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SUMMARY

Cultured cells convert glucose to lactate and glutamine is the major source of tricarboxylic acid 

(TCA) cycle carbon, but whether the same metabolic phenotype is found in tumors is less studied. 

We infused mice with lung cancers with isotope-labeled glucose or glutamine and compared the 

fate of these nutrients in tumor and normal tissue. As expected, lung tumors exhibit increased 

lactate production from glucose. However, glutamine utilization by both lung tumors and normal 

lung was minimal, with lung tumors showing increased glucose contribution to the TCA cycle 

relative to normal lung tissue. Deletion of enzymes involved in glucose oxidation demonstrates 

that glucose carbon contribution to the TCA cycle is required for tumor formation. These data 

suggest that understanding nutrient utilization by tumors can predict metabolic dependencies of 

cancers in vivo. Furthermore, these data argue that the in vivo environment is an important 

determinant of the metabolic phenotype of cancer cells.
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INTRODUCTION

Metabolism is altered in cancer to sustain the energetic and biosynthetic demands of 

uncontrolled proliferation, and increased glucose uptake is a common feature of cancer cells 

in culture and tumors (Cairns et al., 2011; Vander Heiden et al., 2009). Positron emission 

tomography detection of 18F-2-deoxyglucose uptake together with magnetic resonance 

spectroscopy studies have confirmed increased glucose-to-lactate conversion in tumors 

(Warburg effect) (Keshari et al., 2013; Rodrigues et al., 2014), but understanding the 

metabolic phenotype of cancer is based mostly on cell culture studies, including the idea that 

glucose oxidation in the TCA cycle is limited (Bonnet et al., 2007; Cairns et al., 2011). 

Indeed, other data suggests mitochondrial function is required for tumor growth (Weinberg 

et al., 2010) and oxidative glucose metabolism has been observed in tumors (Yuneva et al., 

2012; Marin-Valencia et al., 2012; Sellers et al., 2015). Whether tumors require glucose to 

support the TCA cycle remains unknown.

Non-small cell lung cancer (NSCLC) is a leading cause of cancer mortality (Herbst et al., 

2008). Mutations in Kras are frequent in NSCLC and Ras activation has specific metabolic 

consequences (White, 2013). Ras-driven cancer cells display increased glucose uptake and 

aerobic glycolysis that supports both nucleotide biosynthesis and protein glycosylation for 

growth signaling (Jones and Thompson, 2009; Onetti et al., 1997; Ying et al., 2012). 

However, recent work suggests that there is selective pressure to maintain functional 

mitochondria in tumors (Tan et al., 2015). Limited studies of tumor metabolism have 

suggested the driver mutation, tissue of origin, and microenvironment all can impact 

metabolic phenotypes (Davidson and Vander Heiden, 2012; Yuneva et al., 2012), 

highlighting the need to understand metabolism in spontaneously arising tumors.

Glutamine is an important nutrient for most cancer cells in culture (Hensley et al., 2013; 

Mayers and Vander Heiden, 2015), and can provide carbon for TCA cycle anaplerosis in 

Ras-driven cancer cells (White, 2013). Indeed, the GAC splice isoform of glutaminase 

(Gls1) is essential in NSCLC-derived cell lines (van den Heuvel et al., 2012). Glutamine 

also acts as a direct nitrogen donor for nucleotide biosynthesis and can supply alpha-

ketoglutarate (αKG) to support amino acid catabolism (Commisso et al., 2013; White, 

2013). Glutamine catabolism in Kras-driven pancreatic cancer cells also has been implicated 

in NADPH production and redox balance (Lyssiotis et al., 2013; Ying et al., 2012). 

However, the extent of glutamine metabolism in vivo is controversial, with evidence for net 

glutamine synthesis in some tumors (Yuneva et al., 2012). Analysis of NSCLC tumor 

metabolism in patients argues both glucose and glutamine can be important for TCA 

anaplerosis (Cheng et al., 2011; Sellers et al., 2015). Drugs targeting Gls1 are being 

explored as therapies for human cancers, highlighting the importance of understanding 

glutamine use by tumors (Gross et al., 2014).

To understand how lung tumors utilize nutrients relative to normal lung, we examined tissue 

metabolism in mouse lung cancer models. This analysis suggested glucose oxidation is 

important for lung tumors, a finding that was not evident from examination of lung cancer 

cell lines in vitro. We utilized CRISPR/Cas9-based genome editing to understand whether 

tumors were dependent on glucose contribution to the TCA cycle. While glucose oxidation 
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is dispensable for lung cancer cell proliferation in culture, enzymes involved in glucose 

oxidation are required for tumor growth in vivo. Conversely, preferential glutamine 

metabolism is not observed in lung tumors, and neither genetic deletion nor pharmacological 

inhibition of Gls1 affected the growth of KrasG12D-induced lung tumors. Together, these 

data better define the metabolic landscape of NSCLC and inform pathways that are required 

for cancer growth in a pathophysiological tissue context.

Results

Analysis of glucose metabolism in normal tissues

To study tissue glucose metabolism, we performed euglycemic [U-13C]glucose infusion in 

conscious unrestrained C57Bl6 mice (Ayala et al., 2010). Blood glucose and plasma insulin 

levels remained within the normal range throughout (Figures 1A, B), and isotopic 

enrichment of plasma glucose reached steady-state within 120 minutes (Figure 1C). To 

compare the labeling of tissues with different glucose uptake rates, we established the time 

required for glucose labeling of metabolites in tissues to reach isotopic steady-state. Because 

tissues with lower uptake will take longer to reach steady-state, this timing was established 

in normal tissues since most tumors, including Kras-driven lung tumors, exhibit elevated 

glucose uptake (Engelman et al., 2008). Tissue metabolites from wild-type [U-13C]glucose 

infused mice were analyzed by liquid-chromatography mass spectrometry (LC-MS) (Figures 

1D–L, S1). The percentage of fully labeled lactate (M3 isotopomer) in lung tissue reached 

steady-state by 1-hour and was similar to the percentage of hexose-6-phosphate enrichment 

(Figures 1D, F). This suggests glucose is the primary source of lactate in normal lung tissue. 

