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Abstract

How are spatial and object attention coordinated to achieve rapid object learning and recognition 

during eye movement search? How do prefrontal priming and parietal spatial mechanisms interact 

to determine the reaction time costs of intra-object attention shifts, inter-object attention shifts, and 

shifts between visible objects and covertly cued locations? What factors underlie individual 

differences in the timing and frequency of such attentional shifts? How do transient and sustained 

spatial attentional mechanisms work and interact? How can volition, mediated via the basal 

ganglia, influence the span of spatial attention? A neural model is developed of how spatial 

attention in the where cortical stream coordinates view-invariant object category learning in the 

what cortical stream under free viewing conditions. The model simulates psychological data about 

the dynamics of covert attention priming and switching requiring multifocal attention without eye 

movements. The model predicts how “attentional shrouds” are formed when surface 

representations in cortical area V4 resonate with spatial attention in posterior parietal cortex (PPC) 

and prefrontal cortex (PFC), while shrouds compete among themselves for dominance. Winning 

shrouds support invariant object category learning, and active surface-shroud resonances support 

conscious surface perception and recognition. Attentive competition between multiple objects and 

cues simulates reaction-time data from the two-object cueing paradigm. The relative strength of 

sustained surface-driven and fast-transient motion-driven spatial attention controls individual 

differences in reaction time for invalid cues. Competition between surface-driven attentional 

shrouds controls individual differences in detection rate of peripheral targets in useful-field-of-

view tasks. The model proposes how the strength of competition can be mediated, though learning 

or momentary changes in volition, by the basal ganglia. A new explanation of crowding shows 

how the cortical magnification factor, among other variables, can cause multiple object surfaces to 

share a single surface-shroud resonance, thereby preventing recognition of the individual objects.
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1. Introduction

Typical environments contain many visual stimuli that are processed to varying degrees for 

perception, recognition, and control of action (Broadbent, 1958). Attention allocates visual 

processing resources to pursue these purposes while preserving reactivity to rapid changes in 

the environment (Kastner & Ungerleider, 2000; Posner & Petersen, 1990). If, for example, a 

car is coming towards us at high speed, the immediate imperative is to get out of the way. 

Once it has passed, we may want to determine its make and model to file a police report. 

However, to succeed at either task, the visual system must first learn what an object is. 

Under unsupervised learning experiences, nothing tells the brain that there are objects in the 

world, and any single view of an object is distorted by cortical magnification (Daniel & 

Whitteridge, 1961; Drasdo, 1977; Fischer, 1973; Polimeni, Balasubramanian, & Schwartz, 

2006; Schwartz, 1977; Tootell, Silverman, Switkes, & De Valois, 1982; Van Essen, 

Newsome, & Maunsell, 1984). Yet the brain somehow learns what objects are. This article 

develops the hypothesis that information about an object may be accumulated as the eyes 

foveate several views of an object. Similar views learn to activate the same view category, 

and several view categories may learn to activate a view-invariant object category. The 

article proposes how at least two mechanistically distinct types of attention may modulate 

the learning of both view categories and view-invariant object categories.

While we can easily describe the subjective experience of attention (James, 1890), a 

rigorous description of the underlying units or mechanisms has proved elusive (Scholl, 

2001). This may in part be due to the emphasis on describing attention as acting on the 

visual system rather than acting in the visual system. Early models, such as the `spotlight of 

attention' (Duncan, 1984; Posner, 1980; Scholl, 2001) and biased competition types of 

models (Grossberg, 1976, 1980b; Grossberg, Mingolla, & Ross, 1994; Itti & Koch, 2001; 

Treisman & Gelade, 1980; Wolfe, Cave, & Franzel, 1989), suggested that attention could 

enhance and suppress aspects of a visual scene, but most of these early models did not 

consider what attention must accomplish to lead to behavior, notably the learning and 

recognition of the objects that are situated in a scene. A notable exception is Adaptive 

Resonance Theory, or ART, which predicted how learned top-down expectations can focus 

attention upon critical feature patterns that can be quickly learned, without causing 

catastrophic forgetting, when the involved cells undergo a synchronous resonance 

(Carpenter & Grossberg, 1987, 1991, 1993; Grossberg, 1976, 1980b). Since that time, the 

modeling of Grossberg and his colleagues have distinguished at least three distinct types of 

“object” attention, and described different functional and computational roles for them:

(1) Surface attention (Cao, Grossberg, & Markowitz, 2011; Fazl, Grossberg, & 

Mingolla, 2009; Grossberg, 2007, 2009): Spatial attention can fit itself to an 

object's surface shape to form an “attentional shroud” (Cavanagh, Labianca, & 

Thornton, 2001; Moore & Fulton, 2005; Tyler & Kontsevich, 1995). Such a 
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shroud is formed and maintained through feedback interactions between the 

surface and spatial attention to form a surface-shroud resonance.

(2) Boundary attention (Grossberg & Raizada, 2000; Raizada & Grossberg, 2001): 

Boundary attention can flow along and enhance an object's perceptual grouping, 

or boundary (Roelfsema, Lamme, & Spekreijse, 1998; Scholte, Spekreijse, & 

Roelfsema, 2001), even across illusory contours (Moore, Yantis, & Vaughan, 

1998; Wannig, Stanisor, & Roelfsema, 2011). Both boundary and surface 

attention can facilitate figure-ground separation of an object (Grossberg & 

Swaminathan, 2004; Grossberg & Yazdanbakhsh, 2005).

(3) Prototype attention (Carpenter & Grossberg, 1987, 1991, 1993; Grossberg, 

1976, 1980b): Prototype attention can selectively enhance the pattern of critical 

features, or prototype, that is used to select a learned object category (Blaser, 

Pylyshyn, & Holcombe, 2000; Carpenter & Grossberg, 1987; Cavanagh et al., 

2001; Duncan, 1984; Grossberg, 1976, 1980b; Kahneman, Treisman, & Gibbs, 

1992; O'Craven, Downing & Kanwisher, 1999).

Early ART models focused on prototype attention and its role in the learning of recognition 

categories. In particular, ART predicted how prototype attention can help to dynamically 

stabilize the memory of learned recognition categories, notably view categories. Surface 

attention, represented as an “attentional shroud”, has more recently been proposed to play a 

critical role in regulating view-invariant object category learning. In particular, the 

ARTSCAN model (Cao et al., 2011; Fazl et al., 2009; Grossberg, 2007, 2009) predicted how 

the brain knows which view categories, whose learning is regulated by prototype attention, 

should be bound together through learning into a view-invariant object category, so that 

view categories of different objects are not erroneously linked together. The ARTSCAN 

model hereby proposed how spatial attention in the where cortical processing stream could 

regulate prototype attention within the what cortical processing stream.

The current article builds on this foundation by developing the distributed ARTSCAN, or 

dARTSCAN, model. ARTSCAN modeled how parietal cortex within the where cortical 

processing stream can regulate the learning of invariant object categories within the inferior 

temporal and prefrontal cortices of the what cortical processing stream. In ARTSCAN, a 

spatial attentional shroud focused only on one object surface at a time. Such a shroud forms 

when a surface-shroud resonance is sustained between cortical areas such as V4 in the what 

cortical stream and parietal cortex in the where cortical stream. The dARTSCAN model 

extends ARTSCAN capabilities in three ways.

First, dARTSCAN proposes how spatial attention may be hierarchically organized in the 

parietal and prefrontal cortices in the where cortical processing stream, with spatial attention 

in parietal cortex existing in either unifocal or multifocal states. In particular, dARTSCAN 

suggests how the span of spatial attention may be varied in a task-sensitive manner via 

learning or volitional signals that are mediated by the basal ganglia. In particular, spatial 

attention may be focused on one object (unifocal) to control view-invariant object category 

learning; spread across multiple objects (multifocal) to regulate useful-field-of view, and 

may vary between video game players and non-video game players; or spread across an 
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entire visual scene, as during the computation of scenic gist (Grossberg & Huang, 2009). 

This enhanced analysis begins to clarify how, even when spatial attention seems to be 

focused on one object, the rest of the scene does totally vanish from consciousness.

Second, dARTSCAN does not rely only on the sustained spatial attention of a surface-

shroud resonance. It also proposes how both sustained and transient components of spatial 

attention (Corbetta, Patel, & Shulman, 2008; Corbetta & Shulman, 2002; Egeth & Yantis, 

1997) may interact within parietal and prefrontal cortex in the where cortical processing 

stream. Surface inputs to spatial attention are derived from what stream sources, such as 

cortical area V4, that operate relatively slowly. Transient inputs to spatial attention are 

derived from where stream sources, such as cortical areas MT and MST, that operate more 

quickly.

This analysis distinguishes two mechanistically different types of transient attentional 

components. ARTSCAN already predicted how a shift of spatial attention to a different 

object, that can occur when a surface-shroud resonance collapses, triggers a transient 

parietal signal that resets the currently active view-invariant object category in 

inferotemporal cortex (IT), and thereby enables the newly attended object to be categorized 

without interference from the previously attended object. In this way, a shift of spatial 

attention in the where cortical stream can cause a correlated shift of object attention in the 

what cortical stream. Chiu and Yantis (2009) have described fMRI evidence in humans for 

such a transient reset signal. This transient parietal signal is a marker against which further 

experimental tests of model mechanisms can be based; e.g., a test of the predicted sequence 

of V4-parietal surface-shroud collapse (shift of spatial attention), transient parietal burst 

(reset signal), and collapse of currently active view-invariant category in cortical area IT 

(shift of categorization rules).

The transient parietal reset signal that coordinates a shift of spatial and object attention 

across the where and what cortical processing streams, respectively, is mechanistically 

different from transient attention shifts that are directly due to where stream inputs via MT 

and MST, which are predicted below to play an important role in quickly updating prefrontal 

priming mechanisms and explaining two-object cueing data of Brown and Denney (2007).

Third, dARTSCAN models how prefrontal cortex and parietal cortex may cooperate to 

control efficient object priming, learning, and search.

This dARTSCAN analysis provides a neurobiological explanation of how attention may 

engage, move, and disengage, and how inhibition of return (IOR) may occur, as objects are 

freely explored with eye movements (Posner, 1980; Posner, Cohen, & Rafal, 1982; Posner 

& Petersen, 1990).

These three innovations are described in greater detail in Section 3 and beyond. Given these 

enhanced capabilities, the dARTSCAN model is able to explain, quantitatively simulate, and 

predict data from three experimental paradigms: two-object priming, useful-field-of-view 

and crowding. The two object priming task, first used by Egly, Driver, and Rafal (1994), 

investigates object-based attention by measuring differences in reaction time (RT) between a 

validly cued target, an invalidly-cued target that requires a shift of attention within the cued 
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object, and an invalidly-cued target which requires a shift of attention between two objects. 

Two adaptations of the original task are examined, an extension of the original that includes 

location cues and targets (Brown & Denney, 2007) and a version of the task that examines 

individual differences between subjects (Roggeveen, Pilz, Bennett, & Sekuler, 2009). The 

useful-field-of-view (UFOV) task, first used by Sekuler and Ball (1986) measures the ability 

of a subject to detect the location of an oddball among many distracters over a wide field of 

view in a display, which is masked after a brief exposure. Crowding is a phenomenon in 

which a letter which is clearly visible when peripherally presented alone, is unrecognizable 

when surrounded by two nearby flanking letters (Bouma, 1970, 1973; Green & Bavelier, 

2007; Levi, 2008). These data and concepts about the coordination of spatial and object 

attention are more fully explained in the subsequent sections.

2. Spatial attention in the regulation of invariant object category learning

How does the brain learn to recognize an object from multiple viewpoints while scanning a 

scene with eye movements? How does the brain avoid the problem of erroneously 

classifying parts of different objects together? How are attention and eye movements 

coordinated to facilitate object learning? The dARTSCAN model builds upon the 

ARTSCAN model (Fig. 1; Cao et al., 2011; Fazl et al., 2009; Grossberg, 2007, 2009), which 

showed how the brain can learn view-invariant object representations under free viewing 

conditions. The ARTSCAN model proposes how an object's pre-attentively formed surface 

representation in cortical area V4 generates a form-fitting distribution of spatial attention, or 

“attentional shroud” (Tyler & Kontsevich, 1995), in the parietal cortex of the where cortical 

stream. All surface representations dynamically compete for spatial attention to form a 

shroud. The winning shroud remains active due to a surface-shroud resonance that is 

supported by positive feedback between a surface and its shroud, and that persists during 

active scanning of the object with eye movements.

