12 = annual precipitation.

doi:10.1371/journal.pone.0151024.t002
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Models for both Neotropical migrants and residents had high levels of model accuracy,
while models for temperate migrants had markedly reduced accuracy (Fig 2). Among the six
major habitat categories included in these analyses, model accuracy for wetland species exhib-
ited a large amount of variation, although the mean AUC was high (Fig 2). The Wilcoxon test

Table 3. Generalized Linear Models indicating the predictors for eachmeasure of model performance.

Test Variable Life History Predictor Variable SS RSS AIC F-value P

AUC (avg) 0.040868 -223.91

Body Mass 0.001130 0.041998 -224.90 0.6360 0.4333

Range—Wide/Narrow 0.012498 0.053366 -216.04 7.0338 0.0142

Range—Common/Rare 0.006682 0.047549 -220.31 3.7605 0.0648

Migration 0.045930 0.086798 -200.04 12.9247 0.0002

Habitat 0.024105 0.064973 -216.75 2.7133 0.0455

Conservation Status 0.003800 0.044668 -222.62 2.1386 0.1572

Population Trend 0.004907 0.045775 -223.71 1.3808 0.2714

TIH (avg) 0.023153 -244.93

Body Mass 0.000171 0.023324 -246.66 0.1702 0.6837

Range—Wide/Narrow 0.001708 0.024861 244.30 1.6970 0.2056

Range—Common/Rare 0.000144 0.023296 -246.70 0.1425 0.7093

Migration 0.001057 0.024209 247.28 0.5249 0.5985

Habitat 0.002759 0.025912 -250.77 0.5482 0.7380

Conservation Status 0.000098 0.023251 -246.78 0.0974 0.7578

Population Trend 0.001194 0.024347 -247.07 0.5930 0.5609

TIW (avg) 0.016132 -258.30

Body Mass 0.000045 0.016177 -260.20 0.0634 0.8034

Range—Wide/Narrow 0.001059 0.017191 -257.95 1.5095 0.2316

Range—Common/Rare 0.000076 0.016208 -260.13 0.1084 0.7450

Migration 0.000901 0.017033 -260.29 0.6423 0.5353

Habitat 0.001537 0.017669 -264.93 0.4382 0.8172

Conservation Status 0.000003 0.016135 -260.29 0.0043 0.9484

Population Trend 0.000605 0.016737 -260.94 0.4312 0.6549

RRS 2753.7 187.46

Body Mass 1.921 2755.6 185.49 0.0160 0.9003

Range—Wide/Narrow 24.953 2778.7 185.80 0.2084 0.6523

Range—Common/Rare 17.050 2770.8 185.69 0.1424 0.7094

Migration 171.608 2925.3 185.70 0.7167 0.4990

Habitat 150.561 2904.3 179.43 0.2515 0.9347

Conservation Status 159.642 2913.3 187.55 1.3334 0.2601

Population Trend 121.690 2875.4 185.06 0.5082 0.6082

OI 0.44631 -135.45

Body Mass 0.000000 0.44631 -137.45 0.0000 0.9987

Range—Wide/Narrow 0.001405 0.44771 -137.34 0.0724 0.7903

Range—Common/Rare 0.103077 0.54938 -129.76 5.3120 0.0306

Migration 0.029849 0.47615 -137.06 0.7691 0.4750

Habitat 0.033594 0.47990 -142.77 0.3462 0.8794

Conservation Status 0.002947 0.44925 -137.21 0.1519 0.7003

Population Trend 0.093748 0.54005 -132.40 2.4156 0.1116

Significant predictors (p<0.05) are in bold.

doi:10.1371/journal.pone.0151024.t003
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Fig 2. Boxplots of differences in model accuracy (measured by AUC) for species grouped by range
(WC: widespread common;WR: widespread rare; NEC: narrow endemic common; NER: narrow
endemic rare), migration (N: Neotropical; R: resident; T: temperate), and habitat (S: scrub, W:
woodland, G: grassland, E: wetland, D: desert, B: shoreline.

doi:10.1371/journal.pone.0151024.g002

Life History Traits Birds

PLOS ONE | DOI:10.1371/journal.pone.0151024 March 9, 2016 12 / 22



found support for significant differences in accuracy for both range components (e.g. wide-
spread vs narrow, common vs rare) (Table 4).