Labeling of other glycolytic intermediates, TCA cycle metabolites, and TCA cycle-derived 

amino acids from glucose reached isotopic steady-state in the lung with similar kinetics 

(Figure 1D–L). The finding that TCA cycle intermediate labeling occurred with similar 

kinetics as glycolytic intermediates is consistent with glucose oxidation being a major fate of 

glucose in lung tissue. Labeling of glutamate and glutamine from glucose is also observed 

(Figures 1K, L).

Glucose metabolism in lung tumor tissue

To examine metabolic differences between lung tumor and normal tissue we analyzed three 

mouse models of KrasG12D-driven NSCLC. The mouse models initiate lung tumors through 

different mechanisms and result in lesions of different grades and invasiveness. We utilized 

two autochthonous mouse models of NSCLC: 1) The KrasLA2/+(LA2) model involves 

spontaneous recombination of an oncogenic KrasG12D allele in somatic cells and initiates 

primarily low grade lung adenomas that progress to invasive adenocarcinomas over the 

period of 6–8 months (Johnson et al., 2001), 2) Intratracheal delivery of adenoviral Cre 

(Ad5-CMV-Cre) to the lungs of animals harboring conditional KrasLSL-G12D/+; p53loxP/loxP 

(KP) alleles results in higher grade, metastatic tumors that progress rapidly and cause death 

within 12–16 weeks (DuPage et al., 2009; Jackson et al., 2001; Jonkers et al., 2001; Tuveson 

et al., 2004). Cell lines derived from lung tumors arising in C57/Bl6 KP mice were 

introduced into the lungs of syngeneic animals via intratracheal injections (KPS), with lung 

tumor formation observed with even faster kinetics (Curtis et al., 2010). We also sought to 

determine how metabolism in these KrasG12D-driven tumors compared to xenograft tumors 
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derived from two human lung cancer cell lines: 1) A549 cells with a KRAS mutation and 2) 

H1975 cells with an EGFR mutation.

LA2, KP, and KPS mice underwent micro-computed tomography (μCT) scanning to select 

mice with tumors for analysis, and [U-13C]glucose was infused to reach a plasma 

enrichment of >65% (Figure 2A). To ensure isotopic steady-state was reached in both tumor 

and normal lung tissue, tissues were harvested after a 6-hour infusion and metabolites from 

tumor and normal lung tissue were analyzed using gas-chromatography mass-spectrometry 

(GC-MS) (Tables S1, S2). Labeling of lactate and pyruvate from glucose carbon was similar 

in tumors and adjacent lung tissue in all three models (Figures 2B, 2C, 2D), consistent with 

glucose acting as a source of lactate in these tissues. Lactate pool sizes were higher in KP 

and KPS tumors while levels of many other metabolites were similar to normal lung, 

suggesting that these tumors may be more glycolytic than LA2 tumors (Figure S2A, S2B). 

Despite no differences in percent lactate labeling, the increased uptake of glucose in tumors 

and the increased amount of lactate present in KP and KPS tumors argues relative glucose 

metabolism to lactate is increased in these NSCLC models compared to normal lung.

Glucose carbon can enter the TCA cycle as acetyl-CoA, with acetyl-CoA derived from 

oxidation of glucose-derived pyruvate via the pyruvate dehydrogenase complex (PDH) 

(Figure 2B). Thus, entry of PDH-derived glucose carbon into the TCA cycle results in 

isotopomer species with two labeled carbons (M2), and species with more labeled carbons 

are generated by addition of labeled acetyl-CoA to labeled oxaloacetate produced by TCA 

cycling (M3 and M4). When compared to the adjacent lung, the percent M2 and M4 citrate 

was increased in LA2 and KPS tumors, but not in KP tumors (Figure 2E). A similar pattern 

was observed in both glutamate and aspartate, amino acids that reflect TCA cycle labeling of 

αKG and oxaloacetate (OAA) (Figures 2F, 2G). Glucose label was observed in glutamine in 

both lung tumors and normal lung, suggesting both tissues synthesize glutamine from 

glucose (Figure 2H). Additionally, LA2 tumors exhibited an increase in M2 glutamine 

labeling, suggesting that glucose use to synthesize glutamine can be increased in some 

tumors (Figure 2H). To determine whether similar metabolism is observed in xenograft 

tumors derived from established human lung cancer cell lines, [U-13C]glucose was infused 

to an average final plasma enrichment of 78% (+/− 9%) in mice harboring tumors derived 

from A549 or H1975 cells. Analysis of the labeling patterns and metabolite pool sizes in 

these tumors relative to normal lung was similar to what was observed in LA2 and KPS 

tumors (Figures 2I, 2J, S2C, S2D, S2E and Table S2). Together, these data suggest that lung 

tumors oxidize glucose through PDH.

TCA cycle anaplerosis involving glucose-derived carbon and pyruvate carboxylase (Pcx) 

has been described as a feature of some human lung tumors (Cheng et al., 2011; Hensley 

and DeBerardinis, 2015; Sellers et al., 2015), and Pcx could contribute to the increased three 

carbon labeling (M3) of TCA cycle intermediates from glucose in all lung tumors examined 

(Figures 2B, 2E, 2F, 2G, 2I, 2J, S2C and S2D). To specifically examine Pcx activity in 

tumor tissue, we infused tumor-bearing KP animals with [1-13C]pyruvate to a final 

enrichment of 10.3 (+/− 2.1%) and assessed metabolite labeling in normal lung and lung 

tumor tissue (Figure S3A, S3B). The ratio of M1 labeled aspartate, citrate and malate to M1 

labeled pyruvate was higher in tumors compared to normal lung (Figure S3B). Because the 
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labeled carbon on [1-13C]pyruvate is lost during the PDH reaction, these data argue that 

pyruvate carboxylation is active in these tumors. Consistent with these studies, M3-labeled 

TCA cycle intermediates are observed in all models, with increased M3 species observed 

relative to M4 species (Figures 2E, 2F, 2G, 2I, 2J, S2C, and S2D). Furthermore, the 

presence of M1 labeled species in amounts that are similar to M2 labeled species, and in 

excess of M3 and M4 species, raises the possibility that addition of a labeled CO2, derived 

from glucose oxidation and pyruvate carboxylase activity contributes to the labeling patterns 

observed (Figures S3A, S3C). Taken together, analysis of glucose fate in lung tumors 

suggests that in addition to lactate production, glucose is metabolized by the PDH complex 

and Pcx in lung tumors, and glucose is a major source of TCA cycle carbon in these tumor 

models.