A full understanding of the structure of surface-shroud resonances will require an analysis of 

how an object's distributed, multiple-scale, 3D boundary and surface representations in 

prestriate cortical areas such as V4 (e.g., Fang & Grossberg, 2009; Grossberg, Kuhlmann, & 

Mingolla, 2007; Grossberg, Markowitz, & Cao, 2011; Grossberg & Yazdanbakhsh, 2005) 

activate parietal cortex in such a way that different aspects of the boundary and surface 

representations can be selectively attended. The simple visual stimuli used in the 

psychophysical experiments that are explained in this article can be simulated with 

correspondingly simple surface-shroud resonances. Once such a shroud is activated, it 

regulates eye movements and category learning about the attended object in the following 

way.

The first view-specific category to be learned for the attended object also activates a cell 

population at a higher processing stage. This cell population will become a view-invariant 

object category. Both types of categories are assumed to form in the inferotemporal (IT) 

cortex of the what cortical processing stream. For definiteness, suppose that view categories 

get activated in posterior IT (ITp) and view-invariant categories get activated in anterior IT 

(ITa) (Baker, Behrmann, & Olson, 2002; Booth & Rolls, 1998; Logothetis, Pauls, & Poggio, 

1995).
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As the eyes explore different views of the object, previously active view-specific categories 

are reset to enable new view-specific categories to be learned. What prevents the emerging 

view-invariant object category from also being reset? The shroud maintains the activity of 

the emerging view-invariant category representation by inhibiting a reset mechanism, also in 

parietal cortex, that would otherwise inhibit the view-invariant category. As a result, all the 

view-specific categories can be linked through associative learning to the emerging view-

invariant object category. Indeed, these associative linkages create the view invariance 

property.

These mechanisms can bind together different views that are derived from eye movements 

across a fixed object, as well as different views that are exposed when an object moves with 

respect to a fixed observer. Indeed, in both cases, the surface-shroud resonance 

corresponding to the object does not collapse. Further development of ARTSCAN, to the 

pARTSCAN model (Cao et al., 2011) shows, in addition, how attentional shrouds can be 

used to learn view-, position-, and size-invariant object categories, and how views from 

different objects can, indeed, be merged during learning, and used to explain challenging 

neurophysiological data recorded in monkey inferotemporal cortex, if the shroud reset 

mechanism is prevented from acting (e.g., Li & DiCarlo, 2008, 2010). Although the objects 

that are learned in psychophysical displays are often two-dimensional images that are 

viewed at a fixed position in depth, ART models are capable of learning recognition 

categories of very complex objects–e.g., see the list of industrial applications at http://

techlab.bu.edu/resources/articles/C5–so the current analysis also generalizes to three-

dimensional objects.

Shroud collapse disinhibits the reset signal, which in turn inhibits the active view-invariant 

category. Then a new shroud, corresponding to a different object, forms in the where cortical 

stream as new view-specific and view-invariant categories of the new object are learned in 

the what cortical stream. The ARTSCAN model thereby begins to mechanistically clarify 

basic properties of spatial attention shifts (engage, move, disengage) and IOR.

The ARTSCAN model has been used to explain and predict a variety of data. A key 

ARTSCAN prediction is that a spatial attention shift (shroud collapse) causes a transient 

reset burst in parietal cortex that, in turn, causes a shift in categorization rules (new object 

category activation). This prediction has been supported by experiments using rapid event-

related functional magnetic resonance imaging (fMRI; Chiu & Yantis, 2009). Positive 

feedback from a shroud to its surface is predicted to increase the contrast gain of the 

attended surface, as has been reported in both psychophysical experiments (Carrasco, 

Penpeci-Talgar, & Eckstein, 2000) and neurophysiological recordings from cortical areas 

V4 (Reynolds, Chelazzi, & Desimone, 1999; Reynolds & Desimone, 2003; Reynolds, 

Pasternak, & Desimone, 2000). In addition, the surface-shroud resonance strengthens 

feedback signals between the attended surface and its generative boundaries, thereby 

facilitating figure-ground separation of distinct objects in a scene (Grossberg, 1994; 

Grossberg & Swaminathan, 2004; Grossberg & Yazdanbakhsh, 2005; Kelly & Grossberg, 

2000).
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In particular, surface contour signals from a surface back to its generative boundaries 

strengthen consistent boundaries, inhibit irrelevant boundaries, and trigger figure-ground 

separation. When the surface contrast is enhanced by top-down spatial attention as part of a 

surface-shroud resonance, its surface contour signals (which are contrast-sensitive) become 

stronger, and thus its consistent boundaries become stronger as well, thereby facilitating 

figure-ground separation. This feedback interaction between surfaces and boundaries via 

surface contour signals is predicted to occur from V2 thin stripes to V2 pale stripes.

Corollary discharges of these surface contour signals are predicted to be mediated via 

cortical area V3A (Caplovitz & Tse, 2007; Nakamura & Colby, 2000) and to generate 

saccadic commands that are restricted to the attended surface (Theeuwes, Mathot, & 

Kingstone, 2010) until the shroud collapses and spatial attention shifts to enshroud another 

object.

Why is it plausible, mechanistically speaking, for surface contour signals to be a source of 

eye movement target locations, and for these commands to be chosen in cortical area V3A 

and beyond? It is not possible to generate eye movements that are restricted to a single 

object until that object is separated from other objects in a scene by figure-ground 

separation. If figure-ground separation begins in cortical area V2, then these eye movement 

commands need to be generated no earlier than cortical area V2. Surface contour signals are 

plausible candidates from which to derive eye movement target commands because they are 

stronger at contour discontinuities and other distinctive contour features that are typical end 

points of saccadic movements. ARTSCAN proposed how surface contour signals are 

contrast-enhanced at a subsequent processing stage to select the largest signal as the next 

saccadic eye movement command. Cortical area V3A is known to be a region where vision 

and motor properties are both represented, indeed that “neurons within V3A…process 

continuously moving contour curvature as a trackable feature…not to solve the “ventral 

problem” of determining object shape but in order to solve the “dorsal problem” of what is 

going where” (Caplovitz & Tse, 2007, p. 1179).

Last but not least, ARTSCAN quantitatively simulates key data about reaction time costs for 

attention shifts between objects relative to those within an object (Brown & Denney, 2007; 

Egly et al., 1994). However, ARTSCAN cannot simulate all cases in the Brown and Denney 

(2007) experiments. Nor was ARTSCAN used to simulate the UFOV task or crowding.

3. Sustained and transient attention, spatial priming, and useful-field-of-

view

The dARTSCAN model incorporates three key additional processes to explain a much wider 

range of data about spatial attention:

(1) The breadth of spatial attention (“multifocal attention”) can vary in a task-

selective and learning-responsive way (Alvarez, Horowitz, Arsenio, Dimase, & 

Wolfe, 2005; Cavanagh & Alvarez, 2005; Cave, Bush, & Taylor, 2010; 

Franconeri, Alvarez, & Enns, 2007; Green & Bavelier, 2003; Jans, Peters, & De 

Weerd, 2010; McMains & Somers, 2004, 2005; Muller, Malinowski, Gruber, & 
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Hillyard, 2003; Pylyshyn & Storm, 1988; Pylyshyn et al., 1994; Scholl, 

Pylyshyn, & Feldman, 2001; Tomasi, Ernst, Caparelli, & Chang, 2004; Yantis & 

Serences, 2003). The current model proposes how spatial attention can be 

distributed across multiple objects simultaneously, while still being compatible 

with the strictly unifocal attention in ARTSCAN.

Below we illustrate how flexibly altering the maximal distribution of spatial 

attention can be volitionally regulated by the basal ganglia using an inhibitory 

mechanism that is predicted to be homologous to the one that regulates visual 

imagery (Grossberg, 2000b) and the storage of sequences of items in working 

memory (Grossberg & Pearson, 2008).

(2) Both sustained surface-driven spatial attention and transient motion-driven 

spatial attention interact to control maintenance and shifts of spatial attention 

(Fig. 2). A large experimental literature attempts to anatomically and 

functionally differentiate components of sustained and transient attention 

(Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008; Dosenbach et al., 2007; 

Gee, Ipata, Gottlieb, Bisley, & Goldberg, 2008; Gottlieb, Kusunoki, & 

Goldberg, 2005; Hillyard, Vogel, & Luck, 1998; Ploran et al., 2007; Reynolds, 

Alborzian, & Stoner, 2003; Yantis & Jonides, 1990; Yantis et al., 2002). The 

ARTSCAN model only incorporates sustained, surface-driven attention 

necessary for view-invariant category learning. On the other hand, as noted in 

Section 1, ART-SCAN also posits a transient reset signal that coordinates shifts 

of spatial attention with shifts of categorization rules.

(3) In addition to parietal cortex, prefrontal cortex plays a role in priming spatial 

attention (Fig. 2). Many experiments document such a role for prefrontal cortex 

(Boch & Goldberg, 1989; Goldman & Rakic, 1979; Kastner & Ungerleider, 

2000; Ungerleider & Haxby, 1994; Zikopoulos & Barbas, 2006). The 

ARTSCAN model is agnostic about the role of PFC in deploying spatial 

attention.

The above three sets of processes, working together, enable our model to explain 

a much larger range of data about how attention and recognition interact, 

notably to better characterize how multifocal attention can help to track and 

recognize multiple objects in familiar scenes, and focal attention can support 

view-invariant object category learning for unfamiliar objects.

The large cognitive literature about multifocal attention (Cavanagh & Alvarez, 2005; 

Pylyshyn et al., 1994) produced concepts such as Fingers of Instantiation (FINST; Pylyshyn, 

1989, 2001), Sprites (Cavanagh et al., 2001), and situated vision (Pylyshyn, 2000; Scholl, 

2001) which have in common an idea that objects which are not being focally attended are 

nonetheless spatially represented in the attentional system (Scholl, 2001). This is necessary 

to allow rapid shifts of attention between objects, to track several identical objects 

simultaneously, and to underpin visual orientation by marking the allocentric coordinates of 

several objects in a scene (Mathot & Theeuwes, 2010a; Pylyshyn, 2001). Such concepts are 

consistent with the daily experience that scenic features outside our focal attention do not 

disappear.
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One challenge to extending the ARTSCAN shroud architecture is how these ideas might be 

integrated into a system that continues to allow the learning of view-invariant object 

categories over several saccades, which requires that attention be object-based and unifocal. 

Multiple shrouds cannot exist during multi-saccade exploration because saccades from one 

attended object to another would fail to reset the active view-invariant object category, 

causing distinct objects to be falsely conflated as parts of a single object. Moreover, since 

multiple surfaces would be recipients of contrast gain from shroud-to-surface feedback, 

peripheral parts of the object being learned and other objects nearby could similarly be 

conflated. This suggests that there are at least two model states in which stable shrouds can 

form. In one, unifocal attention can be maintained on a single surface over multiple 

saccades, allowing the learning of view-invariant object categories. In the other, multiple 

shrouds can simultaneously coexist, at a lower intensity not sufficient to gate multi-saccade 

learning, but allowing rapid recognition of familiar objects and attention to be deployed on 

multiple objects, regardless of familiarity, between saccades. As noted in item (1) above, 

volitional control of inhibition in the attention circuit, likely mediated by the basal ganglia 

(Brown, Bullock, & Grossberg, 2004), allows unfamiliar objects that have weak shrouds to 

be foveated, followed by an increase in competition to create a single strong shroud that can 

support learning of a view-invariant object category.

As noted in item (3) above, another challenge, for both the ARTSCAN model, as well as 

other biased competition models (Itti & Koch, 2001; Lee & Maunsell, 2009; Reynolds & 

Heeger, 2009; Treisman & Gelade, 1980; Wolfe et al., 1989), is to understand the 

mechanism of attention priming. Brief transient cues orient attention to an area of a visual 

scene, which leads to improved behavioral performance if a task-relevant stimulus is 

presented at the same position within several hundred milliseconds (Desimone & Duncan, 

1995; Posner & Petersen, 1990). If the experiment continues and a second task-relevant 

stimulus appears at the same position after the first has disappeared or is no longer task-

relevant, it takes longer for that area to be attended again, due to inhibition-of-return 

(Grossberg, 1978a, 1978b; Koch & Ullman, 1985; Posner et al., 1982; see Itti and Koch 

(2001) for a review). ARTSCAN and biased competition models can account for IOR, but 

they do not incorporate a mechanism that can explain how a brief bottom-up input onset can 

prime visual attention in the absence of intervening visual stimuli for several hundred 

milliseconds. But such priming seems to be necessary to explain an extension by Brown and 

Denney (2007) of the two-object cueing task first used by Egly et al. (1994); see Fig. 3. 

Priming by prefrontal cortex is incorporated into the model as a natural complement to 

allowing multifocal attention within the model parietal cortex (Fig. 2).

We hereby propose that a hierarchy of attentional shrouds in parietal and prefrontal cortex 

(Figs. 1 and 2) can smoothly switch between behavioral modes, while being sensitive to 

both transient event onsets and offsets, as well as to sustained shroud-mediated spatial 

attention, and which we will employ in order to explain key properties of cognitive models 

of multifocal attention, such as FINST (Pylyshyn, 1989, 2001).

