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Abstract In spite of tremendous advances in biopharmaceu-
tical science and technology, the productivity of pharmaceuti-
cal research and development has been steadily declining over
the last decades. The reasons for this decline are manifold and
range from improved standard of care that is more and more
difficult to top to inappropriate management of technical and
translational risks along the R&D value chain. In this short
review, major types of risks in biopharmaceutical R&D and
means to address them will be described. A special focus will
be on a risk, i.e., the lack of reproducibility of published in-
formation, that has so far not been fully appreciated and sys-
tematically analyzed. Measures to improve reproducibility
and trust in published information will be discussed.

Keywords Risk management - Research and development -
Reproducibility - Technical risk - Translational risk

The decline in pharmaceutical R&D productivity

The last decades have seen major advances and productivity
gains in science and technology. The polymerase chain reac-
tion (Saiki et al. 1985), for example, has revolutionized mo-
lecular biology and made it possible to amplify and quantify
nucleic acids in a short time and at high throughput.
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Next-generation sequencing technologies (Ozsolak 2012)
have reduced time and cost of whole-genome sequencing by
several orders of magnitude from more than 10 years and three
billion dollars for the first sequence of the human genome
(Lander et al. 2001; Venter et al. 2001) to a few days and a
thousand dollars (Hayden 2014), with further time and cost
reductions being in sight. Computer power has increased ex-
ponentially: With well in excess of 10'" floating point opera-
tions per second (100 GFLOPS), modern smartphones are
more than ten times more powerful than Deep Blue, the
IBM supercomputer that beat chess world champion Garri
Kasparow in 1997, that achieved 11.4 GFLOPS. The amount
of sequencing, metabolomics, proteomics, microarray, and
controlled-access human data available at the European
Bioinformatics Institute approximately doubles every
12 months (Elixir 2014). RNA interference and gene-editing
technologies have made it possible to investigate the role of
individual genes and gene variants in complex systems
in vitro and in vivo. The number and size of available chem-
ical libraries have increased tremendously (Dolle 2011), and
these compound libraries can be tested against protein targets
at significantly higher throughput and lower costs (Mayr and
Fuerst 2008).

Yet over the same period of time, pharmaceutical R&D has
suffered from a steady decline in productivity. Whereas in
other industries, output per invested amount of money has
steadily improved, drug discovery and development have in-
creasingly become more expensive, i.e., the amount of money
to be invested for a new drug to be approved has approximate-
ly doubled every 9 years. This trend has been remarkably
stable over the last six decades (see Fig. 1a). In analogy to
“Moore’s law™ that describes the exponential increase in pro-
ductivity in the semiconductor industry based on the observa-
tion that the number of transistors on an integrated circuit
approximately doubles every 2 years, this trend has been
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Fig. 1 a “Eroom’s law” of declining R&D productivity in the
pharmaceutical industry. The straight line denotes a decrease by a
factor of 2 every 9 years. Data taken from Scannell et al. (2012),
supplementary information. b Annual biopharmaceutical R&D
spending by PARMA member companies. Data from Phrma.org (2015).
¢ Number of new molecular entities (NMEs) approved by the FDA for the
years between 2001 and 2015. Horizontal gray bars denote the mean for
the respective 5-year periods. Data from Phrma.org (2015) and fda.gov
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an inefficient bureaucracy with lengthy decision making pro-
cesses also fall into this category of non-value-adding activi-
ties. Finally, and this is a major difference to other industries,
cycle times in pharmaceutical R&D are, and will likely re-
main, very long: A project started today will not result in a
product until 15 years—or often more—Ilater. Within this time
frame, projects may fail for technical or translational reasons
(see below), but there are also many environmental changes
like improvements in standard of care, new competitors,
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changes in regulatory requirements and medical care systems
that may negatively influence the fate of a once promising idea
or therapeutic concept and cannot always be foreseen when a
project is initiated. Additionally, the outcome of pharmaceuti-
cal R&D is in most cases digital—a new drug product or no
product. There is typically no equivalent to, e.g., a new instru-
ment with a smaller footprint or a new car that consumes halfa
liter less per 100 km; it is a new drug or complete failure.