Glutamine metabolism in lung tumor and normal lung tissue

Studies of Kras-transformed cells in culture suggest glutamine can also be an important 

source of TCA cycle carbon. To determine the fate of glutamine in the KrasG12D-driven 

mouse tumor models, the human lung cancer cell line xenograft models, and normal lung 

tissue, [U-13C]glutamine was infused into tumor-bearing animals to a final plasma 

enrichment between 30–60% (Figure 3A). Surprisingly, we observed minimal labeling of 

glutamate and TCA intermediates in normal lung, autochthonous, syngeneic, or xenografted 

lung tumors despite the presence of labeled glutamine in these tissues (Figures 3B, 3C, 3D, 

S4A–C and Table S2). Furthermore, no significant differences in labeling of TCA cycle 

intermediates from glutamine was observed in tumors relative to normal lung tissue, with 

the exception of a small increase in M5 citrate in lung tumors relative to normal lung 

(Figures 3D, S4D). Cultured cells that were transplanted into the lung demonstrated 

decreased intracellular glutamine labeling as compared to normal lung despite comparable 

glutamate labeling, suggesting that these tumors may exhibit increased glutamine conversion 

to glutamate relative to normal lung tissue, although even in these tumors the labeling of 

TCA cycle intermediates was less than 5% (Figure S4A–C).

To understand whether enzyme expression levels reflected the metabolic phenotypes we 

observe, expression of Gls1, Pcx and Pdha1 in KP tumors were determined by Western blot 

and/or immunohistochemistry (Figure 3E, S4E, S4F). Of those enzymes, only Pcx 

expression was increased in KP tumors relative to normal lung. Phosphorylation of the E1α 

subunit of PDH (encoded by the Pdha1 gene) can limit flux through the PDH complex to 

decrease glucose oxidation. In line with increased glucose labeling of TCA cycle 

intermediates, levels of phosphorylated PDHE1α were similar in both tumor and normal 

lung (Figure 3E). Furthermore, in all three KrasG12D-driven mouse cancer models labeling 

of TCA intermediates from glucose is observed while labeling from glutamine is minimal, 

suggesting that glucose rather than glutamine is a major source of carbon for the TCA cycle 

in these lung tumors (Figure 3F).

Environment influences the metabolic phenotype of KrasG12D lung cancer derived cells

To understand whether cells derived from autochthonous tumors retained the same 

metabolic phenotypes in cell culture, we traced [U-13C]glucose and glutamine in cell lines 

derived from lung tumors arising in KP mice. Consistent with previous studies examining 
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glucose metabolism in Ras-transformed cell lines, KP tumor-derived cell lines convert 

glucose to lactate at nearly a 1:2 molar ratio, suggesting the primary fate of glucose is lactate 

in these cells in culture (Figure 4A). To quantify the relative fate of glucose carbon under 

these conditions, we performed metabolic flux analysis (MFA) using stable isotope tracing 

of [1,2-13C]glucose and [U-13C]glutamine (Figure 4B, Tables S3–7 and Supplemental 

Methods). These data support that the dominant fate of glucose in these lung cancer cells in 

culture is lactate, while relatively little glucose-derived carbon contributes to the TCA cycle. 

In addition, as observed in most cultured cells, glutamine labels TCA intermediates to high 

levels when the lung cancer cells are cultured in either 2D or 3D culture conditions (Figures 

4C, 4D, S5A). Consistent with glutamine metabolism by these cells, their ability to 

proliferate in culture is dependent on the concentration of glutamine in the media (Figure 

4E), and they are sensitive to the glutaminase inhibitor CB-839 (Figure 4F) (Gross et al., 

2014). Dose dependent reduction in M5-glutamate was observed with addition of CB-839 

while M5-glutamine levels remained constant (Figure S5B, S5C), confirming that CB-839 

inhibits glutaminase in these cells. These data suggest that despite a lack of preferential 

glutamine use by tumors in vivo, cell lines derived from KP lung tumors rely on glutamine 

metabolism for proliferation in vitro. Furthermore, because transplantation of the same KP 

cells back into the lung (KPS model) results in tumors with a metabolic phenotype similar to 

spontaneously arising lung cancers, the lung tissue environment must be an important 

determinant of lung cancer nutrient metabolism.

KrasG12D tumors do not preferentially rely on glutamine for tumor growth

To determine whether the metabolic phenotype observed in lung tumors reflects metabolic 

dependencies of these tumors, we examined whether glutaminase is required for KP tumor 

growth in vivo. Tumor-bearing KP mice with lung tumors identified using micro-computed 

tomography imaging (μCT) were treated with vehicle or 200mg/kg oral CB-839 (Figure 

5A). Examination of tumor size by μCT scans showed no differences after 4 weeks of 

continuous treatment with once daily dosing of vehicle or CB-839. The level of CB-839 in 

the tumor was approximately 1.5 nmol/g of tissue, an amount similar to that reported 

previously (Figure 5B) (Gross et al., 2014). Furthermore, when lung tumors were examined 

by μCT scan after 4 weeks of treatment with vehicle or CB-839, gross tumor burden was 

similar in both groups (Figure 5A). When tumors were harvested the histological appearance 

of the tumors was unchanged and no change in proliferation assessed by Ki-67 staining was 

observed with CB-839 treatment (Figures 5C, 5D). Additionally, unlike sensitive tumor 

models (Gross et al., 2014), no increase in apoptosis was observed by cleaved-caspase-3 

staining (Figure 5E). To confirm CB-839 exposure in this model was adequate to inhibit 

glutaminase, lung tumor-bearing animals treated with vehicle or CB-839 were infused with 

[U-13C]glutamine prior to tumor collection. Consistent with glutaminase inhibition in 