The idea of a hierarchy of attention is consistent with accumulating anatomical and 

physiological evidence that magnocellular pathways play a role in priming object 

recognition in inferotemporal cortex through orbitofrontal cortex (Bar et al., 2006; 
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Zikopoulos & Barbas, 2006). Evidence for multiple attention representations has also been 

found by mapping retinotopy in the visual system using fMRI, which has shown multiple, 

attention-sensitive maps in connecting areas of the intra-parietal sulcus (Silver, Ress, & 

Heeger, 2005; Swisher, Halko, Merabet, McMains, & Somers, 2007), as well as in 

retinotopic and head-centric representations in other areas of parietal cortex and areas of 

prefrontal cortex such as the frontal eye fields and dorsolateral prefrontal cortex (Saygin & 

Sereno, 2008).

The lower shroud level in the hierarchy, the object shroud layer, behaves similarly to the 

shrouds found in the ARTSCAN model (Fazl et al., 2009; PPC in Figs. 1 and 2). Neurons in 

this layer can resonate strongly with a single surface to gate learning in the what stream to 

allow the formation of view-invariant object categories. Multiple ensembles of neurons in 

the object shroud layer can also weakly resonate with several surfaces, allowing multifocal 

attention and rapid recognition of familiar scenes. Object shroud neurons can thus exist in 

two different regimes, which alternate reactively in response to changing visual stimuli, or 

can be volitionally controlled by modifying the inhibitory gain through the basal ganglia 

(Brown et al., 2004; Matsuzaki, Kyuhou, Matsuura-Nakao, & Gemba, 2004; Xiao, 

Zikopoulos, & Barbas, 2009). The first regime was studied in the original ARTSCAN 

model, where a single high-intensity shroud covers an object surface and gates learning 

during a multi-saccadic exploration of an unfamiliar object. The second regime allows 

multiple low-intensity object shrouds to exist simultaneously, supporting rapid recognition 

of a familiar scene's “gist”. Gist was modeled in the ARTSCENE model (Grossberg & 

Huang, 2009; Huang & Grossberg, 2010) as a large-scale texture category. Since object 

shroud neurons gate learning regimes lasting several seconds, they provide sustained 

attention and are slow to respond to changes in a scene.

In contrast to this property, reaction times in response to scenes that contain several objects 

are reduced if a task-relevant stimulus appears at one of the object positions within a few 

hundred milliseconds (Desimone & Duncan, 1995; Posner & Petersen, 1990). The 

attentional shrouds of the ARTSCAN model require a surface to be present to sustain a 

shroud-surface resonance. If that surface disappears, its corresponding shroud will collapse 

and another shroud will form over the next most salient object in a scene, which will start a 

new learning regime. This means that if a location is briefly cued, attention will shift once 

the cue disappears and the cued location will immediately be subject to IOR, which is 

inconsistent with attentional priming. Also in the ARTSCAN model, spatial attention is not 

preferentially sensitive to the appearance of a new object of equal contrast to the existing 

objects in a scene, unless the other objects in a scene had already been attended. Thus both 

attentional priming and fast reactions to cue changes are not adequately represented in the 

ARTSCAN model.

These ARTSCAN properties derive from that model's exclusive consideration of focal 

sustained attention and how it shifts through time. The dARTSCAN model also 

incorporates, and elaborates functional roles for, inputs that are sensitive to stimulus 

transients (Fig. 2, MT; also see Section 5.6 and Appendix A.6), consistent with models of 

motion perception (Berzhanskaya, Grossberg, & Mingolla, 2007) and models that combine 

transient and sustained contributions to spatial attention (e.g., Grossberg, 1997). Moreover, 
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the model proposes how such transient inputs can contribute both to the formation of 

shrouds in the parietal cortex, and to the development of top-down priming from the 

prefrontal cortex.

Accordingly, in the higher level of the hierarchy, the spatial shroud level is formed by 

ensembles of neurons primarily driven by transient signals from the where cortical 

processing stream (see Sections 5.8 and Appendix A.8), notably signals due to object 

appearances, disappearances, and motion (PFC, Fig. 2). Unlike object shrouds, several 

shrouds in the spatial shroud layer can coexist at all times. This allows objects unattended in 

the object shroud layer to maintain spatial representations, allowing rapid (between 

saccades) shifts of attention, transient interruption of multiple-view learning, and attentional 

priming of locations at which an object recently disappeared or was occluded. Recurrent 

feedback allows a spatial shroud to stay active at a cued location for several hundred 

milliseconds, regardless of whether a surface is present at the location. Spatial shroud 

neurons also improve reaction times to transient or otherwise highly salient stimuli through 

top-down feedback onto object shroud neurons.

Top-down priming feedback enables quantitative simulation of reaction time differences in 

several cases presented in Brown and Denney (2007), particularly the LVal case (Fig. 3, row 

5) where there is a valid location cue. As described in greater detail in Section 6.1.1, without 

priming, there would be no attentional representation of the cue through the interstimulus 

interval (ISI). In particular, as noted above, the original ARTSCAN model requires a surface 

to be present to sustain a shroud-surface resonance. This means that if a location is briefly 

cued, attention will shift once the cue disappears, and the cued location will immediately be 

subject to IOR. Prefrontal attentional priming overcomes this deficiency by sustaining an 

attentional prime throughout the ISI.

4. Individual differences and the basal ganglia: useful-field-of-view and RT

There are systematic individual differences in how attention is deployed and maintained 

(Green & Bavelier, 2003, 2006a, 2006b, 2007; Richards, Bennett, & Sekuler, 2006; Scalf et 

al., 2007; Sekuler & Ball, 1986; Tomasi et al., 2004). Green and Bavelier have, in particular, 

compared how video game players (VGPs) and non-video game players (NVGPs) perform 

in spatial attention tasks. Another line of research examined the differences in performance 

in the same individual under different conditions, such as before and after a training session 

(Green & Bavelier, 2003, 2006a, 2006b, 2007; Richards et al., 2006; Scalf et al., 2007; 

Tomasi et al., 2004). Finally, on psychophysics tasks such as the two object-cueing task first 

used by Egly et al. (1994), bootstrapping methods have been used to study between-subject 

differences on the same task, rather than the average population response to differing stimuli 

(Roggeveen et al., 2009). The dARTSCAN model proposes how these multiple modes of 

behavior and performance differences between individuals may arise from differences in 

inhibitory gain, mediated by the basal ganglia. We suggest how volitional or learning-

dependent variations in the strength of inhibition that governs attentional processing may 

explain individual differences. As noted above, variations of this mechanism may be used in 

multiple brain systems to control other processes, such as visual imagery (Grossberg, 2000b) 

and working memory storage and span (Grossberg & Pearson, 2008).
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VGPs have been found to have superior performance in several tasks involving visual 

attention, including flanker recognition, multiple object tracking (MOT), useful-field-of-

view (UFOV), attentional blink, subitizing, and crowding (Green & Bavelier, 2003, 2006a, 

2006b; Sekuler & Ball, 1986). Additionally, VPG's have better visual acuity than NVGPs 

(Green & Bavelier, 2007). Most of these performance improvements have also been found 

when a group of NVGPs trains on action video games for various periods of time typically 

30–60 h; e.g., Green and Bavelier (2003). This indicates that playing action video games 

causes substantial changes in the basic capacity and performance of the visual attention 

system that is not specific to any individual or subpopulation. In some tasks, such as UFOV, 

similar changes have been found as the result of aging (Richards et al., 2006; Scalf et al., 

2007; Sekuler & Ball, 1986).

As described above, the object shroud layer can switch between unifocal and multifocal 

attention through volitional control of inhibitory gain mediated by the basal ganglia. The 

model predicts that training through action video games increases the range of volitional 

control available in both shroud layers. Similarly, aging reduces the range of inhibitory 

control in both shroud layers. This allows VGPs (and the young) to spread their attention 

more broadly in the spatial shroud player, and increases the capacity of the object shroud 

attention layer so that the same object causes less inhibition than it would in a NVGP. We 

test this prediction using the UFOV task. The results are shown in Section 6.2 and Fig. 6 

below. Roggeveen et al. (2009) revisited the two-object cueing task of Egly et al. (1994), 

who found that people respond faster when an invalid cue is presented on the same object as 

the target, than when the cue is presented on a different object. Roggeveen et al. (2009) 

reported that, while part of their subject pool showed the same effect, another part showed 

the opposite effect and responded faster when the invalid cue was on the other object. They 

also found that a valid cue improves reaction time in nearly all subjects. These data are 

challenging to explain in an object-based attention paradigm because, if the object is 

attended, how can a target on an unattended object lead to a faster response? The current 

model is able to produce both effects by varying the relative strength of the slower, surface-

(object shroud) resonance, and the faster, transient-driven response of spatial shrouds. The 

model predicts that the rate with which attention spreads on a surface varies for each 

individual, which is attributed to different relative gains between the surface-(object shroud) 

resonance and the (object shroud)-(spatial shroud) resonance. For those individuals who 

respond faster when the invalid cue is on the other object, attention in the object shroud 

layer has not yet completely covered the cued object. Since inhibition in the object shroud 

attention layer is distance-dependent, the area of a surface immediately beyond the leading 

edge of the spread of attention is actively suppressed relative to the un-cued object (see Figs. 

6 and 7, Section 6.1). This parametric modification leads to the model prediction that 

varying the cue and ISI duration will shift the proportion of subjects who exhibit same-

object preference. The model also predicts that altering the visual geometry of the display or 

the strength of the cue will alter the width and slope of the distribution of individual 

differences.
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5. Model description

The dARTSCAN extension of the ARTSCAN model focuses on the where stream side of 

the original model (Fig. 1). Both models share similar boundary and surface processing. The 

current model uses a simpler approximation of cortical magnification to reduce the 

computational burden in simulation due to adding transient cells, prefrontal priming, and 

variable field-of-view. As briefly summarized above, both parietal and prefrontal shrouds 

are now posited: object shrouds, which are similar to the original ARTSCAN shroud 

representation and are primarily driven by surface signals, and spatial shrouds, which are 

primarily driven by transient signals (Fig. 2).

5.1. Cortical magnification

Visual representations in the early visual system are subject to cortical magnification, which 

has often been simulated using a log-polar approximation (Fazl et al., 2009; Polimeni et al., 

2006). Working with models that include cortical magnification creates several 

complications. Because cortically magnified images are spatially variant, depending on the 

center of gaze, fixed convolutions or center-surround processing create effects that vary with 

eccentricity (Bonmassar & Schwartz, 1997). In addition, log-polar transformations do not fit 

neatly into the neighborhood relations of a matrix, which is the most convenient data 

structure for representing images and layers of neurons computationally.

It is possible, however, to maintain cortical magnification as a function of eccentricity while 

also keeping the neighborhoods of the matrix form, by approximating the central portion of 

the visual field using radial symmetric compression instead of a log-polar mapping. This has 

the advantage of simplifying computation of the model without ignoring the basic geometry 

reflected in the anatomy of the visual system (see Appendix A.1).

Given that model preprocessing before cortical activation is highly simplified, it is assumed 

that the model retina, rather than cortical area V1, already samples input images in a 

spatially-variant manner, using symmetric log compression to approximate cortical 

magnification, so that objects near the fovea have magnified representations and objects near 

the periphery have compressed representations. This is important in the model to bias 

attention towards foveated stimuli, which have correspondingly larger representations. 

Model retinal cell activities are normalized by receptive field size, and serve as input to the 

model lateral geniculate nucleus (LGN).

5.2. Hemifield independence

Model interactions also exhibit hemifield independence, which is consistent both with the 

anatomical separation of processing as well as behavioral observations (Alvarez & 

Cavanagh, 2005; Luck, Hillyard, Mangun, & Gazzaniga, 1989; Mathot, Hickey, & 

Theeuwes, 2010; Swisher et al., 2007; Youakim, Bender, & Baizer, 2001). Hemifield 

independence is implemented by using different sets of connection weights to control the 

strength of connections between neurons in the same hemifield, and neurons of opposite 

hemifields (see Appendix A.2, Eqs. (10)–(13)). Left and right hemifield representations use 

one set of distance-dependent connection weights between neurons that are in the same 
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hemifield of the respective layer, or projecting layers. They use a different set of distance-

dependent connection weights for neurons that are in the opposite hemifield of the same 

layer, or projecting layers. The connection strength between neighboring neurons is 

weighted near network boundaries to normalize the total input for each neuron (Grossberg & 

Hong, 2006; Hong & Grossberg, 2004). Thus, there are no boundary artifacts, either near the 

vertical meridian or the edges of the visual field.

