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Abstract

Background—Last Observation Carried Forward (LOCF) is a common statistical approach to 

the analysis of longitudinal repeated measures data where some follow-up observations may be 

missing. In a LOCF analysis, a missing follow-up visit value is replaced by (imputed as) that 

subject’s previously observed value, i.e. the last observation is carried forward. The combination 

of the observed and imputed data are then analyzed as though there were no missing data.

Purpose—There have been numerous statistical demonstrations of faults of this approach. In 

2012 the National Research Council’s Panel on Handling Missing Data in Clinical Trials issued a 

report that raised concerns with the use of LOCF, and described alternate methods that offer 

greater statistical validity. Nevertheless, the method persists and its use is rampant. A search of the 

key word “LOCF” using Google Scholar yielded “about 1360” published citations during 2014 

alone, the overwhelming majority presenting the results of scientific studies. However, there has 

not been a simple explanation of the statistical deficiencies of LOCF. Such a description is 

presented herein.

Results—A simple repeated measures model is described for quantitative observations at two 

times (e.g. 1 and 2-years), with complete values at 1-year that are used to impute by LOCF the 

missing values at 2-years under the missing completely at random (MCAR) assumption. This 

results in a mixture distribution of observed and imputed values at 2-years with mean and variance 

that are a function of the mixture of the 1 and 2-year distributions. The expressions show that 

LOCF is only unbiased when the distribution of the observed values at 1-year is exactly equal to 

the distribution of the missing values at 2-years, the latter of course being unknown.

Limitations—When the values at 2-years are not randomly missing, no simple expressions for 

the mean and variance of the mixture distribution are possible without additional unverifiable 

assumptions.

Conclusion—All analyses using LOCF are of questionable veracity, if not being outright 

specious (def: appearing to be true but actually false). It is hoped that future studies will make a 

more vigorous attempt to minimize the amount of missing data, and that more valid statistical 

analyses will be employed in cases where missing data occurs. LOCF should not be employed in 

any analyses.
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Introduction

Every statistical analysis attempts to provide an unbiased (i.e. reliable) assessment of study 

results. However, various factors may yield results that are biased (distorted) in some way, 

perhaps the most common being missing data, i.e. measurements that were potentially 

measurable or expected under the study design, but were not measured for some reason. The 

resulting bias arises not just because some data are missing, but more importantly, the 

reason that the values are missing, or the missing data mechanism.

Little and Rubin1 review the types of missing data and the underlying mechanism. Data that 

are missing completely at random do not confer any bias, meaning that the data are missing 

purely by chance. The simplest case is data that are missing by design or administratively, 

e.g. when a subject who entered a 5 year study in the second year is administratively missing 

a year 5 measurement. Missing at random refers to data where the probability of being 

missing may may depend on other observed data, and adjusting for that data can provide an 

unbiased result. However, data that are missing not at random will introduce a bias in the 

analysis results regardless of statistical adjustment for other measured covariates.

A National Research Council panel reviewed the numerous statistical methods that have 

been proposed to address the problem of non-randomly missing data.2–5 The report 

concludes that every method of analysis makes various assumptions that are technically 

unverifiable, and that the best approach is to minimize the extent of missing data.

Last Observation Carried Forward (LOCF) is among the simplest methods to account for 

missing data in a longitudinal analysis of repeated measures over time. Historically, its 

origins are obscure. There was no single statistical article that originally proposed the 

approach. In fact, there is not a single peer-reviewed statistical publication that describes 

general conditions under which LOCF provides a statistically unbiased result. Rather, many 

authors have been critical of LOCF.6–8 Nevertheless, LOCF remains pervasive. A search for 

“LOCF” using Google Scholar yielded “about 1360” published citations during 2014 alone, 

the overwhelming majority presenting the results of scientific studies, all of which are of 

questionable veracity, if not being outright specious.

Herein I employ the well-established properties of a mixture of observations drawn from 

two separate distributions to compute the bias that can (will) be introduced by LOCF under a 

range of conditions.

