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Although DNA encoding antibiotic resistance has been discovered in antibiotic preparations, its significance
for the development of antibiotic resistance in bacteria is unknown. No phylogenetic evidence was obtained for
recent horizontal transfer of antibiotic resistance genes from antibiotic-producing organisms to bacteria from
human or animal sources.

Although the use of antibiotics has been the major weapon
in combating infectious diseases, the rapid development of
antibiotic resistance has resulted in treatment failures and out-
breaks of infections caused by antibiotic-resistant bacteria (2,
5, 10, 11, 15). Numerous studies have proven that the use of an
antibiotic is closely related to the rate of resistance to that
antibiotic (3, 4). Traditionally, the role of antibiotics in antibi-
otic-induced antimicrobial resistance is to provide selective
pressures to resistant clones. In 1990, Chakrabarty et al. re-
ported the detection of nucleic acids in various antibiotics and
the capacity of such nucleic acids to transform bacteria to drug
resistance (1). Subsequently, Webb and Davies demonstrated
that DNA encoding antibiotic resistance genes that are present
in bacteria used in the production of antibiotics can be recov-
ered in antibiotic preparations (9). It was proposed that anti-
microbial resistance genes may be coadministered with antibi-
otics to humans or animals and taken up by bacteria in the
hosts, contributing to the rapid development of antibiotic re-
sistance. However, the importance of this second mechanism
in the present widespread antibiotic resistance was unknown.
In this study, we examined by a comprehensive phylogenetic
analysis whether recent horizontal transfer of antibiotic resis-
tance genes from antibiotic-producing organisms to human or
animal bacteria has occurred. The phylogenetic relationships
of the genes among different bacteria were also studied.

All antibiotic resistance genes that were present in the cor-
responding antibiotic-producing and non-antibiotic-producing
organisms were included in this study (Medline search from
1966 to June 2003 and GenBank search from 1988 to June
2003) (Table 1). Amino acid sequences were used for phylo-
genetic analysis to minimize the effect of codon usage bias
among different bacteria after gene acquisition. All were pub-
lished sequences downloaded from GenBank (http://www
.ncbi.nlm.nih.gov) and were aligned by multiple-sequence
alignment with the CLUSTAL W program (8). For phyloge-
netic tree construction, all sequences found in the correspond-

ing antibiotic-producing organisms and at least 10 sequences
from human or animal bacterial isolates closest to those from
antibiotic-producing organisms by BLAST search were in-
cluded. Phylogenetic tree construction was performed with
ClustalX version 1.81 (6) and the neighbor-joining method
with GrowTree (Genetics Computer Group, Inc., San Diego,
Calif.).

A total of 13 antibiotic resistance genes that were present in
both the corresponding antibiotic-producing and non-antibiot-
ic-producing organisms were found (Table 1). Phylogenetic
tree construction was performed on the first 10 genes. For the
last three genes, fewer than 10 sequences were found in non-
antibiotic-producing organisms and they were analyzed by mul-
tiple-sequence alignment alone.

The erm sequences of the macrolide and lincosamide pro-
ducers were distant from those of human or clinical bacterial
isolates (amino acid identities of less than 40%). Recent hor-
izontal transfer of erm genes from the antibiotic producers to
human or animal bacteria was not observed. In contrast, the
sequences within the human or animal bacteria were more
closely related among themselves and showed evidence of fre-
quent horizontal transfer, even between gram-positive and
gram-negative bacteria. In particular, transfer among human
gut bacteria was very common. There also appeared to be two
clusters of genes that evolved independently, one generally
from human or animal bacteria and the other generally from
environmental bacteria, including the antibiotic producers
(Fig. 1).

The tetracycline resistance ribosomal protection protein of
the tetracycline producer Streptomyces rimosus was also dis-
tantly related to those of human or clinical bacterial isolates
(amino acid identities of less than 50%), indicating no evidence
of recent horizontal gene transfer from the antibiotic producer
to human or clinical bacteria. In contrast, closely related genes
among human or clinical bacteria were observed. Horizontal
gene transfer appeared to have occurred among distantly re-
lated bacteria and the female genital tract flora and pathogens
(Fig. 2).

Phylogenetic studies of the other 11 genes showed patterns
similar to those reported in detail for erm and tetracycline
resistance ribosomal protection protein. The results of their
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FIG. 1. Phylogenetic tree showing the relationships of erm genes found in the macrolide- and lincosamide-producing organisms (in bold) and
those from other bacterial isolates. The tree was inferred from 290 amino acids. Bootstrap values were calculated from 1,000 iterations. The scale
bars indicate the estimated number of substitutions per 10 amino acids using the Jukes-Cantor correction. Different classes of erm genes are
denoted by vertical lines, and names are on the right. Names and accession numbers are given as cited in the GenBank database.
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FIG. 2. Phylogenetic tree showing the relationships of tetracycline resistance ribosomal protection proteins of the tetracycline producer S.
rimosus (in bold) and those from other bacterial isolates. The tree was inferred from 880 amino acids. Bootstrap values were calculated from 1,000
iterations. The scale bars indicate the estimated number of substitutions per 10 amino acids using the Jukes-Cantor correction. Different classes
of tetracycline resistance ribosomal protection proteins are denoted by vertical lines, and names are on the right. Names and accession numbers
are given as cited in the GenBank database.
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phylogenetic analysis are summarized in Table 1. The maxi-
mum amino acid identities of genes among different non-an-
tibiotic-producing bacterial isolates were close to 100% for
most genes, but those between antibiotic-producing and hu-
man or animal bacteria ranged from �28 to �77%.

From the present study, recent horizontal transfer of anti-
biotic resistance genes from bacteria that are used for antibi-
otic production to human or animal bacteria was not observed.
Although our results suggest that DNA in antibiotic prepara-
tions has not been a very active and widespread mechanism in
the dissemination of antibiotic resistance genes, the possibility
of its being a minor player cannot be excluded. Nevertheless,
our results suggest that DNA decontamination of antibiotic
preparations is probably unnecessary. On the other hand, the
fact that horizontal transfer was observed among human gas-
trointestinal tract bacteria, which is in line with our previous
findings (7, 12), suggests that this is one of the other possible
mechanisms of antibiotic-induced antibiotic resistance (13, 14).

This work was partly supported by the University Development
Fund, University Research Grant Council, and the Committee of Re-
search and Conference Grants, The University of Hong Kong.
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