5.3. LGN polarity-sensitive ON and OFF cells

The model LGN normalizes contrast of the input pattern using polarity-sensitive ON cells 

that respond to input increments and OFF cells that respond to image decrements. ON and 

OFF cells obey cell membrane, or shunting (Eqs. (1)–(3)), equations that receive retinal 

outputs within on-center off-surround networks that join other ON and OFF cells, 

respectively (Eqs. (14) and (15)). These single-opponent cells output to a layer of double-

opponent ON and OFF cells in the what cortical processing stream (Eqs. (18) and (19)), as 

well as to transient cells in the where cortical processing stream (Eqs. (30)–(32)).

5.4. Boundaries

The model omits oriented simple cell receptive fields and various properties of ocularity, 

disparity-sensitivity, and motion processing that are found in primary sensory cortex, since 

no inputs used for the current model simulations require it. Instead, polarity-insensitive 

complex cells are directly computed at each position as a sum of rectified signals from pairs 

of polarity-sensitive double-opponent ON and OFF cells (Eq. (20)).

Object boundaries (Eq. (21)) are computed using bottom-up inputs from complex cells (Eq. 

(20)) that are amplified through a modulatory input from top-down inputs from surface 

contour cells (see Appendix A.4 and Eq. (23)). Surface contour signals are generated by 

surfaces that fill-in within closed boundaries. They select and enhance the boundaries that 

succeed in generating the surfaces that may enter conscious perception, thereby assuring that 

a consistent set of boundaries and surfaces are formed, while also, as an automatic 

consequence, initiating the figure-ground separation of objects from one another (Grossberg, 

1994, 1997).

Surface contours are generated by contrast-sensitive networks at the boundaries of 

successfully filled-in surfaces; that is, surfaces which are surrounded by a connected 

boundary and thus do not allow their lightness or color signals to spill out into the scenic 

background. During 3-D vision and figure-ground separation, not all boundaries are 

connected (Grossberg, 1994). However, in response to the simplified input images that are 

simulated in this article, all object boundaries are connected and cause successful filling-in. 

As a result, surface contours are computed at all object boundaries, and can strengthen these 

boundaries via their positive feedback. Moreover, when the contrast of a surface is increased 

by feedback from an attentional shroud, the surface contour signals increase, so the strength 

of the boundaries around the attended surface increase also.
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More complex boundary computations, such as those in 3D laminar visual cortical models 

(e.g., Cao & Grossberg, 2005; Fang & Grossberg, 2009) can be added as the model is further 

developed to process more complex visual stimuli, without undermining the current results.

5.5. Surfaces

Bottom-up inputs from double-opponent ON cells (Eq. (18)) trigger surface filling-in via a 

diffusion process (Eq. (26)) which is gated by object boundaries (Eq. (28)) that play the role 

of filling-in barriers (Grossberg, 1994; Grossberg & Todorović, 1988). The ON cell inputs 

are modulated by top-down feedback from object shrouds (Eq. (33)) that increase contrast 

gain during a surface-(object shroud) resonance. Such a resonance habituates through time 

in an activity-dependent way (Eq. (29)), thereby weakening the contrast gain caused by 

(object shroud)-mediated attention. Winning shrouds will thus eventually collapse, allowing 

new surfaces to be attended and causing IOR.

Filled-in surfaces generate surface contour output signals through contrast-sensitive shunting 

on-center off-surround networks (Eq. (23)). As noted above, surface contour signals provide 

feedback to boundary contours, which increases the strength of the closed boundary 

representations that induced the corresponding surfaces, while decreasing the strength of 

boundaries that do not form surfaces.

Although surface filling-in has often been modeled by a diffusion process since 

computational models of filling-in were introduced by Cohen and Grossberg (1984) and 

Grossberg and Todorović (1988), Grossberg and Hong (2006) have modeled key properties 

of filling-in using long-range horizontal connections that operate a thousand times faster 

than diffusion.

5.6. Transient inputs

Where stream transient cells in cortical area MT are modeled using a leaky integrator (Eq. 

(30)). Transient cells receive bottom-up input from double-opponent ON cells (Eq. (18)) 

proportional to the ratio of the contrast increment between previous and current stimuli at 

their position (Eq. (31)) for a brief period (Eq. (32)) after any change. Such ratio contrast 

sensitivity is a basic property of responses to input increments in suitably defined 

membrane, or shunting, equations (Grossberg, 1973, 1980a, 1980b). Any increment in 

contrast will trigger a transient cell response. After the period of sensitivity ends, transient 

activity quickly decays. OFF channel transient cells were omitted since only stimuli brighter 

than the background were simulated.

5.7. Object shrouds

The model where cortical stream enables one or several attentional shrouds to form in the 

object shroud layer, thereby supporting two different modes of behavior. The first, in which 

only a single shroud forms, allows an object shroud to perform the same role as in the 

original ARTSCAN model, gating learning when a sequence of several saccades explores a 

single object's surface to learn a view-invariant object category. The second, where multiple, 

weaker, shrouds can simultaneously coexist, supports conscious perception and concurrent 

recognition of several familiar object surfaces.
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Object shroud neurons (Eq. (33)) receive strong bottom-up input from surface neurons (Eq.

(26)) and modulatory input from transient cells to help salient onsets capture attention 

during sustained learning (Eq. (30); see Fig. 2). Object shroud neurons also receive top-

down habituating (Eq. (38)) feedback from spatial shroud neurons (Eq. (39)), as well as 

recurrent on-center off-surround (Eqs. (35) and (36)) habituating (Eq. (37)) feedback from 

other object shroud neurons. Recurrent feedback among object shroud neurons habituates 

faster than spatial shroud feedback, which in turn habituates faster than feedback onto the 

surface layer. This combination of feedback produces several important effects. The first 

loop, surface-(object shroud)-surface (Fig. 2), enables a local cue on a surface that has 

successfully bid for object shroud attention to trigger the filling-in of attention along the 

entire surface (Eqs. (26)–(28)). Fully enshrouding an object which attracts attention through 

a local cue is slow compared to transient capture of highly salient objects, since it depends 

on slower surface dynamics. The second loop, recurrent on-center off-surround feedback in 

the object shroud layer, allows object shrouds to compete weakly in the multifocal case, to 

provide contrast enhancement, and strongly in the unifocal case, so that view-invariant 

object categories may be learned. Once a shroud has won in the unifocal case, surface-

(object shroud) resonance dominates until habituation occurs. The level of competition 

between object shrouds depends on the inhibitory gain (Eq. (36)), which can be volitionally 

controlled through the basal ganglia. The third loop, (object shroud)-(spatial shroud)-(object 

shroud) enhances responses to salient transient signals, facilitates the spread of object shroud 

attention along surfaces, and helps maintain an (object shroud)-surface resonance over the 

whole surface, as parts of the object shroud start to habituate, by up-modulating the bottom-

up surface signal. Once an object shroud that has habituated is out-competed and collapses, 

it is difficult for a new object shroud to form in the same position until the habituating gates 

recover, leading to IOR.

5.8. Spatial shrouds

When object shrouds are supporting view-invariant category learning, they must be stable on 

the order of seconds, to allow multiple saccades to explore an object (Fazl et al., 2009). The 

visual system however, is also capable of considerably faster responses, in particular to 

transient events (Desimone & Duncan, 1995). Spatial shrouds allow the model to respond 

quickly to transient stimuli when they are present, without compromising the stability 

required to support view-invariant object category learning in more stable environments (see 

Fig. 2). This basic fast-slow dynamic also underpins the model's explanation of individual 

difference data in the two-object cueing task, and allows the model to successfully simulate 

cases in the Brown and Denney (2007) data which require rapid responses to transient cues 

and targets, as is explained in Section 3.1.

Spatial shrouds (Eq. (39)) receive bottom-up input from transient neurons (Eq. (30)), and 

weaker bottom-up input from object shroud neurons (Eq. (40)). Spatial shroud neurons 

interact via a recurrent on-center off-surround network (Eqs. (41) and (42)) that does not 

habituate. As a result, multiple spatial shrouds can survive for hundreds of milliseconds in 

relatively stable environments unless they are out-competed by new transients. Spatial 

shroud cells are always sensitive to salient environmental stimuli and can mark multiple 

objects simultaneously, even if these objects are not being actively learned or recognized, 
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allowing maintenance of allocentric visual orientation consistent with situated vision 

(Pylyshyn, 2001). The spatial shroud layer has non-habituating recurrent feedback capable 

of maintaining spatial shroud activity through time, so that an active spatial shroud can 

persistently prime object shroud formation over a surface presented at the corresponding 

location, unless the object shroud neurons are deeply habituated, causing IOR. There is no 

volitional attention from planning areas in the model, although we hypothesize that feedback 

to the spatial shroud layer might come from planning and executive control areas.

5.9. Computing model behavioral data

The data sets that are simulated use reaction time and detection thresholds to assess 

behavioral performance. We simulate these behavioral outputs by measuring activity levels 

at regions of interest (ROIs) important for the experimental display. To measure reaction 

time, we integrate activity in the object shroud layer over time until it reaches a threshold 

(chosen for best fit in the 2Val condition), then assume a constant delay between detection 

and motor output. To measure detection performance in the UFOV, we use the size of a 

Weber fraction comparing the level of response in the object shroud layer for the target and 

distracters at the end of the masking period as a direct proxy for performance.

6. Results

6.1. Two-object cueing

The two-object cueing task (Egly et al., 1994) is a sensitive probe to examine the object-

based effects of attention. Two versions of the experiment extend the basic two-object task. 

One version includes one object and non-object positions with the same geometry (Brown & 

Denney, 2007). The second version shows that the general population effect found in Brown 

and Denney (2007) for same-object vs. inter-object attention switches is not uniform among 

all subjects. In both experiments, presentation occurs in four states (see Fig. 3). The first 

stage, called “prime,” displays two rectangles, equidistant from the fixation point, equal in 

size and such that the distance between the two ends of a rectangle is the same as the 

distance between the rectangles (Fig. 3, column 1, rows 1–3). In the cases of one object with 

possible position cues and targets, only one of the two rectangles is shown (see Fig. 3, 

column 1, rows 4–9). The rectangles can either cross the vertical meridian, or be presented 

in separate hemifields. In the second stage of the experiment (Fig. 3, column 2), one end of a 

rectangle (or the equivalent location, if there is only one rectangle) is cued, which is 

followed by the ISI (Fig. 3, column 3). Finally, a target is presented at one of the four 

possible cue positions (Fig. 3, column 4). This cue can be valid to the target or invalid.

The original ARTSCAN model could simulate the order of reaction times in four of the 

main cases presented in Brown and Denney (2007); namely, the primary cases that illustrate 

the object cueing advantage (cases 2Val, InvS, InvD and OtoL in Fig. 3). The hierarchy of 

attentional interactions between PPC and PFC in the dARTSCAN model can simulate all 

nine cases successfully. This can be done due to the addition of transient cells, which 

shorten reaction times for targets, and by replacing the single shroud layer with the PPC-

PFC hierarchy, which allows attention priming and balancing between the dynamics of the 

fast spatial shroud layer and the slower object shroud layer.
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The following cases explain how the model fits the entire data set.

6.1.1. Valid cues—There are three display conditions in which the cue is valid. From 

fastest to slowest reaction times, these are:

(1) One rectangle is presented throughout the experiment, with the cue and the 

target at the same position on the rectangle (1Val; Figs. 3 and 4).

(2) Two rectangles are presented throughout the experiment, with the cue and target 

at the same position (2Val; Figs. 3 and 5).

(3) One rectangle is presented throughout the experiment, with the cue and the 

target presented outside the object (LVal; Figs. 3 and 4).

The 1Val condition has a faster reaction time than the 2Val condition, because the presence 

of the second rectangle bidding for attention adds to the inhibition that the cued object must 

overcome to resonate with an object shroud. In both the object-valid conditions, there is a 

surface visible at the location of the cue throughout the experiment, and a resonant object 

shroud is maintained from cue presentation through target detection. In the LVal case, on the 

other hand, this does not occur: only a spatial shroud corresponding to the cued location 

endures through the ISI. While the spatial shroud primes the object shroud when the target 

appears, the object shroud cannot resonate until a new surface representation is formed. This 

in turn cannot take place until new boundaries have formed, something unnecessary when 

changing the contrast of an existing visible surface. If there were no spatial shroud present to 

prime the object shroud, the process would take longer, since after the surface representation 

formed, it would then have to bid for attention against a weak shroud representation on the 

rectangle visible throughout the experiment, substantially delaying the formation of a 

resonant shroud.

6.1.2. Invalid cues: one object—There are four display conditions in which one 

rectangle is visible throughout the experiment, but the cue is invalid. From fastest to slowest 

in human and model reaction times, these are:

(1) The cue is presented at one end of the (only) rectangle, and the target appears at 

the far end of the rectangle (1Inv; Figs. 3 and 4).