One-sample Biases

While LOCF is most frequently applied to the analysis of two or more treatment groups, it is 

instructive to first consider the biases that can be introduced within a single group for data 

that are missing completely at random, and then for non-randomly missing data.
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Missing completely at random data

Assume that the outcome is measured at 1 and 2-years in a single sample of subjects, such as 

an analysis of the change from baseline after 1 and 2-years of follow-up. The primary 

analysis consists of an estimate of the mean change at 2-years, with a 95% confidence 

interval and a one-sample test of significance of the null hypothesis that the mean change is 

zero using perhaps a paired t-test, or as herein, a simple large sample Z-test.

Assume that the measures at 1-year (X1) and 2-years (X2) are randomly drawn from 

distributions with respective means μ1 and μ2 and variances  and . Also assume that all 

of the X1 measures are observed but some of the X2 measures are missing completely at 

random; meaning that having a missing X2 is not influenced by the value of X1 or the true 

value of X2. Technically X1 and X2 are drawn from a bivariate distribution, such as a 

bivariate normal, with correlation ρ12. Let τ denote the fraction of X2 values that are missing 

and imputed by the X1 values, where τ is fixed. The Appendix shows that identical results 

apply when the fraction missing is random.

The set of observed and imputed 2-year values, denoted as X̃
2, then consists of a mixture of 

samples from two distributions with expected mean9

(1)

The expression for the variance of the observed/imputed values, , is presented in 

the Appendix. Note that since the missing observations are completely random, the mean 

and variance of X̃
2 do not depend on the correlation of X1 and X2.

For a sample of n observed/imputed values with mean  and sample variance V̂ (X̃
2), the 

one-sample Z-test of the null hypothesis μ2 = 0 is computed as  , 

with significance (one-sided) at level α if z̃ ≥ Z1−α. For specified values of the mean μ̃
2 and 

variance  of the distribution of observed/imputed values, the probability of a statistically 

significant test result can be obtained as

(2)

A like expression provides the probability of significance for a Z-test with complete data for 

a given mean and variance μ2 and .

While the distribution of the observed/imputed values X̃
2 depends on the variances of X1 and 

X2, the possible bias due to the LOCF imputation is principally a function of the mean value 

μ̃
2. If μ̃

2 ⋚ μ2 then then analysis of the observed/imputed values is biased, leading to a 

probability of a significant test ⋛ the true probability.

The following computations assume τ = 0.30 and n = 100.
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The null hypothesis—First consider cases where the true mean change from baseline at 

2-years is zero, or E(X2) = μ2 = 0, for which the probability of significance is the desired 

level α, 0.05 one-sided herein.

Table 1 then shows the mean of the observed/imputed values (μ̃
2, 30% imputed) and the 

corresponding variance . The first three cases assume that , i.e. the variance of 

the imputed values equals that of the true (but missing) values.

In case 1, E(X1) = μ1 = 0 and V (X1) = 20, the same as for X2, and μ̃
2 = 0 and  so that 

no bias is introduced and the probability of a significant result is not affected. In other 

words, the value 0.05 is the theoretical type I error probability with no missing data, and no 

LOCF.

In case 2, there is a decrease from baseline at 1-year (μ1 = −1) that yields a decrease in the 

observed/imputed values at 2-years, μ̃
2 = −0.3 resulting from the 70% observed values 

having mean zero and the 30% imputed values having mean −1. While the 1 and 2-year 

values have the same variance ( ), the variance of the observed/imputed values is 

increased slightly to  because the distribution is now bimodal. Accordingly, the 

probability of a significant increasing value (one-sided) is decreased to only 0.010.

In case 3, there is an increase at 1-year (μ1 = 1) that yields an increase in the observed/

imputed values (μ̃
2 = 0.3) resulting from the 30% imputed values having mean 1. Again the 

variance is increased slightly owing to the bimodal distribution. Accordingly, the probability 

of a significant increase from baseline (one-sided) is inflated to 0.164. That is, an observed 

LOCF p-value of exactly 0.05 corresponds to a true false positive probability of 0.164, over 

3 times the nominal p-value.