CB-839 treated tumors, relative intratumoral glutamate-to-glutamine concentration ratios 

decreased (Figure 5F). In addition, although the percent labeled glutamine (M5) in the 

tumors was similar in vehicle and CB-839 treated mice, significantly less labeled glutamate 

was noted in tumors exposed to CB-839 (Figure 5G). These data are consistent with CB-839 

inhibiting glutaminase in the tumors and suggest that this degree of glutaminase inhibition is 

not sufficient to slow tumor growth in this model.
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To test glutaminase dependency genetically, we attempted to delete Gls1 in KP tumor-

derived cell lines using CRISPR/Cas9-based gene disruption (Figure S6A). However, in line 

with dependence on glutamine metabolism for proliferation in culture, we were unable to 

generate any Gls1 knockout cell lines (0/71 screened clones). This suggests that Gls1 is 

essential for KP tumor cell proliferation in culture. To assess whether Gls1 is required for 

the growth of autochthonous KP tumors, we utilized CRISPR/Cas9-based somatic editing to 

disrupt Gls1 in lung tumor tissue. A lentiviral vector containing sgRNA to Gls1, Cas9, and 

Cre-recombinase (pSECC) was delivered to the lungs of KP mice (Sánchez-Rivera et al., 

2014), and a spectrum of tumors formed with both high and low Gls1 expression (Figure 

5H, S6K). These findings argue that high Gls1 activity or expression is not required for lung 

tumor initiation or progression in this model and is consistent with pharmacological 

inhibition of glutaminase having no effect on growth of these tumors. These findings are 

also consistent with the metabolite tracing data showing minimal contribution of glutamine 

carbon to the TCA cycle in these Kras-driven lung tumors.

Mitochondrial metabolism of pyruvate is essential for tumor formation in vivo

To determine whether enzymes involved in mitochondrial glucose metabolism are required 

for cancer cell proliferation in culture and in vivo, we deleted enzymes required for entry of 

glucose carbon into the TCA cycle. The PDH complex and Pcx are required for oxidative 

glucose metabolism, with PDH generating acetyl-CoA for the TCA cycle and Pcx required 

for the generation of oxaloacetate from pyruvate as a source of anaplerotic TCA cycle 

carbon. Using CRISPR/Cas9, both Pcx and the E1α subunit of PDH (Pdha1) were disrupted 

in cancer cells derived from KP lung tumors (Figures S6B, S6C). Stable cell lines lacking 

Pdha1 and Pcx were confirmed to harbor disruptions in these genes, and their protein 

products are not expressed (Figures 6A, 7A, S6B, and S6C). The ability to oxidize glucose 

and to utilize glucose for anaplerosis was also decreased following deletion of Pdha1 or Pcx 

(Figure 6B, 7B, S7). Consistent with previous studies arguing glucose oxidation is not 

required for proliferation of most cells in culture, we observed minimal difference in the 

proliferation of Pdha1- and Pcx-deleted cells relative to wild-type cells in 2D or in 3D 

culture conditions (Figures 6A, 7A, S6D, S6F, S6H). However, when transplanted into the 

flanks of syngeneic recipient mice, cells harboring mutations in either Pcx or Pdha1 fail to 

form tumors that grow larger than the initial mass of cells injected (Figures 6C, 7C, S6E, 

and S6G). We confirmed that unlike tumors that form from control cells, the Pcx- and 

Pdha1-deleted cells still present at the injection site as cytostatic masses did not express Pcx 

and Pdha1, respectively (Figures 6E, 7E), and showed changes in metabolite labeling that 

are consistent with enzyme deletion (Figure 6D, 7D). In addition, when transplanted 

orthotopically into the lungs of syngeneic mice, tumor formation from Pcx- and Pdha1-

deleted cells was severely compromised (Figures 6F, 7F, S6I). Finally, disruption of Pdha1 

or Pcx using pSECC-derived Lentivirus to deliver sgRNAs and Cas9 together with Cre-

recombinase to the lungs of KP mice (Sánchez-Rivera et al., 2014) resulted in tumors that 

retained Phda1 expression (animals injected with sgPhda1, Figure 6G and S6J) or no 

detectable tumors (animals injected with sgPcx, Figure 7G and S6J). These data suggest that 

both Pcx and Pdha1 are required for tumor initiation and proliferation in vivo, and are 

consistent with TCA cycle metabolism being an important fate of glucose in Kras-driven 
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lung tumors. These findings also argue that assessment of nutrient fates in tumors reflects 

metabolic dependencies of cancer cells in a physiological tissue environment.

DISCUSSION

These findings suggest increased glucose uptake in Kras-driven NSCLC is used to support 

both increased lactate production and increased TCA cycle metabolism, challenging the 

notion that tumors switch from oxidative glucose metabolism to aerobic glycolysis (Vander 

Heiden et al., 2009). The exclusive metabolism of glucose to lactate by tumors has also been 

questioned by analysis of glucose fate in glioblastoma, lung cancers and liver cancers 

(Maher et al., 2012; Marin-Valencia et al., 2012; Yuneva et al., 2012). The finding that 

oxidative metabolism of glucose is increased in vivo raises the possibility that the use of 

glucose to support the TCA cycle is important to support cell proliferation under the 

conditions present in tissues.

It has been hypothesized that high flux through glycolysis benefits tumors by allowing ATP 

production in the absence of oxygen and by promoting anabolic metabolism (Gatenby and 

Gillies, 2004; Vander Heiden et al., 2009). Increased lactate production supports NAD+ 

regeneration in the absence of oxygen consumption and may provide other benefits to tumor 

cells related to altered pH or supplying lactate to other tumor cells (Sonveaux et al., 2008). 

Near quantitative conversion of glucose to lactate is a phenotype observed in proliferating 

cells in culture, raising the possibility that a similar phenotype is present in proliferating 

cells of lung tumors. Because a substantial fraction of the tumor is not actively proliferating, 

the increase in oxidative glucose metabolism might reflect the metabolic phenotype of non-

proliferating cells. In mouse breast cancer, proliferating and non-proliferating cells regulate 

glucose metabolism differently such that the non-proliferating cells select for increased 

pyruvate kinase activity, a regulatory state associated with increased oxidative glucose 

metabolism (Israelsen et al., 2013). Differences in lactate production are present across the 

NSCLC models considered for this study. Whereas the KP, KPS, and xenograft models form 

tumors with a higher proliferative index, the LA2 model forms lower grade tumors. 

Consistent with a model where increased lactate production tracks with increased 

proliferation, lactate levels are increased in KP, KPS, and xenograft tumors relative to 

normal tissue but not in LA2 tumors. However, KPS tumors proliferate faster than KP 

tumor, and if anything lactate levels are lower in the KPS tumors arguing that lactate levels 

do not always scale with proliferation. While all of the tumor models examined contain a 

high proportion of cancer cells relative to other cell types, differences in glucose metabolism 

are observed in different regions of human cancers (Hensley et al., in press). Thus, unknown 

factors driving tumor heterogeneity might also contribute to the metabolic phenotype 

differences observed in tumor tissue.