(2) The cue is presented at a position outside the rectangle, and the target is 

presented at another location outside the rectangle consistent with the spacing of 

1Inv (LtoL; Figs. 3 and 4).

(3) The cue is presented at a position outside of the rectangle, and the target within 

it (LtoO; Figs. 3 and 4).

(4) The cue is presented in the rectangle, and the target is presented at a position 

outside of it (OtoL; Figs. 3 and 4).

Condition 1Inv has the quickest reaction time because a strong object shroud has spread 

over the cued object, facilitating detection. It is slower than the valid case because un-cued 

portions of the attended object lack a strong spatial shroud in addition to the strong object 

shroud. The more interesting cases are the middle two: why should a target at an invalid 
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position be detected faster than an invalidly-cued target on an un-cued, but visible, object 

that has a weak object shroud formed over it? It is because the model is sensitive to transient 

events. An existing (object shroud)-surface resonance, especially one supporting view-

invariant object category learning, is difficult to break. It can be broken through inhibition 

created by a competing shroud, or by exhausting its habituating gates. The model responds 

locally to transient effects as a function of the contrast ratio in the surround. This contrast-

sensitive response is larger when a target appears against the background of the display, than 

on a rectangle of the display. This implies that a relatively intense spatial shroud forms on 

the target in the LtoL case, which allows a rapid where stream transient input to create a 

strong (object shroud)-(spatial shroud) resonance. This process can occur faster than more 

modest contrast increment on the weakly attended surface in the LtoO, which will continue 

to be supported by a slower surface-(object shroud) resonance. This transient-activated 

shroud hierarchy does not provide the same level of benefit in the OtoL case, however, since 

in the OtoL case a strong object shroud (rather than a weak one) has formed over the object 

because it was cued, thereby creating a much higher hurdle to overcome.

6.1.3. Invalid cues: two-objects and individual differences—The classic finding of 

Egly et al. (1994) supporting object-based attention is that, when there are two identical 

rectangles presented at a distance equal to their length throughout the experiment, and one 

end of one rectangle is cued, reaction times occur in the following order:

(1) 2Val, described above (Figs. 3 and 5).

(2) A target appearing on the other end of the same rectangle (InvS; Figs. 3 and 5).

(3) A target appearing at the same end on the other rectangle (InvD; Figs. 3 and 5).

Brown and Denney (2007) replicated this finding by measuring mean reaction times for 30 

subjects (Fig. 3). Roggeveen et al. (2009) re-examined the paradigm using a variant of this 

task (Moore et al., 1998) and focused on the object-based attention for each individual, 

rather than over the population as a whole. They found that about 18% of individuals had 

significantly better reaction times for InvS than InvD, while another 18% of individuals had 

a significant reverse effect, preferring InvD to InvS. The rest of the subjects showed smaller 

differences in both directions, creating a fairly smooth distribution. Nearly all (96%) of 

subjects reacted more quickly to a valid cue.

This variant of the task requires discrimination between a target and distracters, rather than 

simple detection (Moore et al., 1998), which means that in all invalid trials, there is a 

distracter at the cued location. This is the likely cause of the comparatively large size of 

reaction time differences, about 200 ms faster for a valid cue, compared to the detection 

paradigm used in Brown and Denney (2007), which showed 40 ms differences for the same 

comparison. However, this does not explain why some subjects reacted more quickly to an 

invalidly-cued target on the same rectangle, and some reacted faster to an equidistant 

invalidly-cued target on the other rectangle.

As noted in Section 4, our model predicts that the difference between individuals who react 

faster for an invalidly-cued target on the same object, and those that do the opposite, is the 

relative gain between the faster dynamics of (spatial shroud)-(object shroud) resonance, and 
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the slower dynamics of surface-(object shroud) resonance. As can be seen in Fig. 6, as the 

relative strength of the spatial shroud resonance is increased (from left to right on the bottom 

row), reaction time decreases slightly across the board, but massively for InvS. This is 

because a strong object shroud can spread over the rectangle before the target and distracters 

appear (see Fig. 5C vs. B), which diminishes the effect of the distracter at the cued location, 

where there is also a strong spatial shroud. If the shroud has not had time to spread over the 

entire bar (as in the left hand case) then there is a bubble of inhibition at the far end of the 

cued bar, suppressing attention to the target, while enhancing the distracter. This predicted 

difference between the slower parietal-V4 vs. faster prefrontal–parietal resonances may be 

testable using rapid, event-related fMRI or EEG/MEG.

Goldsmith and Yeari (2003) employ a variation of the Egly et al. (1994) task with two cue 

conditions: in the `exogenous' condition, the cues appear at one of four locations at the ends 

of the two rectangles, while in the `endogenous' task a third rectangle, smaller and oriented 

towards one of the four target locations appears near the fixation point. Since the model does 

not explicitly consider the effects of orientation, or learning that an oriented bar may cue a 

distant location, it is beyond the purview of the model to account for the endogenous-target-

valid case. However, given the interference of a highly transient third object (the 

`endogenous' cue), and the model's clarification of how spatial attention may learn to be 

focused or spread, depending on task conditions, it is consistent with the findings of the 

current model that there is little reaction time difference between the invalid-same object 

and invalid-different object cases, since attention has been drawn away from both of them.

6.2. Useful-field-of-view

The UFOV paradigm measures how widely subjects can spread their attention to detect a 

brief stimulus that is then masked (Fig. 7A; Green & Bavelier, 2003; Sekuler & Ball, 1986). 

The task starts with a fixation point, which is followed by a brief (10–30 ms presentation) 

appearance of 24 additional elements, all but one of which is identical to the fixation point. 

The elements are arranged in eight spokes, at equally spaced angles and at three 

eccentricities. A mask then appears, followed by an eight-spoke display of lines. The subject 

then indicates the direction along which the oddball appeared. VGPs perform better at this 

task than non-VGPs (Fig. 7B).

We simulated a simplified version of this display with a contrast increment oddball, with 

video game players having a 20% lower inhibitory gain in the object shroud and spatial 

shroud layers (see Eqs. (36) and (42)). The results show that just this small change in 

inhibitory gain in both the PPC and PFC attentional networks has a large effect on the 

detection performance.

This occurs because the inhibitory gain in the attention layers of the model serves as a 

resource constraint, which helps VGPs detect the location of the oddball in two distinct 

ways. The spatial shroud layer receives strong transient input, which is excited by the 

appearance of the target and distracters. Initially, all the targets and distracters are 

represented in the spatial shroud layer before recurrent feedback causes competition. The 

initial signal that each element can project to the spatial shroud layer through transient 

response is determined by the inhibitory gain in that layer. Therefore, VGPs have an early 
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spatial shroud response to the target which is less likely to be washed out by competition 

from distracters and the mask. Inhibitory gain also serves as a resource constraint in the 

object shroud layer. However, since shrouds in the object shroud layer require surface 

resonance, and object shrouds will expand over any surface that begins resonating with its 

corresponding shroud, the resource constraint is how many objects can be represented in the 

object shroud layer. Decreasing the inhibitory gain the object shroud layer increases the 

chance that an object shroud can begin resonating with the target before the mask, rendering 

its location detectable.

6.3. Crowding

In the crowding paradigm, an object, such as a letter, is visible and recognizable when 

presented by itself, but it is not recognizable when the letter is presented concurrently with 

similar flanking letters (Green & Bavelier, 2006a; Levi, 2008; Toet & Levi, 1992). The 

distance between the target letter and the flanking letters at which the target letter becomes 

unrecognizable is called the crowding threshold, and is a function of the eccentricity of the 

target and the flankers, and their relative position (Bouma, 1970, 1973; Levi, 2008). A 

related concept is the spatial resolution of attention (Intriligator & Cavanagh, 2001), which 

is the minimum distance between several simple identical objects, like filled circles, that 

allow an observer to covertly move attention from one circle to another based on a set of 

instructions, without losing track of which circle they should attend. The spatial resolution 

of attention is also proportional to eccentricity, and falls off faster than acuity loss due to 

cortical magnification (He, Cavanagh, & Intriligator, 1996; Intriligator & Cavanagh, 2001).

Crowding has been attributed both to pre-attentive visual processing in early visual areas, as 

well as to attentional mechanisms (see Levi (2008) for a review). It is likely that it is a 

combination of the two. Some models of early vision, such as LAMINART, predict how 

flankers can cause either facilitation or suppression of stimuli between them, depending on 

distance and contrast (Grossberg & Raizada, 2000) using interacting pre-attentive grouping 

and competitive mechanisms. A second proposal is that larger receptive fields in the what 

stream capture features from multiple objects and conflate them. A third proposal is that 

observers confuse the location of the target and the flankers due to positional uncertainty, 

but that object-feature binding remains intact. Yet another proposal is that crowding is the 

result of failed contour completion (Levi, 2008). However, because of the similarities 

between crowding and the spatial resolution of attention, measured without the use of 

flanking objects (He et al., 1996; Intriligator & Cavanagh, 2001; Moore, Elsinger, & Lleras, 

2001), it is unlikely that crowding is solely due to pre-attentive factors in early visual 

processing.

Our model has a natural explanation for crowding due to its linkage of where stream spatial 

attentional processes to what stream object learning and recognition processes. In particular, 

the model predicts that when at least three peripherally presented similar objects are nearby, 

and subject to the cortical magnification factor, an object shroud forming over one object 

can spread to another object, confounding recognition when several objects are covered by a 

single shroud (see Fig. 8). Said in another way, when a single shroud covers multiple 

objects, it defeats figure-ground separation and forces the objects to be processed like one 
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larger unit. This means that there is both featural and positional confusion, but this is the 

result of how the shroud forces the failure of object recognition, rather than being due to 

large receptive fields or simple positional uncertainty. This does not occur with just two 

peripheral objects, since the highest intensity part of each object shroud can shift to the most 

distant extrema of the two objects, and can thereby inhibit the gap between the objects.

In summary, our proposed explanation of crowding exploits the dARTSCAN predictions of 

how where stream processing of attentional shrouds influences what stream learning and 

selection of object recognition categories, and how cortical magnification influences 

attention within and between object surfaces.

7. Discussion

The current article introduces three innovations to further develop the original ARTSCAN 

model concept of how where stream spatial attention can modulate what stream recognition 

learning and attention (Cao et al., 2011; Fazl et al., 2009; Grossberg, 2007, 2009): First, we 

show how both where stream transient inputs from object onsets, offsets, and motion can 

interact with what stream sustained inputs from object surfaces to control spatial attention. 

Second, we show how both parietal object shrouds and prefrontal spatial shrouds can help to 

regulate the priming, onset, persistence, and reset of spatial attention in different ways and at 

different speeds. Third, we show how basal ganglia control of inhibition across spatial 

attentional regions can control focal vs. multifocal attention, either through fast volitional 

control or slower task-selective learning. The interactions among these processes can 

explain a seemingly contradictory set of data, notably how both same-object and different-

object biases are both compatible with a model founded on object-based attention.

7.1. Comparison with other models

Recent models of attention can be split into several groups. Successors to Feature 

Integration theory (Treisman & Gelade, 1980), such as Guided Search (Wolfe, 2007; Wolfe 

et al., 1989) and Itti and Koch (2001), rely on biased competition between parallel visual 

representations, whereby each presentation highlights a specific feature of the visual input. 

The ARTSCENE model, which uses attentional shrouds in addition to saliency maps, can 

explain similar data using object-based, rather than pixel-based attention, and regional, 

rather than local, competition (Grossberg & Huang, 2009; Grossberg et al., 1994; Huang & 

Grossberg, 2010), as well as data that cannot be explained by saliency maps alone. Using 

objects and regions as the key substrate of competition allows the model to learn gists as 

large-scale texture categories (Grossberg & Huang, 2009) and to explore their importance in 

processing natural scenes.

All of these models incorporated attentional circuits defined by top-down, modulatory on-

center, off-surround networks whose cells obey shunting dynamics with activity-dependent 

gain control that divisively self-normalizes cell responses (Bhatt, Carpenter, & Grossberg, 

2007; Carpenter & Grossberg, 1987, 1991, 1993). Related models of how attention interacts 

with neurons in the visual system, especially V4, used similar properties of gain control, 

contrast enhancement, and divisive normalization to the response characteristic of neurons 

under varying attention conditions (Ghose, 2009; Lee & Maunsell, 2009; Reynolds & 
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Heeger, 2009). Finally, cognitive theories of attention and object recognition have 

introduced seminal concepts such as FINSTs and Sprites, but are not computational models 

(Cavanagh et al., 2001; Pylyshyn, 1989, 2001; Scholl, 2001), with the notable exception of 

Logan (1996). The ARTSCAN model and its extension in the current article offer 

computational rigor and new explanations of challenging data as manifestations of emergent 

properties of multiple brain mechanisms as they interact on multiple time scales in a 

hierarchy of attentionally-modulated cortical processing stages.