The commonness or rarity of the species (range) was a significant predictor for OI but not
RSS (Table 3, Fig 3). The OI was higher for rare birds indicating better agreement between the
Im and Emmodels than for common birds, Interestingly, GLMs did not find any of the life his-
tory characteristics examined here to be significant predictors of model transferability as mea-
sured by TIH or TIW metrics (Table 3), although the Wilcoxon test did recover significant
support for differences in transferability for narrow versus widespread species (Table 4).

Among group comparisons of means by range, migratory status, and IUCN population sta-
tus revealed statistically significant differences in mean RRS (Table 5). NEC, NER, WC, and
WR categories had widely differing group means, models for rare species tended to over predict
range, while models for common species did a better job of capturing range dynamics. The
mean RRS values for temperate migrants was 0.69 ± 6.09 sd suggesting that the Im and Em pre-
dicted similar ranges for these birds, while for Neotropical migrants and residents the mean
RRS values were 5.956 ± 12.33 sd and 7.332 ± 12.42 sd respectively, suggesting a tendency
towards over-prediction. As expected, for species with an increasing population trend, the
mean RRS value was negative (-1.623 ± 1.233 sd) indicating a tendency towards under predic-
tion, while for stable species and species with a decreasing population status, the mean RRS val-
ues were positive (5.786 ± 10.97 sd and 5.435 ± 11.49 sd respectively), indicating a tendency
towards over prediction. When evaluating OI with respect to the four range scenarios, the

Table 4. Wilcoxon tests evaluating differences in model accuracy and transferability indices with
regard to range characteristics.

AUC TIH TIW

Narrow or Widespread 187.5 [0.038] 51 [0.007] 62 [0.023]

Common or Rare 92 [0.021] 228 [0.068] 222 [0.101]

Significant p-values <0.05 are in bold.

doi:10.1371/journal.pone.0151024.t004

Fig 3. Boxplots depicting differences in average relative range size (RRS) and average overlap index (OI) between common versus rare species.

doi:10.1371/journal.pone.0151024.g003
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average OI value for widespread common species was lower than for the other range scenarios,
and the means among the different range scenarios were statistically significantly different
(Table 5, Fig 4). The OI also differed among migratory groups, with temperate migrants having
a lower average OI score than resident or Neotropical migrants (Table 5, Fig 4). Group means
among IUCN population status categories were also significantly different, with the highest OI
value recorded for species with stable populations (0.74 ±0.17 sd), and the lowest for those with
increasing populations (0.543 ± 0.14 sd).

Discussion
In this study I modeled serially sampled survey sites over a 50-year period in a region where cli-
mates have remained relatively steady through time. I expected that if the models were per-
forming well then they should have high transferability, and therefore differences in
transferability should then be due to other factors such as life history traits or artifacts arising
during modeling. In agreement with results fromMcPherson and Jetz [5], differences among
bird species ecologies impacted the predictive accuracy of models. In both studies narrowly dis-
tributed species were better modeled than widespread species and wetland species models were
often less accurate than models for species in other habitats. However, in this study, the recov-
ered differences between models for narrow versus widespread spread species appears to be an
artifact of the effect of the selection of pseudo-absences on the AUC statistic. This occurs when
using the same modeling extent for all species, since narrow range species occupy a smaller
subset of the entire area relative to the modeled extent [14, 57, 65]. VanDerWal et al. [66]
found that pseudo-absences drawn from too large of an area relative to the species range can
lead to inflated AUC statistics, which is what was observed in this study. Many studies stan-
dardize the extent of the area modeled across species of varying range sizes, careful consider-
ation of the potential effect of the modeled extent to the range size of the species is warranted if
AUC is used as a metric for model accuracy, since individual models for narrow ranged species
may not actually perform as well as their AUC scores suggest.

Converse to results from McPherson and Jetz [5], this study found that the models for tem-
perate migrants tended to have lower accuracy than those for Neotropical migrants or resident
species. Different studies have come to different conclusions regarding how well models cap-
ture the distributions of migrant versus resident birds [63, 72], suggesting that this may vary
across geographies and assemblages.