Decreased PDH flux has been described as a property of tumors, with PDH reactivation 

proposed as a cancer therapy (Michelakis et al., 2008). Surprisingly, glucose metabolism 

through PDH is increased in tumors relative to normal lung tissues and the cancer cells are 

dependent on this enzyme for tumor formation. Increased inhibitory phosphorylation of 

PDHE1α was also not observed in these tumors. One possibility is the lack of increased 

PDHE1α phosphorylation reflects increased oxygenation. Indeed, the lung is a relatively 
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well-perfused organ providing access to circulating nutrients and oxygen, although as lung 

cancers grow vascularization can become limiting and even large human lung tumors have 

elevated PDH flux (Hensley et al. in press). This suggests that oxidative glucose metabolism 

may provide benefits to tumor cells such as the production of aspartate (Sullivan et al., 

2015) regardless of tumor size.

Despite exposure to among the highest oxygen tensions in the body, normal lung uses 30–

50% of consumed glucose to make lactate and 20% to make CO2 while contributing 

relatively minor amounts to protein and lipid biosynthesis (Fisher, 1984). Outside of 

cytosolic ATP production and NAD+ regeneration, the benefit for normal lung physiology of 

relatively high flux to lactate remains unclear. Although the flux from glucose to lactate in 

the lung is high relative to other tissues, glucose also supports production of TCA cycle 

intermediates in the lung. Notably, glucose fuels glutamate and glutamine production in lung 

tissue in rats and humans, and lung tissue is among the highest producers of glutamine 

(Hensley et al., 2013).

Glutamine is the most abundant amino acid in tissue culture media and in the blood, yet in 

contrast to observations in cell culture, blood glutamine contributes minimally to both 

normal lung and lung tumor metabolism. Labeled glutamine was abundant in both tissues 

suggesting ineffective glutamine delivery cannot explain why this amino acid is not used as 

a fuel. Instead, both normal lung and lung tumors synthesize α-ketoglutarate, glutamate and 

glutamine from glucose-derived carbon. This is consistent with findings in MYC-driven 

lung tumors and glioblastoma (Maher et al., 2012; Marin-Valencia et al., 2012; Yuneva et 

al., 2012) and may reflect the glutamine use to excrete excess nitrogen from amino acid 

catabolism (Stumvoll et al., 1999). Urea production for nitrogen excretion is restricted 

primarily to the liver and kidney in mammals, and glutamine carries excess nitrogen from 

peripheral tissues to these organs. Because the use of glutamine as a carbon source produces 

ammonia, glutaminase activity may be better tolerated in tissue culture where large media 

volumes prevent ammonia accumulation to toxic levels. However, because of an increased 

need for glutathione (Sellers et al., 2015), nucleotides, and amino acids; tumor nitrogen 

requirement is higher than that of normal tissues (Mayers and Vander Heiden, 2015). 

Nevertheless, the net production of glutamine by lung tumors despite the availability of this 

amino acid from the circulation suggests alternative sources of nitrogen are used, possibly 

reflecting the propensity of RAS-cancers to catabolize extracellular protein (Commisso et 

al., 2013; Kamphorst et al., 2015).

The use of pyruvate carboxylase appears to be an important for anaplerosis in tumors in vivo 

(Fan et al., 2009; Sellers et al., 2015). Consistent with these findings, genetic deletion of Pcx 

prevents tumor growth while genetic deletion or inhibition of glutaminase has no observable 

effect. The fact that opposite dependencies were suggested by cell culture experiments 

highlights the importance of selecting targets for cancer therapy based on nutrient use in a 

relevant tissue context. The possibility that tissue context is an important determinant of 

how tumors utilize nutrients might also explain why chemotherapies targeting nucleotide 

metabolism show efficacy based on cancer tissue of origin. More directly, it suggests that 

targeting PDH or PCX might inhibit lung tumor growth. In fact, lipoate derivatives act in 
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part through PDH activity suppression and can be potent anticancer drugs in vivo (Zachar et 

al., 2011).

This study highlights the importance of model selection to identify metabolic cancer targets. 

Cell culture conditions are non-physiological with respect to nutrients, oxygen, and 

tolerance for excretion of toxic metabolites such as ammonia. Cell culture also selects for 

the most rapidly proliferating cells, and many tumor cells cannot be cultured in vitro. The 

fact that transplanted tumors exhibit a phenotype more similar to tumors arising in the lung 

that are never exposed to cell culture suggests that environment has a greater impact on how 

nutrients are utilized than genetic or epigenetic selection associated with cell line formation. 

The similarities between Kras-driven NSCLC, an EGFR-driven lung tumor, and published 

studies of genetically distinct tumors further argues that tissue environment can dictate 

metabolic phenotypes across tumor types. This highlights the importance of considering 

environmental context in addition to genetics in metabolism studies, particularly in 

considering how best to target cancer metabolism.

EXPERIMENTAL PROCEDURES

Mouse Cancer Models

All animal studies were approved by the MIT Committee on Animal Care. For 

autochthonous models, mice from a mixed 129/Sv and B6 genetic background were used. 

C57Bl6/J or nu/nu mice were used for allografts and xenografts respectivley. Flank tumor 

growth was measured with calipers. Lung tumor volumes were assessed using an eXplore 

CT120-whole mouse μCT (GE Healthcare) with MicroView 3D Image Viewing (Parallax-

Innovations) and OsiriX (OsiriX-Viewer) used for image analysis.

Glucose and Glutamine Infusion

Arterial and venous catheters were surgically implanted into the jugular veins and/or carotid 

artery of animals 3–4 days prior to infusions. Infusions were performed in free-moving 

conscious animals after a 6 hour fast. Mice were infused for a 6-hours at the specified rate 

prior to terminally anesthetia with sodium pentobarbital and rapid tissue harvest. Tissue was 

rapidly frozen using a BioSqueezer (BioSpec Products) to quench metabolism and stored at 

−80°C prior to metabolite extraction. Plasma insulin levels were determined using an 

ultrasensitive mouse insulin ELISA kit (Crystal Chem, #90080). Blood glucose levels from 

the same mice were measured using a handheld glucometer (One Touch).