However, there is hope for better performance in future.
Whereas the overall biopharmaceutical R&D spending seems
to have reached a plateau (Phrma.org 2015; Fig. 1b), the num-
ber of new molecular entities (NMEs) approved by the FDA
has increased in recent years, from an average of 22 per year
between 2006 and 2010 to 36 between 2011 and 2015
(Fig. 1c). In a recent analysis, Smietana et al. (2015) used a
novel metric, the so-called vintage index, to assess changes in
R&D productivity over time. The index is defined as the rev-
enue over 7 years of drugs launched in a given year divided by
the R&D costs over the previous 7 years. Following a steady
decline over the previous 15 years, the industry-wide vintage
index nearly doubled between 2011 and 2014. These are en-
couraging signals that measures to recover R&D productivity
have been successful, but longer-term data are needed to prove
that this trend is sustainable and not just a transient deviation
from Eroom’s law.

Risk management in pharmaceutical R&D

Drug discovery is the management of risk. Embarking on a
new drug discovery project can be the start of a journey that
may last well over 12 years with a price tag in excess of
several hundred million euros. Yet, more than 99 % of all drug
discovery projects will not result in an approved product.

Thus, most of the resources in pharmaceutical research and
development will eventually not be spent on the few mole-
cules making it to the market but primarily on the many mol-
ecules and projects that fail to do so. The reasons for failure
can be manifold, from the wrong choice of target via the
inability to find suitable lead compounds to unexpected tox-
icity or lack of efficacy in clinical trials. Moreover, projects
may also be terminated for reasons that are not primarily based
on science, like repeated strategy changes in pharmaceutical
companies, changes in drug legislation and criteria or condi-
tions for regulatory approval, a successful competitor, or weak
intellectual property. And, even drugs that have been ap-
proved by the regulatory authorities may fail economically.
Due to cost containment measures in the healthcare systems
of many different countries, they simply will not give a suffi-
cient return on the primary investment to foster further R&D.

Thus, when starting a new drug discovery project, potential
risks have to be carefully evaluated and mitigation strategies
to be developed. This applies to risks associated with the sci-
ence aspects of the new project as well as the afore-mentioned
strategic, regulatory, and commercial risks. For the part of
science, two major types of risks can be distinguished: tech-
nical and translational risks.

As an attempt at a definition, technical risks can be described
as those that lead to an inability to find and sufficiently charac-
terize the right compound that meets the required profile to
address the chosen target. Technical risks may present them-
selves as, for example, the lack of suitable bioassays, inability
to generate the appropriate tools or reagents like cell models or
antibodies, lack of selectivity toward the target, unsuitable phar-
macokinetics, or toxicity of the generated molecules. A more
comprehensive list of technical risks is given in Table 1.

Translational risks, on the other hand, can be defined as
those being responsible for insufficient clinical efficacy even

Table 1 Selection of typical

technical risks encountered in Type

Risks

drug discovery
Biochemistry, cell biology

Chemistry, biotechnology

Pharmacology, pharmacokinetics

Safety

No suitable assay for high-throughput screening or compound profiling
Lack of cell permeability

No chemical or biological matter identified in HTS or
other lead-finding approaches

Lack of synthetic or biotechnological accessibility
Insufficient solubility

Limited potential for intellectual property

High cost of goods

Insufficient potency on target

Lack of exposure: limited bioavailability, rapid metabolization,
unsuitable tissue distribution

Limited in vivo efficacy

Potential for drug-drug interactions: CYP450 inhibition or induction
Adverse effects in standard safety tests (e.g., hERG, genotoxicity)
Toxicity
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for molecules having an otherwise perfect profile. This lack of
efficacy can, for example, be the consequence of the wrong
choice of target, the use of models that are not predictive for
human disease, or failure of the molecule to engage the target
in the clinical situation. Typical translational risks are summa-
rized in Table 2.

The most important difference between technical and transla-
tional risks is that the former can usually be mitigated by
investing more resources, e€.g., synthetizing and testing more
molecules and repeated and different attempts at generating tools
and models. Translational risks, however, cannot be addressed
by more “shots on goal” but only by a rigorous and comprehen-
sive investigation of the science behind the target, its link to
human disease, identification of biomarkers to find the right
patients amenable to the envisaged therapy, to monitor target
engagement and to work as surrogates for clinical outcomes.

Notably, in a recent analysis of factors leading to failures in
preclinical and clinical development (Cook et al. 2014), lack
of clinical efficacy in phase II was determined as the most
frequent cause of failure and insufficient target linkage to dis-
ease was identified as the most important reason for lack of
clinical efficacy. Moreover, phase II success rate was nearly
twofold higher with human genetics evidence linking the tar-
get to the disease indication and more than threefold higher
when efficacy biomarkers were available at start of phase II.
Thus, addressing translational risks very early, already at the
target identification stage, will dramatically improve success
rate in clinical development.