Case 4 is the same as case 3 except that the X1 variance is also higher ( ) than the X2 

variance, so that the variance of the observed/imputed values is increased further to 

. The resulting inflation in the false positive probability is slightly less at 0.153, but 

still severely biased. If the variance at 1-year was lower than at 2-years ( ) the 

variance of the observed/imputed values is less than the true variance, , and the 

false positive probability is increased to 0.178.

By construction, the test will have type I error probability α = 0.05 whenever μ̃
2 = 0, 

regardless of the value of the variance . Thus, under the null hypothesis of no change from 

baseline at 2-years, LOCF imputation will only be unbiased when the mean value at 1-year 

(μ1) is also zero.

The alternative hypothesis—Now assume that the true change from baseline at 2-years 

is μ2 = 1 with variance  and n = 100, as above, in which case the probability of a 

statistically significant one-sided test at p ≤ 0.05 is 0.723, or the power of the study with no 

missing data.
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In case 5, the mean and variance at 1-year are the same as at 2-years, E(X1) = μ1 = 1 and V 

(X1) = 20, so that the mean and variance of the observed/imputed values is unaffected, μ̃
2 = 

1 and , and no bias is introduced. Accordingly, the probability of a significant result is 

not affected, which in this case is the power of the original study (0.723) with no missing 

data, and no LOCF.

In case 6, there is a decrease from baseline at 1-year (μ1 = −1). When the 30% imputed 

values from this distribution are mixed with the 70% observed values with mean μ2 = 1, the 

mean change in the observed/imputed values is diluted so that μ e2 = 0.4, resulting in a 

markedly reduced probability of a significant result of 0.221. Owing to the bimodal 

distribution, the variance of the observed/imputed values is increased slightly to 

that has a trivial effect on the probability of a significant result.

In case 7, there is no change from baseline at 1-year (μ1 = 0) so that again the mean of the 

observed/imputed values is diluted, μ̃
2 = 0.7 and the variance increased slightly, so that the 

probability of a significant result is reduced to 0.465.

In case 8, there is a greater change from baseline at 1-year (μ1 = 2) than at 2-years so that the 

mean of the mixture of observed/imputed values is now greater than that of the true 2-year 

values, μ̃
2 = 1.3, and the variance increased slightly, so that the probability of a significant 

result is substantially increased to 0.893. In case 9 the variance of the 1-year values ( ) 

is also greater than that of the true 2-year values that dampens slightly the increased 

probability of a significant result to 0.854.

Note that these latter probabilities have not been labeled “power”, since they will not 

correspond to the theoretical probability of rejecting the null hypothesis under the 

parametric settings of the original study design before the missing data occurs. For the 

assumptions herein, μ2 = 1,  and n = 100, the power is 0.723 as shown above. Thus, 

under case 8, the proper interpretation is that the bias in the observed/imputed data 

introduced by LOCF increases the probability of a significant result to 0.893. Clearly some 

of the inflation/deflation in the probability of significance under the alternative is a result of 

the inflation/deflation in the type 1 error probability under the null, but not all.

Figure 1 shows the expected mean value of the observed/imputed values (μ̃
2) under the null 

and alternative hypotheses (μ2 = 0, μ2 = 1, respectively) over a range of mean values at 1-

year (μ1) and variances . From (1), the expectation at 2-years (μ̃
2) is a simple 

linear function of the mean value at 1-year (μ1). Figure 2 displays the variance of the 

observed/imputed values ( ) under the null and alternative hypotheses for 1-year variances 

 and 2-year variance  over the range of 1-year mean values. While the 

variance expression (A.1) is also a function of the mean values, the Figure shows that the 

variance of X̃
2 is principally a function of the variance of the 1-year values used for the 

imputation. Figure 3 then shows the probability that a one-sample test of the observed/

imputed values at 2-years would be statistically significant (nominally) under the null and 

alternative hypotheses (lower and upper curves, respectively) as a function of the mean and 
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variance of the 1-year values. Under the null and alternative hypotheses, differences in the 

variances have little effect on the bias introduced by LOCF.