Cell Culture

Cell lines from KP lung tumors were established by standard protocols. Isogenic clones 

were selected for comparison of CRISPR cell lines. For labeling studies and MFA, cells 

were cultured for 24 hours in DMEM containing 17.5mmol/L [U-13C]glucose, 

[1,2-13C]glucose, or 4mmol/L [U-13C]glutamine (Cambridge Isotopes Laboratories) prior to 

metabolite extraction. For labeling in 3D culture, Adherence plates (Corning) were used. 

Proliferation in 3D was assessed using CellTiter-Glo (Promega).
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Metabolite Measurement

For metabolite extraction, 10–40mg tissue was weighed and homogenized cryogenically 

(Retsch Cryomill) prior to extraction in chloroforom:methanol:water (400:600:300). 

Samples were centrifuged to separate aqueous and organic layers, and polar metabolites 

dried under nitrogen gas for subsequent analysis by mass-spectrometry. For liquid 

chromatography mass spectrometry (LC-MS), dried metabolites were resuspended in water 

based on tissue weight with valine-D8 included as an injection control. Polar metabolites 

were analyzed using a Nexera X2 U-HPLC (Shimadzu, Marlborough, MA) and a Q-

Exactive hybrid quadrupole orbitrap mass spectrometer (Thermo Fisher Scientific; 

Waltham, MA). Hydrophobic interaction liquid chromatography (HILIC) was used for 

positive ion mode (Townsend et al., 2013; Wang et al., 2011) and negative ion mode 

(Avanesov et al., 2014) as previously descrbied. MS data were processed using Tracefinder 

(version 3.2, Thermo Fisher Scientific; Waltham, MA). For gas chromatography mass 

spectrometry (GC-MS) dried metabolites were dissolved in 10μL/10mg wet tissue weight of 

2% methoxyamine hydrochloride in pyridine (Sigma) and held at 37C for 1.5h, norvaline 

was added as an injection control. Tert-butyldimethylsilyl derivatization was initiated by 

adding 15μL/10mg wet weight of N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide + 

1% tert-butyldimethylchlorosilane (Sigma) and incubated at 37C for 1hr. GC-MS analysis 

was performed using an Agilent 7890 GC equipped with 30m DB-35MS capillary column 

connected to an Agilent 5975B MS operating under electron impact ionization at 70eV with 

helium as a carrier gas and the detector in scanning mode. MIDs were corrected for natural 

isotope abundance as previously reported (Commisso et al., 2013). Glucose, lactate, 

glutamine, and glutamate were measured using YSI biochemistry analyzer (Yellow Springs 

Instruments, Yellow Springs, OH). Exponential growth over the culture period was assumed 

for flux calculations.

CRISPR/Cas9 Gene Editing

sgRNAs were designed using E-CRISP (e-crisp.org) to Pdha1, Pcx, and Gls1 with 

restriction enzyme compatible sites and a G was added to the +1 position where not already 

present for U6 transcription. sgRNAs cloned in U6-sgRNA-EFS-Cas9-2A-Puro or U6-

sgRNA-EFS-Cas9-2A-Cre (pSECC) were used for cell lines and in vivo experiments 

respectively as previously described (Sánchez-Rivera et al., 2014).

Western Blot and Immunohistochemistry

Western blotting was conducted using manufacturer’s recommended concentrations of 

antibodies against Vinculin (Sigma/V9131), Pcx (Thermo-Fisher/PA5-23055), Gls1 

(Abcam/AB93434), p-Pdha1 (Calbiochem/AP1062), and Pdha1 (Proteintech/18068). For 

IHC, whole lungs and tumors were perfused with 4% PFA and fixed overnight at room 

temperature. Tissues were paraffin embedded and cut into 5μM sections. Following antigen 

retrieval, sections were stained with Ki-67 (BD Pharmingen/556003), Cleaved Caspase 3 

(Cell Signaling Technology/#9661), or the above antibodies using ABC Vectastain kit 

(Vector Laboratories) and developed with DAB and counterstained with hematoxylin and 

eosin. Quantification of Ki-67 and Cleaved Caspase 3 were performed using ImageJ (http://

imagej.nih.gov).
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Glutaminase Inhibitor

Animals were treated with 200mg/kg CB-839 or vehicle for 4 weeks after observing initial 

masses by μCT in the lung. The vehicle contained 25% (w/v) hydroxypropyl-β-cyclodextrin 

in 10mmol/L citrate, pH 2.0 and CB-839 was formulated at 20mg/mL for a final dosing 

volume of 10mL/kg as previously described (Gross et al., 2014). CB-839 was quantified in 

tissues and plasma using LC-MS.

Statistical Analysis

Two-tailed paired and unpaired Student’s T-test were performed for all experiments unless 

otherwise specified. Results for independent experiments are presented as mean ± SEM; 

results for technical replicates are presented as mean ± SD; results for MFA are presented 

with 95% confidence intervals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

Metabolic phenotyping of tumors can identify essential metabolic pathways

Kras-driven lung tumors require pyruvate carboxylase and pyruvate dehydrogenase

Kras-driven lung tumors are less dependent on glutaminase than cultured cells

Tissue environment is an important determinant of tumor metabolic phenotypes
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Figure 1. Steady state labeling of metabolites in tissues
(A) Blood glucose levels over time in mice infused with [U-13C]glucose. Values shown are 

mean +/− SEM, n = 4.

(B) Plasma insulin levels over time in mice infused with [U-13C]glucose. Values shown are 

mean +/− SEM, n = 4.

(C) Plasma enrichment of fully labeled glucose (M6) in animals infused with 

[U-13C]glucose over time. Values shown are mean +/− SEM, n = 4.

(D–F) Representative serial sacrifice (n=1) of WT animals after infusion of [U-13C]glucose. 

Labeling of glycolytic intermediates in lung tissue from wild type mice infused with 

[U-13C]glucose for the indicated time at 20mg/kg/min. The unlabeled (M0) and fully-

labeled (M3 or M6) isotopomer is shown for each species.

(G–I) Representative serial sacrifice (n=1) of WT animals after infusion of [U-13C]glucose. 

Labeling of TCA intermediates in lung tissue from wild type mice infused with 
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[U-13C]glucose for the indicated time at 20mg/kg/min. The unlabeled (M0) and prominent 

M2 labeled isotopomer are shown for each species.