The performance of ENMs built using historical climate and occurrence data varied in their
ability to predict “future” species distributions. In this study models were projected to highly
similar analogous environments, under the expectation that they should transfer well [61]. The
testing AUC scores for the models were overall quite high, and the models were well calibrated
with only a slight tendency toward over-parameterization (which is less problematic than
under-parameterization [52]). Although the transferability scores were generally high, the
transferability of the models varied. While the GLMs did not find any of the life history traits

Table 5. Results of Kruskal-Wallis tests evaluating among group differences when species are grouped by range status, migratory status, habitat
type, conservation status, IUCN population status or National Audubon population status.

Range Status Migratory Status Habitat Conservation Status IUCN NAS

RRS 0.009** 0.031* 0.53 0.153 0.046* 0.082

OI 0.008** 0.038* 0.715 0.816 0.05* 0.091

Significance at alpha < 0.05 is demarcated by an *, and alpha < 0.01 is demarcated by **.

doi:10.1371/journal.pone.0151024.t005
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to be significant predictors of transferability as measured by TIH or TIW, the OI statistic sug-
gests that commonality versus rarity of species across their distributional ranges may play an
important role in the predictive ability of extrapolated models. In this study, this was the only
life history character that significantly predicted overlap. In contrast, the Wilcoxon test sug-
gests that there are statistically significant differences in transferability for narrow versus wide-
spread species, but not for common versus rare species.

ENMs can become erratic when transferring projections in space and time [6, 10]. While this
study used internal and external validations to ensure that models were well parameterized, accu-
rate, and transferable, some models suffered from over- or under-prediction. Over-prediction
could emerge as an artifact of thresholding, or as a by-product of model parameterization. If a
particular threshold was always more lenient (lower) than other thresholding approaches than

Fig 4. Boxplots of species grouped by range status (top row) (WC: widespread common; WR: widespread rare; NEC: narrow endemic common;
NER: narrow endemic rare) andmigratory status (bottom row) (N: neotropical; R: resident; T: temperate).Relative Range Size (RRS) values close to
0 indicate good agreement, positive values indicate over-prediction and negative values indicate under-prediction, Overlap Index (OI) values range from 0
(no overlap) to 1 (full overlap).

doi:10.1371/journal.pone.0151024.g004
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ranges would always tend towards over-prediction, however this was not the case. If the models
were over- parameterized then the expectation is that the transferred models would under-pre-
dict the range, while the converse is true for under-parameterized models. In some studies, Max-
Ent has been known to remove too many variables, resulting in over-predicted range sizes due to
under-fit models [16]. Here the high degree of over-prediction for some species suggests under-
fitting, although the fit statistics indicate that the models are well parameterized.

Although it has been suggested that collinear predictors do not affect MaxEnt model build-
ing, but instead impact model interpretation [73, 74], the inclusion of variables that are collinear
can lead to over-fit models and potentially to the elimination of biologically relevant variables
[40]. These models are expected to under-predict the range [51], and indeed, this accords with
findings from Braunisch [47] in which complex models (retaining highly collinear predictor
variables) performed better than simpler models (retaining independent variables), despite
potential over-fit and under-prediction. Although we did observe examples of under-prediction
in this study, it was of small magnitude, suggesting that collinearity is not driving the results.