Under the null hypothesis μ2 = 0, LOCF imputation only yields an unbiased result when the 

mean value at 1-year (μ1) is also zero (and the variances equal), in which case the 

probability of a falsely significant result (α) is the desired 0.05 (one-sided). If μ1 < 0 then α 

decreases, and if μ1 > 0 then α increases, possibly substantially.

Under the alternative hypothesis that there truly is a positive change from baseline at 2-years 

(μ2 = 1, the upper set of curves), LOCF yields an unbiased result only when the mean value 

at 1-year (μ1) is also 1 (and the variances equal), in which case the probability of a 

significant result equals the power of the initial study design (0.723, indicated by the dot). 

LOCF introduces a negative bias when there is a lesser effect at 1-year than at 2-years (μ1 < 

1), and a positive bias when if there is a greater effect (μ1 > 1), so that the expected mean 

difference at 2-years is an under- or overestimate, respectively, of the true change, and the 

probability of a significant result is less or greater than that provided by the original design.

Non-randomly missing data

Non-randomly missing data occur when the likelihood that a given datum may be missing, 

and the true but unobserved value depends on other information (data) that may not have 

been observed, including the missing X2 value itself. In this case, the properties of an 

analysis of the simple change from baseline are more complicated to assess and describe. In 

terms of the above example, under the alternative hypothesis the true mean value of μ2 = 1.0 

would apply to the 70% observed values, but yet some other mean would apply to those 

non-randomly missing, say , because the τn missing observations are not a random subset 

of the true X2 values. Likewise, owing to the correlation of the 1 and 2-year values, the 

subset of 1-year values used for imputation are a non-random subset of the X1 values with 

some unknown mean . Then from the above equation, the mean of the observed/imputed 

values becomes

(3)

Even when the true 1-year values have the same mean as the true 2-year values (μ1 = μ2 = 1) 

then μ̃
2 ≠ 1 and the study results are biased.

Two Sample Biases

The most common application of LOCF is to the comparison of two or more groups at a 

given point in time, such as at 2-years herein. Again consider the simplest case where the 2-

year missing values are missing completely at random within the two groups labeled as A 

and B. We also assume that the fraction missing (τ) is the same in the two groups. The 

values in the ith group at the jth time are then distributed with mean values μij and variances 

, with mean difference at the jth time Δj = μaj − μbj, i = a, b, j = 1, 2.

Then after LOCF imputation, the observed/imputed values within each group have means
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(4)

Denote the sample mean difference between the two groups in the observed/imputed values 

as D̃
2 with expectation

(5)

s a function of the mean differences (Δ1, Δ2) between the groups at 1 and 2-years, 

respectively. The Appendix also presents the expression for the variance of the mean 

difference, say V (D̃
2). A test of the null hypothesis of no difference between groups H0: Δ2 

= 0 is then provided by the Z-test with value z̃ equal to the sample mean difference D̃
2 

relative to it SE. The probability of a significant result is then provided by

(6)

For illustration, assume a common variance ( ) among the values at 1 and 2-years 

within the two groups, so that the expected difference between groups at 2-years, and the 

probability of a significant result, depend principally on the expected differences among the 

observed values at years 1 and 2, the Δ1 and Δ2. Sample computations are presented in Table 

2 with similar results to those shown in Table 1.

Figure 4 presents the probability of a statistically significant test (z̃) based on the values for 

Δ1 and Δ2 assuming that n = 200 in each group and σ2 = 20. As was the case for a single 

sample, under the null hypothesis Δ2 = 0, then the analysis of the observed/imputed values is 

unbiased if Δ1 = 0 as well. Under the alternative hypothesis of a non-zero mean difference at 

2-years (Δ2 = δ ≠ 0), then the analysis of the observed/imputed values is unbiased when the 

mean difference at 1-year equals that at 2-years (Δ1 = δ ≠ 0). Otherwise, the analysis based 

on the observed/imputed values at 2-years is positively biased E(D̃
2) > Δ2 when Δ1 > δ and 

negatively biased when Δ1 < δ. Again, since the true mean differences Δ1 and Δ2 are 

unknown, all analyses using LOCF are suspect.