(J–L) Representative serial sacrifice (n=1) of WT animals after infusion of [U-13C]glucose. 

Labeling of aspartate, glutamate, and glutamine in in lung tissue from wild type mice 

infused with [U-13C]glucose for the indicated time at 20mg/kg/min. The unlabeled (M0) and 

prominent M2 labeled isotopomer are shown for each species.
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Figure 2. Increased glucose carbon contribution to the TCA in autochthonous K-ras driven lung 
tumors and xenografted lung cancer cells compared to adjacent lung
(A) Enrichment of fully labeled glucose (M6) in plasma from mice after a 6-hour 

[U-13C]glucose infusion. (LA2, n = 4; KP, n = 6; KPS, n = 5).

(B) Schematic showing major isotopomer transitions from glucose to label glycolytic and 

TCA cycle intermediates. The dominant TCA cycle isotopomers derived from the oxidation 

of glucose-derived pyruvate by the PDH complex has two labels (as shown in red for 

citrate), while the dominant isotopomer derived from pyruvate carboxylase (PC) retains 

three labeled carbon (as shown in blue for aspartate).

(C, D) The percent M3 labeled pyruvate and lactate in lung (black) and lung tumors (blue) 

from mice following a 6-hour [U-13C]glucose infusion. (LA2, n = 4; KP, n = 6; KPS, n = 5).
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(E–H) The percent labeling of citrate, aspartate, glutamate, and glutamine in lung (black) 

and lung tumors (blue) from mice following a 6-hour [U-13C]glucose infusion. The M2, M3 

and M4 isotopomers are shown for each metabolite. (LA2, n = 4; KP, n = 6; KPS, n = 5 for 

tumor and adjacent lung).

For all panels, values represent the mean ± SEM. * Difference is statistically significant by 

two-tailed paired T-test, * p < 0.05.

(I, J) The percent labeling of citrate and aspartate in normal lung (black) and xenografts 

derived from H1975 cells (EGFR-driven human lung cancer cells, green) or A549 cells 

(KRAS-driven human lung cancer cells, blue) from mice following a 6-hour [U-13C]glucose 

infusion. The M2, M3 and M4 isotopomers are shown for each metabolite. (Lung, n = 8; 

H1975 tumor, n = 8; A549 tumor n = 8).

For all panels, values represent the mean ± SEM. * Difference is statistically significant by 

two-tailed paired T-test, * p < 0.05 or ** p < 0.01.
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Figure 3. Glutamine carbon contributes minimally to the TCA cycle in K-ras driven lung tumors 
and adjacent lung
(A) Enrichment of fully labeled glutamine (M5) in plasma from mice following 6-hour 

[U-13C]glutamine infusion. (LA2, n = 4; KP, n = 4; KPS, n = 4).

(B) Schematic showing major isotopomer transitions from glutamine to label TCA cycle 

intermediates. The dominant TCA cycle isotopomers produced by oxidative of glutamine 

metabolism have 4 labeled carbons for all species shown (red circles), while the dominant 

isotopomer of citrate from reductive glutamine metabolism is M5 (grey circles).

(C) The percent M5 labeled glutamate and glutamine in lung (black) and lung tumors (red) 

from mice following 6-hour [U-13C]glutamine infusion. (LA2, n = 4; KP, n = 4; KPS, n = 

4).

(D) The percent M4 labeling of aspartate (Asp), citrate (Cit), fumarate (Fum), malate (Mal) 

and succinate (Suc) in the lung (black) and lung tumors (red) from mice following 6-hour 

[U-13C]glutamine infusion. (LA2, n = 4; KP, n = 4; KPS, n = 4).

(E) Western blot analysis of phospho-pyruvate dehydrogenase subunit E1α (p-PDHE1α), 

total PDHE1α (PDHE1α), pyruvate carboxylase (Pcx), and glutaminase (Gls1) expression in 

three representative KP lung tumors (Tumor) and normal lung tissue from three mice 

(Lung). Vinculin expression was also assessed in all samples as a loading control.
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(F) The percent labeling of aspartate (Asp), citrate (Cit), fumarate (Fum), and malate (Mal) 

in tumor tissue from the indicated models after a 6 hour infusion of [U-13C]glucose and 

[U-13C]glutamine. Values were normalized to plasma enrichment of glucose or glutamine to 

allow comparison of the indicated isotopomers. (For [U-13C]glucose infusions, LA2, n = 4; 

KP, n = 6; KPS, n = 5. For [U-13C]glutamine infusions, LA2, n = 4; KP, n = 4; KPS, n = 4).

For all panels, values represent the mean ± SEM. *Difference is statistically significant by 

two-tailed paired T-test, p < 0.05.
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Figure 4. Metabolism of glucose and glutamine by cell lines derived from KP lung tumors
(A) Rate of glucose consumption and lactate excretion by two independently derived lung 

cancer cell lines from KP lung tumors (Line 1 and Line 2), n = 3.

(B) Absolute fluxes downstream of pyruvate calculated from glucose and glutamine 13C 

labeling data in the lung cancer cell lines derived from KP lung tumors. The values shown 

for each flux are fmol/cell/hr, and the arrows indicating each flux are to scale.

(C) The percent M5 labeled glutamate and glutamine from [U-13C]glutamine in the lung 

cancer cell lines derived from KP lung tumors, n = 3.

(D) The percent M4 labeled aspartate, fumarate and malate from [U-13C]glutamine in the 

lung cancer cell lines derived from KP lung tumors, n = 3.

(E) Equal numbers of the lung cancer cell lines derived from KP mice were placed in media 

containing the indicated concentration of glutamine. Relative cell numbers present after 24 

and 48 hours are shown, n=3.

(F) Equal numbers of the lung cancer cell lines derived from KP mice were plated, and then 

cultured in the presence of vehicle alone (DMSO) or the indicated concentration of CB-839, 

a glutaminase inhibitor. Relative cell numbers present at the time of vehicle or CB-839 

addition or after 24 or 48 hours of exposure are shown, n=3.