7.2. Transients, sustained resonance, and priming

In the current model, transient inputs can activate sustained priming activity in the spatial 

shroud layer. On the other hand, surface inputs slowly create object shroud attention, but 

sustaining that attention requires a surface-shroud resonance until eye-movement-contingent 

inhibition-of-return and habituative gates cause it to collapse. When such an object shroud 

collapses, spatial shrouds can continue to prime lower levels, thereby maintaining sensitivity 

to future salient events.

7.3. Gain control, normalization, and capacity

As noted above, several recent models have focused on describing the effect of attention on 

neuronal responses in visual cortex, particularly V4. In particular, the models of Reynolds 

and Heeger (2009), Ghose (2009), and Lee and Maunsell (2009) explore the mechanism 

through which attention enhances the processing of selected areas of the visual field. They 

conclude that divisive normalization using center-surround processing is the most 

reasonable model for the effects of attention on V4 neurons. The recurrent shunting on-

center off-surround networks that form the basis of the object and spatial shroud layers 

produce divisive normalization. Indeed, the exact form factor for doing this that was 

proposed by Reynolds and Heeger (2009) was earlier used by Bhatt et al. (2007), and 

variants of it have often been used to explain attentional dynamics in models by Grossberg 

and his colleagues (e.g., Berzhanskaya et al., 2007; Carpenter & Grossberg, 1987, 1991; 

Gove, Grossberg, & Mingolla, 1995; Raudies & Neumann, 2010) since the original proposal 

of how shunting dynamics can normalize the activities of neurons in center-surround 

networks of neurons was demonstrated in Grossberg (1973). Furthermore, the current model 

can explain individual differences in attentional capacity and performance, as in individual 

differences in useful-field-of-view, by varying inhibitory gain of attention via the basal 

ganglia.

As with the general theme of normalization, volitional control of inhibitory gain, and thus 

the strength of normalization, seems to use a similar mechanism across many parts of the 

brain. Indeed, such volitional control is predicted to determine whether top-down attention is 

modulatory or can elicit visual imagery in visual cortex (Grossberg, 2000b), and whether 

bottom-up inputs are stored or not in prefrontal working memory (Grossberg & Pearson, 

2008). This latter property may help to explain individual differences in working memory 

capacity (Vogel & Machizawa, 2004). Thus, the capacity of spatial attention and that of 

visual working memory may share an underlying neural mechanism, albeit one that is 

expressed in different brain regions. In all these cases, the simplest hypothesis (Grossberg, 

2000b) is that inhibitory interneurons in cortical layer 4 of the target area are inhibited by 
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the basal ganglia. This disinhibitory effect can convert a modulatory on-center response, due 

to balanced excitation and inhibition, into a driving suprathreshold response. The anatomy 

and control dynamics of this predicted volitionally-sensitive gain control mechanism require 

more experimental study.

7.4. Normalization controls attentional capacity

Cognitive theories of attention and short-term memory fall into two groups, the first, 

invoked by the phrase “the magical number 7,” (Miller, 1956) posits a certain number of 

`slots' which objects or some other fundamental unit fill (Fukuda, Awh, & Vogel, 2010). 

The second posits that resource constraints variably filled by different traits, details, and 

features limit capacities (Alvarez & Cavanagh, 2005; Alvarez & Franconeri, 2007; Alvarez 

et al., 2005; Verghese & Pelli, 1992). In the latter, objects are not the fundamental unit, 

because individuals can track or remember several simple objects, but only a few complex 

ones.

Objects are an important basis of attention (Fallah, Stoner, & Reynolds, 2007; Kahneman et 

al., 1992; Lamy & Egeth, 2002; Martinez et al., 2006; Mitchell, Stoner, & Reynolds, 2004; 

O'Craven, Downing, & Kanwisher, 1999; Pylyshyn et al., 1994; Roelfsema et al., 1998; 

Scholl, 2001; Scholl et al., 2001; Serences, Schwarzbach, Courtney, Golay, & Yantis, 2004; 

Shomstein & Yantis, 2004). It is difficult to track one end of a tumbling symmetrical object, 

attention spreads over surfaces slanted or curved in depth (He & Nakayama, 1995; Moore & 

Fulton, 2005; Moore et al., 1998; Scholl et al., 2001), and one of two co-localized objects 

can be distinguished and tracked solely through different features (Blaser et al., 2000). 

Neural correlates of object-based attention have also been found in fMRI and EEG/MEG 

work by a number of labs (Egeth & Yantis, 1997; Martinez et al., 2006; O'Craven et al., 

1999; Serences et al., 2004; Theeuwes et al., 2010).

However, objects are not the whole story. Limited information is retrievable about any given 

object when attention is split during unique object tracking (Horowitz et al., 2007). It is also 

possible to track objects while also performing a visual search task (Alvarez et al., 2005), 

suggesting that attention can also be spatially deployed without destroying object-based 

attention representations. Behavioral and imaging studies have shown sensitivity to the 

number of objects (Culham, Cavanagh, & Kanwisher, 2001; Culham et al., 1998; Franconeri 

et al., 2007; Tomasi et al., 2004), speed, size, proximity, and object mutation (Alvarez & 

Franconeri, 2007; Alvarez & Scholl, 2005; McMains & Somers, 2004, 2005; Scalf & Beck, 

2010).

The dARTSCAN model uses normalization in the two shroud layers to produce a dual 

resource constraint that makes objects the dominant, but not exclusive, unit of attention. The 

primary constraint on the number of objects that can be attended at any given time is the 

inhibitory load in the object shroud layer, which varies based on the size, complexity and 

salience of objects in a scene, as well as the center of gaze, due to divisive normalization and 

variations in basal ganglia inhibitory modulation. The number of spatial positions that can 

simultaneously be primed is dependent on the resultant inhibitory load in the spatial shroud 

layer, where attended objects enjoy considerable competitive advantage but are not 

preeminent. An excellent example of non-object attentional factors occurs during scene 
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understanding, including the perception of a scene's gist, which has been modeled as a large-

scale texture category (Grossberg & Huang, 2009). Object categories in the what cortical 

stream, and position categories in the where cortical stream can define distinct, but often 

cooperating, contexts for driving search, learning, and recognition, as is well-studied in the 

contextual cueing literature (e.g., Chun & Jiang, 1998; Grossberg, 1972, 1980a, 1980b; 

Olson & Chun, 2001), and modeled by neural mechanisms that are compatible with the 

current analysis (Huang & Grossberg, 2010).

7.5. Prefrontal priming of what and where

The ARTSCAN model showed how complementary object and spatial properties 

(Grossberg, 2000a) of the what and where streams (Haxby et al., 1991; Ungerleider & 

Haxby, 1994) produce view-invariant object category learning, while the ARTSCENE 

model (Grossberg & Huang, 2009; Huang & Grossberg, 2010) showed how the same type of 

architecture, extended to include working memory and categorizing roles for perirhinal, 

parahippocampal, and prefrontal cortices, can support object and spatial context priming and 

learning, including gist learning, that is capable of driving efficient visual search, learning, 

and recognition of objects in complex scenes; see Section 7.7.

An emerging body of anatomical and imaging experiments suggests rapid magnocellular 

pathways to prefrontal cortex can prime object categories or contexts that aid in rapid object 

and scene recognition (Bar et al., 2006; Gronau, Neta, & Bar, 2008; Kveraga, Boshyan, & 

Bar, 2007). Recent electrophysiology studies in V4 have found that, in addition to contrast 

gain due to spatial attention, there is also independent feature-based attention that modifies 

spectral tuning of preferred spatial frequencies (David, Hayden, Mazer, & Gallant, 2008; 

Hayden & Gallant, 2005, 2009). The dARTSCAN model shows how multifocal spatial 

attention that allows view-invariant object category learning leads to prefrontal priming. 

This suggests how broadly distributed, multifocal attention in the where stream may 

contextually prime the what stream for rapid recognition in familiar scenes, facilitating the 

later volitional deployment of unifocal attention to novel or behaviorally salient objects.

7.6. Gain fields and predictive remapping

Stable visual orientation and object constancy require that the visual system keep track of 

the relative positions of objects in a scene during saccades (Mathot & Theeuwes, 2010a, 

2010b). The cortically magnified, retinotopic map of the visual field found in early visual 

areas creates highly dissimilar representations of the same scene for different centers of 

gaze. This suggests that the visual system needs either a visual area with a coordinate system 

that is insensitive to gaze location, or that some of the retinotopic areas in the visual system 

have their activity remapped by saccades (Duhamel, Colby, & Goldberg, 1992; Gottlieb, 

Kusunoki, & Goldberg, 1998; Mathot & Theeuwes, 2010a; Melcher, 2007, 2008, 2009; 

Saygin & Sereno, 2008; Tolias et al., 2001). Attentionotopic maps of the visual system 

produced using fMRI suggest that many dorsal stream areas sensitive to visual attention 

have retinotopic coordinates (Saygin & Sereno, 2008; Silver et al., 2005; Swisher et al., 

2007). However, there is at least one area in anterior parietal cortex has been found to show 

head-centered coordinates (Sereno & Huang, 2006). Electrophysiological studies have 

shown perisaccadic (around the time of the saccade) remapping of receptive fields in frontal 
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eye fields (Goldberg & Bruce, 1990) and parietal areas, including LIP (Andersen, 

Bracewell, Barash, Gnadt, & Fogassi, 1990; Duhamel et al., 1992), as well as more modest 

remapping in V4 (Tolias et al., 2001). In particular, attended targets do not cause new 

transient activity in these regions after saccades (see Mathot and Theeuwes (2010a) for a 

review).

Behavioral results are consistent in finding a brief retinotopic facilitation (priming) effect 

and a sustained spatiotopic IOR effect (Posner & Petersen, 1990). More recent evidence also 

finds a longer lived spatiotopic facilitation along with the short term retinotopic facilitation 

in certain task conditions (Golomb, Chun, & Mazer, 2008; Golomb, Nguyen-Phuc, Mazer, 

McCarthy, & Chun, 2010; Golomb, Pulido, Albrecht, Chun, & Mazer, 2010). The original 

ARTSCAN model used a head-centric attention layer that interacts with retinotopic surface 

and eye-movement related areas of the model through an LIP gain field (Fig. 1). The current 

dARTSCAN model uses a retinotopic representation of attention in both the object and 

spatial shroud layers, so that stimulus eccentricity biases competition. Since the present 

study focuses on data which were collected while subjects were fixating, remapping was not 

implemented.

7.7. Where's Waldo? From where to what and from what to where

The current article focuses on brain mechanisms whereby spatial attention in the where 

stream can influence prototype attention in the what stream. It is also the case that prototype 

attention in the what stream can influence spatial attention in the where stream, as when a 

human or animal tries to solve the Where's Waldo problem; that is, to efficiently search for a 

desired target object in a cluttered scene. For this to work well, a desired target category in 

the what stream needs to be primed and used to discovery the location in space to which 

spatial attention in the where stream should be directed. Towards this goal, Huang and 

Grossberg (2010) have modeled how a human can learn to more efficiently search for a 

target in a scene by learning to accumulate both object and spatial contextual evidence from 

scenic targets and distractors with which to direct the search. This analysis proposes how the 

perirhinal and parahippocampal cortices, interacting with ventrolateral and dorsolateral 

prefrontal cortices, among other brain regions, help to accumulate object and spatial 

evidence for target location as the eyes scan a scene. This ARTSCENE model quantitatively 

simulates a large body of psychophysical data about contextually cued visual search, notably 

data of Marvin Chun and his colleagues; e.g., Chun (2000), Chun and Jiang (1998), Jiang 

and Chun (2001), and Olson and Chun (2002).

7.8. Other model extensions

There are many databases that an extension of the current model could naturally explain in a 

unified way. Extending towards cognitive and planning areas, including explicit basal 

ganglia gating circuits, and prefrontal working memory, planning, and performance circuits, 

as developed in other recent models (Brown, Bullock, & Grossberg, 1999; Grossberg & 

Pearson, 2008; Huang & Grossberg, 2010; Srihasam, Bullock, & Grossberg, 2009), such an 

enhanced model could use view-invariant object representations to choose novel objects 

while exploring complex scenes. Extension in these directions would further probe the limits 
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and consequences of volitional gain control and the effects of training, such as are found in 

VGPs or the aging.