Note that when the difference between the two groups equals the change within a single 

group (μ2 = Δ2), and the variance is the same, then the probability of significance with 2n 

per group is the same as that for a single group of size n. Thus, the power to detect a 

difference of 1 in this case also equals 0.723.

Longitudinal Analyses

Now consider that a more general longitudinal mixed model is used to compare the overall 

group difference in the 1 and 2-year values combined (e.g. LSMEANS), possibly adjusted 

for a time effect (1 versus 2-years) and the baseline value, taking into account the 

intercorrelation among the repeated measures. The covariance structure then has three 
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components, the variance of the values at 1 and 2-years ( ) and the covariance σ12. If 

some of the X2 measures are missing and are imputed using 1-year values, then the 

covariance will be inflated.

The reason is simple. For τ = 0.3, the 70% of subjects with observed 2-year values have 

correlation ρ12 between the 1 and 2-year values, but the 30% with imputed values have 

correlation 1.0 since each imputed value at 2-years has exactly the same value as that 

subject’s 1-year value. Thus, the correlation between the observed/imputed 2-year values 

and the observed 1-year values is inflated. See the Appendix.

In a repeated measures analysis, the higher the intercorrelaton among the longitudinal 

measures, the less the total information provided. Thus the inflation in the observed/imputed 

correlation reduces the information in the data and reduces power.

It should also be noted that LOCF is a form of “single-point imputation” in which the 

“estimate” of the expected value of the missing value is imputed, but without consideration 

of the conditional variance. Even if the conditional estimate is unbiased, such methods 

generally underestimate the overall variance and lead to inflation in the type I error 

probability.

Discussion

The origins of last observation carried forward are obscure. It was perhaps first used in 

analyses submitted to the FDA, and the method quickly became pervasive. However, there 

has not been, to this author’s knowledge, a single refereed statistical publication 

demonstrating that the method is in general valid (unbiased). Rather, numerous papers have 

shown, mostly by statistical simulation, that the method can be biased.

Herein, I use a simple mixture model to show that the analysis of the means of a mixture of 

observed and imputed missing data using LOCF is biased. The only condition where LOCF 

is unbiased is when the missing data occurs completely by chance and the data used as the 

basis for the LOCF imputation has exactly the same distribution as does the unknown 

missing data. Since it can never be proven that these distributions are exactly the same, all 

LOCF analyses are suspect and should be dismissed.

In some applications LOCF is described as conservative or a “worst case” analysis, such as 

when patients tend to improve over time so that the 1-year values, and the imputed 2-year 

values, tend to be worse than the true (but missing) 2-year values. However, the bias 

introduced by LOCF is a function of the difference between two groups at 1-year, not just 

the individual group mean values at 1-year. Even though the values at 1-year tend to be 

worse, the mean difference at 1-year will likely be different from the true difference at 2-

years, leading to a biased estimate of the treatment effect at 2-years.

LOCF is commonly applied in studies of new drugs to treat type 2 diabetes. Per FDA 

guidance,10 the sponsor must show that the new drug can lower blood glucose levels, as 

measured by HbA1c %, over a period of 6 to 12 months versus placebo. Typically, the 

placebo group HbA1c rises slowly whereas the treated group HbA1c decreases substantially 
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(improves) at 3 months but then worsens (increases) over time.11,12 Many studies also 

include a provision to terminate therapy if the HbA1c rises. While this may lead to missing 

data in both groups, the potential bias is clearly greater in the active group since LOCF 

replaces the missing data with earlier values that tend to be lower (better) than the true 

missing values, thus overstating the benefits of the treatment.

Unfortunately, many FDA guidances explicitly recommend that submissions use LOCF to 

address missing data. Further, numerous articles are published every year that claim an 

effect based on LOCF analyses, all of which are likely biased to some degree. Regulatory 

agencies and journal editors (and reviewers) should be critical of any study with a 

substantial fraction of missing data, and should be highly skeptical of the veracity of any 

results and pursuant claims based on LOCF analyses.