For all panels, values represent mean ± SD, * denotes difference is statistically significant 

by two-tailed T-test, p < 0.05.
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Figure 5. KP-lung tumors are not dependent on high glutaminase activity
(A) Coronal μCT scan sections showing the lungs of mice prior to treatment, and after 

treatment for 4 weeks with vehicle or the glutaminase inhibitor CB-839 treated mice. The 

images are representative of those obtained from 5 vehicle- and 6 CB-839-treated mice after 

4 weeks of CB-839 treatment.

(B) Concentration of glutaminase inhibitor CB-839 in plasma and tumor, with each circle 

representing a value in a single animal. The mean value and SD are also shown.

(C) Ki-67 staining of lung tumor sections obtained from KP mice treated with vehicle or 

CB-839 for 4 weeks. The staining shown is representative of that observed in tissue from 5 

vehicle- and 6 CB-839-treated mice. Scale bar: 200μM.

(D) Quantification of Ki-67 staining in KP lung tumor sections obtained from mice treated 

with vehicle or CB-839 for 4 weeks. Each point represents data from an independently 

derived tumor, and the mean +/− SEM is indicated as are the % tumors graded histologically 

as grade 1&2 or 3&4.

(E) Representative immunohistochemical staining of Cleaved-Caspase 3 (CC3) in vehicle 

versus CB-839 treated mice. Scale bars indicate 200μM.

(F) Relative concentration of glutamate to glutamine in tumors from KP mice treated with 

vehicle or glutaminase inhibitor for 4 weeks.

(G) The percent M5 labeled glutamine and glutamate in lung tumors from KP mice infused 

for 6-hours with [U-13C]glutamine. Animals were treated for 4 weeks with vehicle or 

CB-839 as indicated. Each point represents data from an independently derived tumor, and 

the mean +/− SEM is indicated.

(H) Short guide RNA sequences to disrupt Gls1 or a non-targeted control were delivered 

along with Cas9 and Cre recombinase to induce KP lung tumors. Representative IHC 
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images examining Gls1 expression in tumors arising in mice exposed to control sgRNAs, or 

sgRNAs that target Gls1 is shown. Scale bar: 200μM.

*Difference is statistically significant by two-tailed T-test, p < 0.05.
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Figure 6. Lung cancer cells require Pdha1 for tumor formation in vivo
(A) sgRNAs targeting Pdha1 or control were introduced into lung cancer cells derived from 

KP lung tumor. Proliferation of control and Pdha1 disrupted cells in culture is shown (n=3), 

as is a Western blot analysis showing Pdha1 expression from isogenic clones.

(B) The same cells described in (A) were cultured in the presence of [U-13C]glucose. 

Percent labeling of citrate isotopomers is shown for Control and Pdha1-disrupted cell lines. 

The percent M2 isotopomer of citrate that can be generated from glucose via flux through 

Pdha1 is also presented in blue, and percent labeling of other isotopomers of citrate 

displayed, n = 3.

(C) The same cells described in (A) were introduced as allografts into the flanks nu/nu mice. 

Tumor growth over time is shown. n = 4/cell line.

(D) The same cells described in (A) were introduced as allografts into the flanks of mice. 

The percent labeling of aspartate (Asp), citrate (Cit), glutamate (Glu), and glutamine (Glu) 

in lung tumors derived from control cells (black) or material present at the injection site 

from Pdha1-disrupted cells (blue) was determined following a 6-hour [U-13C]glucose 

infusion. The M0 and M2 isotopomers are shown for each metabolite. All values in mean ± 

SEM. *Difference is statistically significant by two-tailed T-test, p < 0.05.

(E) The same cells described in (A) were introduced as allografts into the flanks of nu/nu 

mice. Immunohistochemistry assessing Pdha1 expression in lung tumors derived from 

control cells or material present at the injection site from Pdha1-disrupted cells is shown. 

Scale bar: 200μM.

(F) Representative H&E staining of the same cells described in (A) 4 weeks after orthotopic 

transplantation into the lungs of nu/nu mice. Scale bar: 200μM.

(G) Representative immunohistochemical staining for Pdha1 in tumors arising in KP mice 

infected with pSECC containing a control sgRNA (Control) or sgPdha1 (n = 25 tumors from 
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ctrl and 18 tumors from sgPdha1 from 3 mice analyzed, all tumors retained Pdha1 

expression). Scale bar indicates 200μm.

Davidson et al. Page 26

Cell Metab. Author manuscript; available in PMC 2017 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Lung cancer cells require Pcx for tumor formation in vivo
(A) sgRNAs targeting Pcx or control were introduced into lung cancer cells derived from 

KP lung tumor. Proliferation of control and Pcx disrupted cells in culture is shown (n=3), as 

is a Western blot analysis showing Pcx expression from isogenic clones.

(B) The same cells described in (A) were cultured in the presence of [U-13C]glucose. 

Percent labeling of aspartate isotopomers is shown for Control and Pcx-disrupted cell lines. 

The percent M3 isotopomer of aspartate that can be generated from glucose via flux through 

Pcx is also presented in green, and percent labeling of other isotopomers of aspartate 

displayed, n = 3.

(C) The same cells described in (A) were introduced as allografts into the flanks of nu/nu 

mice. Immunohistochemistry assessing Pcx expression in lung tumors derived from control 

cells or material present at the injection site from Pcx-disrupted cells is shown.

(D) The same cells described in (A) were introduced as allografts into the flanks of mice. 

The percent labeling of aspartate (Asp), citrate (Cit), glutamate (Glu), and glutamine (Glu) 

in lung tumors derived from control cells (black) or material present at the injection site 

from Pcx-disrupted cells (green) was determined following a 6-hour [U-13C]glucose 

infusion. The M0 and M3 isotopomers are shown for each metabolite. All values in mean ± 

SEM. *Difference is statistically significant by two-tailed T-test, p < 0.05.

(E) The same cells described in (A) were introduced as allografts into the flanks of nu/nu 

mice. Immunohistochemistry assessing Pcx expression in lung tumors derived from control 

cells or material present at the injection site from Pcx-disrupted cells is shown. Scale bar: 

200μM.

(F) Representative H&E staining of the same cells described in (A) 4 weeks after orthotopic 

transplantation into the lungs of mice. Scale bar: 200μM.

(G) Representative hematoxylin and eosin staining of KP mice infected with pSECC 

containing a control sgRNA (Control) and sgPcx (n = 4 mice analyzed, no tumors were 

observed in the sgPcx mice). Scale bar indicates 2mm.
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