This insight has led to a paradigm shift in pharmaceutical
drug discovery, away from a high-throughput, multiple shots on
goal approach based on single target genes being regulated in
animal models of disease to a more translational approach,
starting with the interrogation of human disease biology and
the identification of clinical biomarkers and then
back-translating these findings into appropriate experimental
model systems and molecules addressing these systems.

Table 2 Selection of typical translational risks encountered in drug
discovery and development

Translational risks

» Target hypothesis based on false prerequisites; e.g., literature data that
cannot be confirmed

* Lack of cause-effect relationship: redundant pathways, counter-
regulation upon knockout or inhibition

* Limited understanding of disease biology and
pathophysiological mechanisms

* Preclinical models not predictive for clinical situation
* Insufficient human evidence, e.g., from genetics or tool compounds

* Lack of (surrogate) biomarkers to demonstrate target
engagement and treatment efficacy

« Inability to identify the right patient population for treatment
* No add-on to existing therapy
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Additionally, as a key approach to reduce phase II attrition,
clinical proof of concept has to be established as early as pos-
sible, preferably in a phase I setting or even in parallel to pre-
clinical drug discovery by, e.g., using approved molecules
targeting the same mechanism and/or the use of biomarkers as
surrogate endpoints (Paul et al. 2010). Thus, priority should be
given to those targets with strong clinical evidence, appropriate
reagents, and tools to model the clinical situation in a preclinical
setting and the availability of biomarkers for target engagement,
disease progression, or as surrogates for endpoints. To aid in
prioritization, a translational scoring algorithm has been devel-
oped to systematically assess and quantify translational risks
(Wehling 2009; Wendler and Wehling 2012).

A prominent example where selecting a drug target based on
human genetics and available biomarkers has led to a rapid and
successful generation and development of a drug is that of the
secreted circulating protease proprotein convertase subtilisin/
kexin type 9 (Pcsk9). In 2003, Pcsk9 mutations were identified
in humans that cause familial hypercholesterolemia (Abifadel
et al. 2003) via a gain-of-function mechanism resulting in over-
production of apoB100 (Ouguerram et al. 2004). Conversely,
humans carrying a loss-of-function mutation in their Pcsk9
gene were demonstrated to have very low LDL levels and to
be protected against coronary heart disease (Cohen et al. 2006).
These findings prompted several companies to develop neutral-
izing monoclonal antibodies against Pcsk9 that have mean-
while demonstrated strong clinical efficacy in reducing LDL
cholesterol and cardiovascular events on top of statin therapy
(Robinson et al. 2015; Sabatine et al. 2015) and have received
regulatory approval in the third quarter of 2015. Thus, two key
points have led to new drugs being approved within less than
12 years after the publication of the first basic science findings:
(1) strong clinical evidence, a so-called “experiment of nature,”
demonstrating that loss of function of a particular gene provides
clinical benefit without obvious adverse effects, and (2) bio-
markers like LDL-C that allow for a rapid proof of concept
and are accepted surrogate outcome markers.

Reproducibility of published findings

Another important risk factor in biopharmaceutical R&D that
has so far not been fully and systematically analyzed is the
solidity and reproducibility of published data or, more precise-
ly, the lack thereof. Typically, an interest in exploring a novel
therapeutic target is sparked by literature data describing a role
for this target in a disease context, predominantly in an accept-
ed rodent model of disease. However, recent analyses by phar-
maceutical industry researchers showed that the majority of
these published studies could not be reproduced under
well-controlled and standardized conditions. Prinz et al.
(2011) investigated 57 drug discovery projects in the fields
of cardiovascular disease, women’s health, or oncology and
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concluded that in more than two thirds of them there were
major discrepancies to published data leading to project ter-
mination. Another analysis (Begley and Ellis 2012) came to
even more dramatic conclusions: out of 53 landmark studies
in the field of oncology under consideration, many of them
published in high-profile journals, the primary scientific find-
ings could only be reproduced in six (11 %) cases. In other
studies, irreproducibility rates of 50 % and above have been
found in a broader range of the biomedical literature
(Vasilevsky et al. 2013; Hartsthorne and Schachner 2012).
Although these estimates have to be taken with a grain of salt
because the term “reproducibility” is not well defined, the
enormous gap between these numbers and the conventionally
assumed upper false-positive rate of 5 % (corresponding to
p=0.05) is alarming. Beside its scientific implications and
the resulting lack of confidence and trust, it has a substantial
economic impact: Freedman et al. recently estimated that, in
the USA alone, 28 billion dollars are annually spent on pre-
clinical research that is not reproducible (Freedman et al.
2015).