The NRC report,2 commissioned by the FDA, describes other approaches to deal with 

missing data that can provide a less biased assessment of outcomes. However, all such 

methods require assumptions about the properties of the missing data that are inherently 

untestable. Accordingly, the NRC report stresses the importance of avoiding missing data to 

the extent possible. To this end, Lachin13 describes the “intention to treat design” in which 

the complete follow-up of all subjects is encouraged.

In summary, the well-known statistical properties of the mixture of two distributions are 

employed to demonstrate that LOCF analyses can introduce a positive or negative bias that 

can grossly inflate or deflate, respectively, the probability of a statistically significant test 

result under either the null or alternative hypothesis. Accordingly, without exception, all 

analyses using LOCF are suspect and should be dismissed. Statistically, last observation 

carried forward is specious (def: appearing to be true but actually false).
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Appendix

A. Variance of Observed/Imputed Values Under LOCF

For a single sample, the variance of the combination of observed plus imputed (LOCF) 

values at time 2 is provided by

(A.1)

and the variance of the mean of the observed/imputed values is provided by 

. Note that this variance does not depend on the correlation of the X1 and 

missing X2 values because under the missing completely at random assumption, the LOCF-

imputed values are obtained by sampling from the marginal distribution of X1. Thus the 

resulting X̃
2 values are a mixture of values from two distributions, rather than a linear 

combination.

For the case of two independent groups of observed/imputed values, the variances of the 

observed/imputed values within each group are

and the variance of the mean difference with sample size n per group is

(A.3)
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The above model, and the computations presented herein, assume that the fraction missing 

(τ) is pre-specified or fixed. In practice, however, this fraction could be the expectation of a 

Bernoulli random variable Y to denote missing versus not, again assuming missing 

completely at random, so that Y is jointly independent of X1 and X2. In this case it follows 

that E(X̃
2) remains as presented in (2). Decomposing V(X̃

2) = E [V(X̃
2|Y)] + V [E (X̃

2|Y)] 

yields the same expression as (A.1).

B. Correlation of Measures Under LOCF

Under LOCF the covariance of the observed values at year 1 and the observed/imputed 

values at year 2 is

(A.4)

Since  then

(A.5)

Then the correlation is

(A.6)

Since  when , then except for highly irregular situations, ρ̃
12 ≥ ρ12.
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Figure 1. 
Expected mean change from baseline (μ̃

2) in a one-sample analysis at 2-years from equation 

(1) under the null and the alternative hypotheses (μ2 = 0 or 1, respectively), for a single 

sample of n = 100 with 30% missing that are replaced by values at 1-year with mean μ1 

ranging from −1 to 2. The correct values with no missing data are designated by the dots.
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Figure 2. 

Expected variance of the change from baseline ( ) in a one-sample analysis at 2-years from 

equation (A.1) under the null and the alternative hypotheses (μ2 = 0 or 1 designated by solid 

and dashed lines, respectively), for a single sample of n = 100 with 30% missing that are 

replaced by values at 1-year with mean μ1 ranging from −1 to 2. Computations assume that 

the true variance at 2-years is  and the variance of the values at 1-year is , 20, 

or 30. The correct variances with no missing data are designated by the dots.
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Figure 3. 
One-sided probabilities of significance for a one-sample test of the change from baseline at 

2-years under the null and the alternative hypotheses (μ2 = 0 or 1, respectively), with 

variance , for a single sample of n = 100 with 30% missing that are replaced by values 

at 1-year with mean μ1 ranging from −1 to 2 and variance , 20, 30. The correct 

probabilities with no missing data are designated by the dots.
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Figure 4. 
One-sided probabilities of significance for a test of the difference between two groups A and 

B at 2-years with mean Δ2 = μa2 − μb2 under the null and the alternative hypotheses (Δ2 = 0 

or 1, respectively), for n = 200 per group with 30% missing that are replaced by values at 1-

year with mean difference Δ1 = μa1 − μb1 ranging from −1 to 2 and variance σ2 = 20 within 

each group at both times. The correct probabilities with no missing data are designated by 

the dots.
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