The model can also naturally be extended back into the early visual areas, to explore the 

interaction between attentional shrouds, figure-ground separation, and laminar cortical 

processing (Cao & Grossberg, 2005; Grossberg & Swaminathan, 2004). Similarly, there is 

an extended literature on multiple-object tracking that would be available if early motion 

perceptual mechanisms, including the object-sensitive dynamics of transient cell responses, 

were integrated into the model (Berzhanskaya et al., 2007; Grossberg, Mingolla, & 

Viswanathan, 2001). This would allow motion-sensitive spatial shroud cells to help drag 

object shroud-surface resonances along with tracked objects in multiple-object tracking, 

providing an implementation of the FINST concept (Pylyshyn, 1989, 2001).
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Appendix A. Model equations

The model is a network of point neurons with single compartment membrane voltage, V(t), 

that obeys the shunting equation:

(1)

(Grossberg, 1973; Grossberg, 1980a, 1980b). There are two constants: Cm controls the 

membrane capacitance and the constant conductance γleak controls membrane leakage. The 

time varying conductances γexcite and γinhib, respectively, represent the total excitatory and 

inhibitory inputs to the neuron as specified by the model architecture. The three E terms 

represent reversal potentials. Solved at equilibrium, the above equation can be rewritten as:

(2)

Thus, increases in excitatory conductance depolarize the membrane while increases in 

inhibitory conductance hyperpolarize it. All conductances contribute to divisive 

normalization of the membrane, as shown in the denominator. This divisive effect includes a 

special case of pure “shunting” inhibition, when the reversal potential of the inhibitory 

channel is close to the neuron's resting potential (Borg-Graham, Monier, & Fregnac, 1998). 

Equation (1) can be re-written as:

(3)

by setting X = V, Ax = γleak, Eleak = 0, Bx = Eexcite, and Cx = −Einhib. Sometimes there are 

signal functions used in γexcite or γinhib, which are denoted by f(a) or h(a). Often signals are 

half waved rectified, such that:
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(4)

A.1. Log polar processing

Cortical magnification is approximated using radial symmetric compression proportional to 

a log transform in the following algorithm:

1. Let IInt be the cubic interpolation (Press, 1992) of the input I (Fig. 9A).

2. Set n to be the smallest distance between our fovea, (x0, y0) = (1024, 1024), and an 

edge of the image.

3. Let M = Iint[x0 + r * Cos(θ), y0 + r * Sin(θ)] for r = [ − n, n], η = [0, 2π] in 2m 

steps.

4. Since this creates mirror representations of I, discard the lower half of M so that it 

is n × m (Fig. 9B).

5. Create a k × n logarithmic compression matrix, C, with non-zero elements using the 

following recurrent formula:

and

such that for the jth row of C,

with k × n to compress the data in the r dimension. This causes smaller weights as j 

increases and, for each row j, there exists a proportionally longer section of non-

zero elements so that C compresses M ∞ eαj to approximate a log-polar map (Fig. 

9C).

6. Let MC = C.M, and use the map inverse to step 3 to create the symmetric log 

compressed image Ic (Fig. 9D)

A.2. Hemifield independence

Except for diffusive surface filling-in in V4 (Appendix A.5), neurons interact with neighbors 

in their own hemifield using a center-surround architecture with Gaussian kernels, as 

described in Section 5.2. Neurons near the vertical meridian interact with neurons in the 

opposite hemifield (and hence, hemisphere of the brain) using a different, narrower, 

Gaussian kernel to reflect the relative paucity of connections between hemispheres (Fig. 10). 
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Neurons near boundaries, either of the hemifield or the visual field, obey the normalized 

weighting method of Grossberg and Hong (2006); see also Hong and Grossberg (2004). 

Following this method, suppose that:

(5)

defines boundary-normalized connection strengths. In (5), W is a gain coefficient and ψpq 

denotes the cell activity at position (p, q) within a layer of neurons. This activity is filtered 

by the normalized Gaussian kernel:

(6)

with standard deviation σ and boundary-normalizing coefficients:

(7)

The Gaussian kernel operates within the following neighborhoods:

(8)

wherein cells are found. In particular, p ∈ (0, 63) is used for the left hemifield, p ∈ (64, 127) 

is used for the right hemifield and p ∈ (MV ± 3σ) is used for the area near the vertical 

meridian MV that defines inter-hemifield connectivity. Finally,

(9)

defines the maximum distance at which any two cells directly interact through the Gaussian 

kernel in Eq. (7). The only difference between  and NΓ is that  is constrained by the 

boundary of the image at the hemifield edges, while NΓ, which defines the whole kernel, is 

not. This ensures that kernels do not extend beyond the borders of the image or the vertical 

meridian and are appropriately weighted to eliminate boundary-based artifacts.

Neurons near the vertical meridian interact with neurons in both their own hemifield, and in 

the opposite hemifield. The degree of hemifield independence at each layer of the model is 

controlled by W and σ, as specified for Gpqij in Eqs. (6) and (7). The area of overlap between 

the hemifields, (MV ± 3σ), ψC, and the left and right hemifields, ψL and ψR, respectively, are 

normalized so that no neuron is gain privileged, such that:

(10)
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(11)

and

(12)

These functions allow us to define a general function, χ, that describes the complete set of 

connection weights to any neuron in layer Ψ:

(13)

where tr(a) is the trace of a, WLR is the intra-hemifield gain, WC is the inter-hemifield gain, 

σLR controls maximal extent of intra-hemifield connectivity, and σC controls the maximal 

extend of inter-hemifield connectivity. Figs. 10A and B illustrate input horizontal and 

vertical bars and the corresponding function χ(2, 1, 5, 2, I). The bar in 10A crosses the 

hemifield, whereas the bar in 10B does not.

A.3. LGN polarity sensitive cells: On and Off Channels

There are four types of cells in the model LGN: single opponent ON-cells ( , Eq. (14)), 

single opponent OFF-cells ( , Eq. (15)), double opponent ON-cells ( , Eq. (18)) and 

double opponent OFF-cells ( , Eq. (19)).

Single opponent cells are computed using feed-forward shunting networks solved at 

equilibrium (Eq. (3)). At position (i, j), the output signal from the single opponent ON-cell 

is:

(14)

and the output signal from the single opponent OFF-cell is:

(15)

where Q+ = 5 and Q− = 1 represent tonic bias factors, while

(16)

and

(17)
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compute the center-surround sampling of the compressed input image. The parameters were 

chosen to satisfy the property of featural noise suppression; that is, the LGN ON cells have 

0 response to constant luminance of any intensity; they only respond in the vicinity of 

luminance gradients. Due to the fact that Q− > Q+ in Eqs. (14) and (15), OFF cells are 

tonically active in the presence of uniform inputs, including in the dark. However, they do 

not project to the surface layer in the model, and thus do not affect filling-in.

The output signal from the double-opponent ON-cell at position (i, j) is:

(18)

and from the double-opponent OFF-cell is:

(19)

Note that the output signals from all four types of LGN cells are half-wave rectified, see Eq. 

(4).

A.4. Boundaries

Because the model inputs are simple, the double opponent LGN outputs require little 

additional processing to create effective boundaries. Simplified complex cell outputs such as 

those found in primary visual cortex are modeled by polarity-insensitive cells, Zij, at position 

(i, j) that add ON ( , Eq. (18)) and OFF ( , Eq. (19)) channel inputs from double-

opponent cells:

(20)

The ON-channel is scaled to be stronger than the OFF-channel so that the model responds 

robustly over a wide range of local contrasts. Object boundary contours, Bij, at position (i, j) 

are defined by the equation:

(21)

Eq. (21) says that an object boundary Bij is activated by complex cell outputs Zij that are 

modulated by feedback signals ( , Eq. (22)) from the contours of successfully filled-in 

surfaces that are fed back to their inducing boundaries. These feedback signals are 

accordingly derived from surface contours (Cij, Eq. (23)). In (21), the feedback signal to 

position (i, j) of the boundary is:

(22)

where function χ is defined by Eq. (13). The surface contour output signal, Cij, at position (i, 

j) is computed by ON and OFF shunting on-center off-surround networks that are sensitive 
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to the contrast of filled-in surface activity (Sij, Eq. (26)). They are therefore positive at the 

positions of successfully filled-in object boundaries:

(23)

where

(24)

and

(25)

compute the ON and OFF representations of the filled-in surfaces, respectively, at position 

(i, j).

Surface contours are computed at the boundaries of successfully filled-in surfaces; that is, 

surfaces which are surrounded by a connected boundary and thus do not allow their 

lightness or color signals to spill out into the scenic background. Grossberg (1994, 1997) 

analyzed how connected boundaries play a special role in 3-D vision and figure-ground 

separation. In this more general situation, not all boundaries are connected. However, in 

response to the simplified input images that are simulated in this article, all object 

boundaries are connected and cause successful filling-in. As a result, surface contours are 

computed at all object boundaries, and can strengthen these boundaries via their positive 

feedback in Eq. (21). When the contrast of a surface is increased by feedback from an 

attentional shroud (see term Lij in Eqs. (26) and (27), the surface contour signals increase, so 

the strength of the boundaries around the attended surface increase also.

A.5. Surfaces

Object surface activity, Sij, at position (i, j) obeys the boundary-gated diffusion equation:

(26)

solved at equilibrium, where  (Eq. (18)) provides bottom-up double-opponent ON-cell 

input and

(27)

modulates this bottom-up input with attentional feedback from object shroud neurons (Eq. 

(33)) mediated by the sigmoid signal function . Diffusive surface filling-in 

between the cell at (i, j) and its nearest neighbors (m, n) ∈ [{i − 1, j}, {i − 1, j}, {i, j − 1}, {i, 

j + 1}] is gated by the intervening boundaries via the boundary-sensitive permeability:
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(28)

where Bij and Bmn are the boundary contours (Eq. (21)) at positions (i, j) and (m, n) 

respectively (Grossberg & Todorović, 1988). Eqs. (26) and (27) show how boundaries form 

filling-in barriers that divisively gate, or inhibit, the spread of surface lightness and color. 

Eqs. (26) and (27) show how top-down feedback from object shrouds can increase the filled-

in contrast of a surface and, due to the distributed on-center in Lij, also spill out over the 

defining boundary of a surface. This latter property is important in our explanation of 

crowding.

The attentional feedback from active object shrouds (see Sections 5.7 and Appendix A.7) 

habituates slowly over time in an activity-dependent way, thereby weakening the 

corresponding surface-(object shroud) resonance. The rate of habituation between object 

shroud neurons and surface neurons at position (i, j) in Eq. (27) is controlled by the 

habituative gate equation (Grossberg, 1972, 1980a, 1980b):

(29)

where the habituative gate  recovers to the value 2 and habituates at a rate that depends on 

the object shroud activity  Habituation occurs at slower rate than either of the shroud 

habituative gates (Eqs. (37) and (38)) and should be thought of as a mechanism underlying 

adaptation.

A.6. Transient inputs

Several model simulations use sequential, static displays as stimuli but no simulation uses 

stimuli in motion. Thus, a simplified model of MT cells in the where cortical stream is 

employed to produce transient inputs to model attentional processes. The activity, Rij, of the 

transient cell at position (i, j) accordingly responds briefly to contrast increments between 

successive displays:

(30)

where

(31)

is activated by contrast increments between the input to the model at time t0, which is the 

last time step for which a prior input was being presented, and time t1, which is the first time 

step for which a new input is presented, as modified by the sigmoid signal function 

 unbounded transient responses. A switch function,
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(32)

controls the duration of transient cell sensitivity to changes in input, where n = 30 time 

steps.

A.7. Object shrouds

Object shroud neurons are similar to the shrouds in the ARTSCAN model. If an object 

shroud neuron corresponding to a visible surface reaches a threshold level of activity, then 

attention will spread over the entire surface. The shroud intensity is a function of surface 

activity, previous attention activity in the object shroud and spatial shroud layers, and 

inhibitory gain, which is volitionally controlled in some simulations. There are two stable 

dynamical modes for the object shroud layer: focal, or winner-take-all, to support view-

invariant object category learning; and multifocal to support multiple shrouds and surface 

perception. The activity of the object shroud neuron, , at position (i, j) obeys:

(33)

where α ∈ [3, 7] is a rate parameter, usually set at α = 5 but was varied in the simulation 

shown in Fig. 6 from 3 to 7 in increments of 1. Object shroud neurons receive Gaussian-

filtered bottom-up input from surface activity (Sij, Eq. (26)):

(34)

where the sigmoid signal function . The Gaussian spread of bottom-up 

input from a surface can activate spatial attention at positions adjacent to, but outside, the 

surface. This kind of Gaussian filtering in both the bottom-up pathway from surface to 

attention, and the top-down pathway from attention to surface, is important in our 

explanation of crowding.

The bottom-up surface input is modulated by three types of signals: bottom-up input from 

transient cell activity (Rij, Eq. (30)) at corresponding positions and, via the interaction term:

(35)

which includes habituating ( , Eq. (37)) recurrent excitation from half-wave rectified 

neighboring cells, as part of a recurrent shunting on-center (Oij, Eq. (35)) off-surround (Tij, 

Eq. (36)) network that helps to choose active shrouds; and Gaussian-filtered excitatory 

habituating feedback ( , Eq. (38)) from half-wave rectified spatial shroud neurons ( , Eq. 