There are several potential reasons for this lack of reproduc-
ibility: First, no two experiments are the same. Especially living
organisms are complex systems with a lot of variables like
strain, age, sex, breeding and housing conditions, diet, et cetera,
leading to variable results for studies being done by different
researchers at different institutions, even when the overall study
design and investigated parameters are very much comparable.

Second, improper study design and incorrect or inappropri-
ate statistical analysis based on insufficient sample size may
lead to non-reliable or even false conclusions (Prinz et al.
2011; Toannidis 2005).

Third, biological reagents are frequently not sufficiently
quality-controlled or inappropriately applied. Cell lines used
in biomedical research, for example, are often misidentified or
contaminated (Lorsch et al. 2014). A study on 122 different
cancer cell lines showed that 30 % of them were not correctly
identified (Zhao et al. 2011). Multidrug-resistant MCF-7
breast adenocarcinoma cells were used over two decades
and in over 300 studies before they were demonstrated to be
ovarian adenocarcinoma cells (Freedman et al. 2015;
Liscovitch and Ravid 2007).

Fourth, research is hypothesis-driven, and researchers are
often inclined to give findings supporting their hypothesis a
stronger weight compared with experimental results that are in
contradiction to their hypothesis. It is a widespread phenomenon
that negative outcomes are only rarely published (Fanelli 2012;
Kyzas et al. 2007; Sena et al. 2010). This hypothesis bias is
reinforced by the policy of most scientific publishers and
journals only to publish results that come with a good story line
and reject findings or datasets leading to an ambiguous outcome.

Fifth, there is enormous competition and pressure from
supervisors and financing bodies to present complete and con-
clusive data, and continuation of employment or funding of

future work often depends on publications in high-impact
journals. It has been reported that the likelihood of a paper
supporting a tested hypothesis is higher when the correspond-
ing author was working in a very competitive environment
(Fanelli 2010) where publication pressure may have been
higher. In the most extreme, this can lead to willful disregard
of contradictory data or even downright data fabrication.

Therefore, the following practical measures should be tak-
en to improve replicability and reproducibility of published
findings. It is needless to say that they cannot be implemented
and “lived” by a single party but require active participation
by all stake holders involved, including but not limited to
investigators, supervisors, reviewers, editors, funding bodies,
and committees (Landis et al. 2012).

1. Develop a “confirmation mindset”: Before engaging in
further studies, especially in a long and costly drug dis-
covery project, it is mandatory to repeat published studies
providing the project’s biological rationale and confirm
their major conclusions. Ideally, this should be incentiv-
ized by journals and funding agencies. Instead of being a
frequent reason for rejection of a manuscript, the first
independent replication of an already published finding
should be acceptable for publication, too. Alternatively,
for a potential high-profile publication, journals may ask
for confirmation of the major results by an independent
party before accepting a manuscript for publication. Also,
funding agencies or resource allocation committees ought
to prioritize proposals seeking to confirm published data
before performing extensive and costly follow-up experi-
ments. Thus, future grants may provide a first tranche of
financial support to replicate important former findings
before granting the second, bigger tranche of money for
continuing investigations based on already published data
which did not obtain independent confirmation so far.

2. Full transparency on protocols, materials and methods:
Ensure that all experimental details necessary to replicate a
set of experiments are described comprehensively and that
protocols, analysis plans, and raw data are included when-
ever possible. Most journals provide space in online sup-
plements to include this information. Recommendations of
standards for rigorous study design, conduct, and analysis
have been published (Landis et al. 2012; Toannidis et al.
2014). However, it is still not uncommon to find papers in
which even very basic information is not provided, like
strain, age, and gender of animals used in the study, com-
position of the diet, and whether and how animals were
randomized or the study was blinded.

3. Quality control: Establish quality control procedures for
reagents and materials used in experimental studies.
Encourage the use of validated reagents. Ensure that qual-
ity control and reagent validation are required by pub-
lishers (Freedman et al. 2015).
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4. Scientific rigor: As described above, publication pressure
and hypothesis bias have led researchers to seek
short-term success by “getting the story right” rather than
to go for a rigorous and robust approach that will take
longer and may produce less spectacular but more valid
results—a strategy to “rather be first than to be right”
(Macleod et al. 2014). For this to change, investigators,
promotion committees and funding bodies have to initiate
a cultural change. Instead of an impact factor centric re-
ward system, institutions and committees should also
judge researchers on the methodological rigor and quality
of their research and the reproducibility of their findings
(Macleod et al. 2014). Moreover, more credit should be
given for teaching and mentoring (Begley and Ellis 2012)
and the training of the next generation of scientists to
rigorously design, conduct, analyze, and report their
studies.