An alternative explanation is that biotic interactions may play a limiting role in determining
the species distribution and may be more important than climate in determining range limits
for these species. These factors can include dispersal limitation and issues of access to suitable
environments, or biotic interactions such as competition, or biotic dependencies on particular
vegetative structures [75]. Dispersal limitation and historical access play a significant role in
shaping distributions at evolutionary scales [76]. Dispersal limitation in particular could
impact modeling if the extent of the modeled area is greater than the dispersal capabilities of
the species during the timeframe under evaluation [77]. While experimental evidence for
extreme dispersal limitation exists for some tropical forest bird species [78], the birds in this
study are temperate species (expected to have high dispersal relative to tropical species [79,
80]), and the majority of them are migratory suggesting that dispersal limitation should not
affect most of the species. Frequency maps generated in ebird suggest that all of the widespread
and many of the “narrow” range species are able to access habitats throughout the modeled
region, thus dispersal limitation is not a major driver of the species distributions in this study.
Although climate alone has been shown to do a good job predicting distributions for birds
[75], biotic dependencies related to habitat have been shown to be important in structuring
North American bird distributions [75, 81, 82]. This study did not take into account habitat
changes through time and instead focused only on abiotic environmental factors, which could
have some important implications. For example, if suitable habitat decreased or fragmented,
one might expect birds that closely track that habitat, to have reduced ranges relative to pre-
dicted ranges based solely on climatic factors. It is possible that critical environmental compo-
nents, such as habitat, drive the distributions of some species examined in this study, and these
components are not captured in the models. This could result in under-fit models and the
over-predicted distributions found for some species. This study did find that habitat was an
important predictor of model performance, although, it was not a significant predictor of trans-
ferability, and there were no significant statistical associations for habitat and transferability.

Another related possibility is that species are not consistently tracking the same set of cli-
mate variables in time. A variable might be important in determining range barriers at one
time, but is not as important in a different time period [83, 84]. Rubidge et al. [15] found that
species distributions within a period could be best explained by climatic variables, but that
other environmental variables played an important role in range changes between times. For
species such as this, ENMs trained solely on climatic variables from one time period will likely
not do an adequate job in capturing range dynamics. The inclusion of additional environmen-
tal data such as vegetation might provide better predictive ability than climate alone. Multi-
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species modeling approaches may also better capture predicted range changes if species inter-
actions underlie current range limits [15].

The decreased transferability found in this study could have potentially arisen due to some of
the specific characteristics of the data utilized in these analyses. For some species, the range lim-
its of the winter range extend beyond the borders of the continental United States, and these
areas were not used in constructing ENMs. Projecting to highly novel climates, can lead to
decreased transferability if the entire geographic range is not sampled [85]. This arises because
some combinations of climatic variables are not included during model building, which can
result in models that do not capture the upper and/or lower ends of the environmental envelope
[85]. This could underlie some of the instances of under-prediction found here, but does not
explain over-prediction. Furthermore, the climates in these analyses are analogous across all
decades. There is no evidence to suggest that novel climatic combinations existed during the 50
years (as assessed by the absence of clamping and with the MESS statistic). As such, models
should be both highly accurate and temporally transferable within the continental United States.

Another potential issue is that the CBC data, like many historical data sources may contain
biases. In historical databases species misidentifications, heterogeneous collecting effort and
intensity, and geographical/environmental sampling biases may exist [86]. This study imple-
mented some measures to correct for these confounding issues; (a) species observed less than
5% of survey years at a survey site were considered potential misidentifications and were
removed for these analyses, (b) presence and absence at any site for each timespan was deter-
mined by ten years worth of surveys thus minimizing the effects of a low survey-effort year, (c)
these data were recorded as simple presence or absences rather than as abundances, which also
alleviates confounding effects from uneven survey effort, and (d) systematic sampling (sensu
[50]) was used to correct for geographic clustering of presence points. However, any potential
skew in the geographical distribution of the CBC circles, such as under sampling in a particular
region has not been corrected.

Indeed, the primary underlying difference in model accuracy and transferability in this
study appears to relate to species life history characteristics. Life history traits impart a strong
signature on the nature of species ranges and abundances, and although they clearly impact
both accuracy and transferability, they are often overlooked. This raises the question of how to
best assess and integrate life history trait impacts on accuracy and transferability into modeling
efforts, particularly those that use forecasting to assess conservation issues under projected
future climate change. As has been argued [22], conservation efforts should consider climate
change in their planning.

Studies examining life history traits and model accuracy and transferability are needed for a
wider group of organisms, especially for taxa that are of high conservation concern and
experiencing elevated rates of extinction, such as amphibians. Although high quality historical
data are not available for many taxa in most part of the world, sources for these types of data
are becoming available. Another option is to partition available data from existing sources such
as GBIF [87], VertNet [88] at a finer temporal scale and project those data forward or backward
to test ENM accuracy and transferability as it relates to life history characteristics. As more
studies become available for more taxa from more regions, generalities should emerge that will
provide a framework integrating model behavior and life history traits.
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