(39)) to sustain surface-(object shroud) resonances. Both habituative terms are modified by 

the sigmoid signal function  to provide contrast enhancement that 
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facilitates competition between surfaces bidding for spatial attention. Object shroud neurons 

also compete for attention via recurrent inhibitory signals in the on-center off-surround 

network. This inhibition habituates at the same rate as the recurrent on-center excitation, and 

is filtered by the same sigmoid signal function:

(36)

The strength of recurrent inhibition in Eq. (36) is controlled by two gain parameters, one for 

within-hemifield inhibition, which is usually set at T = .05, except for videogame players 

(VGPs) in the useful-field-of-view (UFOV) task, where T = .04, and the other for inter-

hemifield inhibition, which is usually set at TC = .04, except for VGPs in the UFOV 

simulation where TC = .032.

The rate of habituation and recovery of recurrent excitation (Eq. (35)) and inhibition (Eq. 

(36)) in the object shroud layer at position (i, j) is controlled by:

(37)

where the habituative gate  recovers to the value 2 and habituates at a rate that depends on 

the object shroud activity  at a timescale mediating IOR. The habituation of spatial 

shroud feedback to the object shroud layer at position (i, j) in Eq. (35) obeys a similar 

equation in which object shroud activity is replaced by spatial shroud activity :

(38)

Feedback from spatial shroud neurons habituates faster than feedback from object shroud 

(and much faster than the feedback to surface neurons (Eq. (29))) neurons to increase 

sensitivity to transient inputs.

A.8. Spatial shrouds

Spatial shroud neuron activity  at position (i, j) obeys the equation:

(39)

In (39), there is strong bottom-up input from corresponding transient cell positions as well as 

a half-wave rectified Gaussian input from the object shroud layer:

(40)

Recurrent feedback is received from a shunting on-center (Uij, Eq. (41)) off-surround (Wij, 

Eq. (42)) network with on-center excitation:
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(41)

and off-surround inhibition:

(42)

Both on-center and off-surround recurrent signals are modified by the sigmoid signal 

function . The inhibitory gain in (42) is controlled within hemifields by W 

= .005, except for the VGP UFOV simulation, where W = .004; and between hemifields by 

WC = .002, except for the VGP UFOV simulation, where WC = .00016.

In all, spatial shroud neurons receive bottom-up input from transient cells and object shroud 

neurons while exciting their nearby neighbors and inhibiting their distant neighbors. Small 

spatial shrouds can hereby survive for several hundred milliseconds in the absence of 

bottom-up input before decaying if there is little new transient input or activity causing 

competition. Recurrent competition can attract or repel spatial shrouds without bottom-up 

support, causing them to move slightly from their initial positions over time. Spatial shrouds 

cover the extent of a surface only if that surface resonates with an object shroud. When this 

occurs, however, the coverage is often not uniform in intensity, and hotspots of activity will 

form at salient areas of objects such as corners.

A.9. Parametric sensitivity

The behavior of recurrent neural network models, especially those with several interacting 

recurrent loops, can exhibit different modes of behavior depending on how parameters of the 

model are chosen. Some of these parameters can incrementally change model behavior, such 

as with the UFOV simulations (see Sections 6.2, Appendices A.7 and A.8). Further changes 

in those same parameters can cause a state change in model behavior, where attention goes 

from being multifocal to unifocal (see Section 3). Other parameters are set to obey specific 

properties, such as suppression of uniform input patterns (see Appendix A.3) and otherwise 

support a wide range of possible parameters without modifying the model behavior. Finally, 

some parameters depend on the simulation environment (such as the number of neurons in 

each layer, the array size of the inputs), notably the spatial extents of the Gaussian kernels 

controlling feed-forward, feedback and lateral communication between different model 

neurons, have to be rescaled for larger or smaller simulation environments. All of the 

parameters in the front end of the model, in Appendices A.2–A.4 and A.6, fall into the latter 

two categories.

More interesting are the parameters that control the recurrent circuits between the surface, 

object shroud and spatial shroud layers of the model. These equations fall into three general 

categories: the first is the lateral inhibition between model neurons, as well as the kernels 

controlling the strength of inter-layer connections ((Eqs. (27), (34)–(36), and (40)–(42)). The 

second is the various sigmoid signal functions (f(a)) that control three important qualities: 

size, range of sub-linear, linear and super-linear response, and the steepness of the linear 
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response. Finally, there are habituating gates (Eqs. (29), (37), and (38)) that control the rate 

of habituation for different types of feedback within the model.

The primary loop in the model, is the surface-(object shroud)-surface loop, controlled by 

Eqs. (27), (29), and (34)–(37) and related signal functions. There are several important parts 

of this loop: the bottom-up connections from the surface to the object shroud layer (Eq. (34)) 

controls how objects of different luminance and size bid for object-based attention. 

Increasing the gain of the kernels in Eq. (34) increases response of objects across the board 

(while also increasing the competition in the object-shroud layer, since it increases the 

denominator of the divisive inhibition), while decreasing it has the converse effect. 

Increasing the half-max point (1.55) or exponent (6) of the corresponding signal function 

means that perceptually brighter (or attended) objects are accorded a better bid than dimmer 

objects, while decreasing it closes the gap. While these parameters are all important, and the 

model behavior (though not the ability to form shrouds) is sensitive to relatively small 

changes (10%) in any of them, in practice, these provided a baseline for detailed fitting in 

the feedback and competition related parameters of the model. Competition between shrouds 

in the model is controlled through the balance of lateral excitation and inhibition (Section 

6.2 and Eqs. (35)–(37)), and feedback to the surface layer (Eqs. (27) and (29)) which makes 

attended objects brighter, thereby increasing their bids through the bottom-up connections 

previously described. The strength of the effects of increasing lateral inhibition relative to 

excitation are determined by the corresponding signal function, and is important in every 

simulated fit (shrouds will still form after a 10% perturbation of any of these parameters, but 

simulated RTs will change).

The secondary loop in the model is the (object shroud)-(spatial shroud)-(object shroud) loop. 

The time constant in the habituating gate between spatial and object shrouds (Eq. (38)) 

controls the duration of priming, while the strength of feedback between spatial and object 

shrouds (Eq. (35)) directly controls the strength of priming. Changes in parameters for either 

equation will change the RTs in the location cued fits. Another important aspect of the 

spatial shroud layer is how closely the contrast ratio between transient stimuli is preserved, 

in the balance of lateral excitation and inhibition (Eqs. (41) and (42)) which helps successful 

detection in the UFOV simulations. Other parameters in the spatial shroud layer can be 

perturbed by 10% without significantly affecting current results. The dynamics in this layer 

would become more sensitive if the model was extended to simulate multiple-object 

tracking, or experiments with endogenously cued attention.
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Fig. 1. 
Circuit diagram of the ARTSCAN model. A FACADE model (Grossberg, 1994, 1997; 

Grossberg & Todorović, 1988) simplified front end is in dashed boxes. What cortical stream 

elements are in gray outlined boxes, while where cortical stream elements are in black 

outlined boxes.
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Fig. 2. 
The recurrent, feedforward and feedback connections of object and spatial shrouds. 

Hemifield separation is not shown.
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Fig. 3. 
Brown and Denney (2007) data and reaction time (RT) simulations. Each experimental case 

is shown, with the four columns corresponding to what is seen in each display segment. 

Experimental RTs (black) and simulated RTs (gray) are shown at the far right. [Data 

reprinted with permission from Brown and Denney (2007).]
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Fig. 4. 
Simulations of Brown and Denney (2007) one-object cueing data showing the dynamics of 

the surface, object shroud, and spatial shroud layers. The top row in each panel shows a 

schematic of input presentations for the one-object cases used to fit the Brown and Denney 

(2007) data, with colors corresponding to each region of interest (ROI) indicated at the 

upper left corner (not all positions are shown in each plot). In all simulations, the temporal 

dynamics of surface (S, Eq. (26)), object shroud (AO, Eq. (33)), and spatial shroud (AS, Eq. 

(39)), variables are shown in the first, second and third columns respectively, for each ROI. 

Solid, dashed and dotted lines show the target conditions that are defined in the top row. The 

bottom row of each panel shows the distribution of activity in the same layers at the times 

(*) and (^). (A) The three cases where a position is cued. Note that while the object shroud 

over the cued location falls to zero, the spatial shroud is maintained, thereby priming object 

shroud formation when the target is valid. (B) The three cases where there is one object, 

which is cued.
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Fig. 5. 
Simulations from Brown and Denney (2007) two-object cueing data, and individual 

difference data from Roggeveen et al. (2009) showing surface, object shroud, and spatial 

shroud dynamics. The top row shows a schematic of input presentations for the three two-

object cases used to fit the Brown and Denney (2007) data, with colors corresponding to 

each ROI indicated at the upper left corner (not all positions are shown in each plot). In all 

simulations, the temporal dynamics of surface (S, Eq. (26)), object shroud (AO, Eq. (33)), 

and spatial shroud (AS, Eq. (39)), variables are shown in the first, second and third columns 

respectively, for each ROI. (A) The surface activity for the 2InvS case (dark blue) starts to 

increase slightly before target presentation, as does the activity of the object shroud. This 

indicates that the surface is about to be completely enshrouded, and that active inhibition has 

been released from the end of the rectangle opposite the cue because it has passed the edge 

separating the inhibitory surround from the excitatory center of the resonating shroud. This 

set of simulations corresponds to the behavioral results shown in middle simulation of Fig. 

6B (α = 5, Eq. (33)). (B) The surface activity of the case in which 2InvD response is faster 

than 2InvS (green vs. dark blue), corresponding to the far left simulations in Fig. 6B (α = 3, 

Eq. (33)). Note that the bubble of inhibition (blue curve, object shroud layer is less than 0 

and decreasing) corresponding to the 2InvS target is forming when the target is presented. 

(C) The surface activity of the case in which 2InvS response is faster than 2InvD (dark blue 

vs. green), corresponding to the far right simulations in Fig. 6B (α = 7, Eq. (33)). Note that 

surface-(object shroud) resonance has enshrouded the entire object prior to the InvS target 

being presented. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.)
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Fig. 6. 
Roggeveen et al. (2009) individual difference data and modeled behavior. (A) The 

experimental paradigm and individual preferences for InvS, and InvD targets. (B) Simulated 

reaction times for two-object conditions (left plot), and reaction time differences (right plot) 

between InvS and InvD conditions, as the (spatial shroud)-(object shroud) resonance 

changes from weakest (left, α = 3, Eq. (33)) to strongest (right, α = 7, Eq. (33)) by 

increasing the response gain to changing inputs in the object shroud layer. This shifts 

preference from InvD (bottom) to InvS (top). [Data reprinted with permission from 

Roggeveen et al. (2009).]
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Fig. 7. 
Green and Bavelier (2007) useful-field-of-view data and simulations. (A) Experimental 

paradigm used by Green and Bavelier (2003): After fixation, a brief (10 ms) display with an 

oddball is shown, followed by a mask. The task is to pick the direction of the oddball. (B) 

Experimental data for video game players (VPGs) and non-video game players (NVGPs) 

from Green and Bavelier (2003). [(A) and (B) reprinted with permission from Green and 

Bavelier (2007).] (C) VGPs are simulated by having 20% lower inhibitory gain in the object 

and spatial shroud layers (see T = .04 and TC = .032 in Eq. (36) as well as W = .04 and WC 

= .00016 in Eq. (42)), which facilitates detection through the mask period.

Foley et al. Page 54

Cogn Psychol. Author manuscript; available in PMC 2016 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Green and Bavelier (2007) crowding data and qualitative behavioral simulations. (A) Top 

panels show a crowding display and data from Green and Bavelier (2007), which show 

lower thresholds for VGPs. [Data reprinted with permission from Green and Bavelier 

(2007).] (B) Bottom panels show simulations of the object shrouds that form in response to 

three displays. The three inputs are all at the same eccentricity, but the gap between the 

target and flankers shrinks from top to bottom. At the smallest gap, a single object shroud 

forms over multiple objects, so that individual object recognition is compromised.
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Fig. 9. 
Schematic showing the primary stages of log-polar processing (see Section 5.1 and 

Appendix A.1). (A) Original input image. (B) Original input image projected into polar 

coordinates. (C) Transformed image from (B) compressed logarithmically along the r-

dimension. (D) Compressed image from (C) projected back into Cartesian coordinates.
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Fig. 10. 
Identical bars oriented to cross the vertical meridian (A) or stay within one hemifield (B). 

Top row: Input, I. Bottom Row: On-center processing with hemifield independence, χ(2, 1, 

5, 2, I) (see Eq. (13)).
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