5. Robust study design and appropriate use of statistics:
Especially preclinical studies are often done in an explor-
atory setting, without a predefined primary outcome, un-
blinded, and on a small number of animals. Such experi-
ments have to be viewed and interpreted as hypothesis
generating rather than hypothesis testing (Landis et al.
2012). For robust hypothesis testing, preclinical studies
should be performed in settings that resemble randomized
controlled clinical trials, with appropriate sample size,
stringent protocols, and predefined measures of success.
This may even be taken a step further to multicenter studies
at several individual laboratories that, like clinical trials, are
centrally coordinated with data being processed and ana-
lyzed under a single protocol, as recently described for the
testing of an anti-CD94d antibody in an experimental mod-
el of stroke (Llovera et al. 2015; Tymianski 2015).

Also, it is startling how many papers are still published
although they contain basic statistical mistakes (Vaux
2012). Therefore, institutions have to ensure that students
and researchers are being trained on proper study design
and use of statistics. Reviewers and editors have to pay
special attention to verify the appropriate use of statistics.
Especially high-impact journals are therefore to be encour-
aged to, before accepting manuscripts for publication, verify
the validity of the statistical analyses by professional bio-
mathematicians getting access to the experimental raw data.
If appropriate, raw data should be provided in a supplement.

6. Embrace ambiguity: It is often the case that the results
within a set of experiments testing a specific hypothesis
are not fully consistent. However, in an environment
where journals, promotion committees, and funding agen-
cies strive for the perfect story and are not prepared to
accept ambiguity, it is tempting to de-prioritize datasets
that are not in line with the story and only to publish the
parts of the work that support the working hypothesis and
are consistent with each other. This not only will give a
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distorted picture but also may lead to misinterpretation
and false conclusions for parts of the study. What is wrong
with, for example, saying that “we have found a robust
and very interesting phenotype, but the experiments inter-
rogating its molecular mechanism have led to contradic-
tory findings and not given a clear result”? Such a state-
ment would make clear what is robust and what deserves
further investigation, dialogue with other researchers, and
perhaps collaborative efforts to solve. Investigators,
journals, and funding bodies should realize that nothing
is wrong with such a statement, that it often reflects real-
ity, and that gaps in stories may provide opportunities for
further research (Begley and Ellis 2012).

Conclusions

Drug discovery has changed significantly over the last decade.
Previously, drug discovery was a process-driven and
technology-oriented, almost factory-like high-throughput ap-
proach starting with a gene regulated in an animal model of
disease (or the parallel interrogation of many disease-related
genes) via the identification and optimization of compounds
to their characterization in preclinical models and finally in the
clinics, where, however, phase 2 attrition rates have been very
high (Scannell et al. 2012; Cook et al. 2014). To reduce attri-
tion at the clinical proof-of-concept stage, this “multiple shots
on goal” paradigm is gradually being replaced by a more
translational approach, where solid clinical evidence of target
relevance, the availability of biomarkers, and a thorough
mechanistic understanding of the link between target and dis-
ease are sought after very early in the drug discovery process
and where projects are ranked according to translatability rath-
er than technical feasibility or “druggability.”

Besides these process alterations, there are also cultural and
mindset changes that will help to further reduce the cost of
drug discovery research and hence improve its productivity. In
apparent contrast to widespread scientific practice, experi-
ments should be designed and executed to clearly demonstrate
that the initial hypothesis is wrong—so called No-Go experi-
ments—as failing early will save time and resources that
would otherwise have been spent in vain. Such a “fail early”
paradigm should also be reflected in the company culture and
incentives for researches to stop projects based on rigorous
science and to mark this as success rather than failure.

Target selection—the most important decision in a drug dis-
covery project—is often based on literature data. However,
various analyses have shown that a majority of published find-
ings could not be reproduced by others. Therefore, replication
of crucial studies is mandatory before embarking on a long and
costly drug discovery program. Furthermore, all stakeholders
involved in biomedical research should undertake efforts to
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recognize and reward reproducibility, to accept and even em-
brace ambiguity as this will not only improve confidence and
trust but also stimulate further research and scientific dialogue.
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