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ABSTRACT: A new algorithm for the computation of the
overlap between many-electron wave functions is described.
This algorithm allows for the extensive use of recurring
intermediates and thus provides high computational efficiency.
Because of the general formalism employed, overlaps can be
computed for varying wave function types, molecular orbitals,
basis sets, and molecular geometries. This paves the way for
efficiently computing nonadiabatic interaction terms for
dynamics simulations. In addition, other application areas
can be envisaged, such as the comparison of wave functions
constructed at different levels of theory. Aside from explaining the algorithm and evaluating the performance, a detailed analysis
of the numerical stability of wave function overlaps is carried out, and strategies for overcoming potential severe pitfalls due to
displaced atoms and truncated wave functions are presented.

1. INTRODUCTION

The evaluation of matrix elements between many-electron wave
functions expanded in different orbital basis sets or over
different molecular geometries is a task where the full
complexity of these wave functions becomes apparent. Not
only the expansion of the wave functions into individual
configurations and the construction of the molecular orbitals
have to be taken into account, but also the explicit
determinantal form, as required by the Pauli principle, comes
into play. Furthermore, possible variations of the molecular
geometry and the atomic basis functions have to be considered
explicitly. The focus of this work is the simplest of these matrix
elements, the wave function overlap. A new algorithm for the
computation of wave function overlaps is presented, which is
distinguished by enhanced computational performance reached
through extensive reuse of recurring intermediate quantities. At
the same time, a flexible formalism is used allowing for the
computation of wave function overlaps for varying wave
function expansions, molecular orbitals (MOs), basis sets, and
molecular geometries.
Wave function overlaps are widely used in the field of

nonadiabatic dynamics, where they allow the evaluation of
state-to-state transition probabilities without the need of
computing nonadiabatic coupling vectors.1 Aside from the
fact that this strategy provides a technical advantage for
methods where coupling vectors are not available, it has been
shown that, in the case of highly peaked nonadiabatic couplings,
wave function overlaps can provide superior numerical stability,
in particular when a locally diabatic propagation of the wave
functions is carried out.2,3 In the simplest case, the overlap is
approximated as a scalar product of the configuration

interaction (CI) vectors to provide a qualitative description
of changes in wave function character,4−6 possibly after a
diabatization of the orbitals.7 Beyond this, exact overlap terms
have been derived under a number of assumptions;
implementations are available for semiempirical methods,2

plane wave expansions,8 single-reference methods with atom-
centered basis sets,9−11 and multireference methods.12,13 These
developments were used as a basis for excited state dynamics
simulations with a wide range of electronic structure methods,
including time-dependent density functional theory,8,9,11,14

complete active space self-consistent field (CASSCF) and
multireference CI (MRCI),7,12,15 CAS perturbation theory,16

and correlated single-reference methods.17,18 Despite this wide
interest, the practical use of wave function overlaps is hampered
by high computational demands, especially when multi-
configurational wave functions are used, which are necessary
for the correct description of many nonadiabatic processes.
Moreover, the numerical stability of the results with respect to
truncation of the wave functions and the consequences of
displaced orbitals in the case of varying molecular geometries
have received almost no attention so far despite the fact that
these can have a crucial impact on the computed results.
The purpose of this work is to present a new general

algorithm for the efficient computation of wave function
overlaps and to address some related numerical questions. We
first discuss the general theory of wave function overlaps in the
framework of Slater determinant expansions. Using this
foundation, specific algorithmic improvements are explained,
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which allow for significant enhancement of the efficiency of the
code. We then discuss properties of the overlap matrix and
outline the application of overlaps for nonadiabatic interactions.
As a next step, a path integral over the coupling vector in
coordinate space is computed, and the results are compared to
standard nonadiabatic theory.19 In addition, the results are
verified against two previous implementations.12,13 In order to
give practical advice for future applications, the numerical
stability of the results with respect to wave function truncation
and atom displacements is discussed, and we show how
orthogonalization of the overlap matrix can significantly
improve the results. Finally, the performance and parallel
scaling are evaluated.

2. THEORY
2.1. General Formalism. In the following, we use the

notation |Ψ⟩ to denote antisymmetric many-electron wave
functions constructed as linear combinations of Slater
determinants. The coordinates of the electrons are addressed
implicitly in the braket formalism. Two sets of electronic wave
functions {|ΨI⟩} and {|ΨJ′⟩} are constructed. The only
requirement for the relation between these wave functions is
that they contain the same number of α and β electrons, but
they are otherwise allowed to vary in the wave function
expansion, the MOs, the basis set, and the molecular geometry.
I and J are arbitrary indices for the individual sets. Typically,
I,J = 1 would refer to the ground state and higher indices to the
excited states, but there are no formal restrictions with respect
to their meaning.
In this section, we will derive a general expression for

computing terms of the form

= ⟨Ψ|Ψ′⟩SIJ I J (1)

and analogously the whole overlap matrix S between the two
sets of states. As a first step, the expansion into Slater
determinants

∑|Ψ⟩ = |Φ ⟩
=

dI
k

n

Ik k
1

CI

(2)

∑|Ψ′⟩ = ′|Φ ′⟩
=

′

dJ
l

n

Jl l
1

CI

(3)

is invoked. Here, {|Φk⟩} and {|Φl′⟩} denote two distinct sets of
Slater determinants used in the expansions, dIk and dJl′ are the
CI coefficients forming the CI vectors, and nCI and nCI′ are the
number of elements in these CI vectors. It should be noted that
the formalism described here is based on Slater determinants
rather than on spin-adapted configuration state functions
(CSF), which are often used in CI calculations. However, it
is always possible to perform the conversion to the Slater
determinant basis.
Insertion of eqs 2 and 3 into eq 1 leads to

∑= ′⟨Φ |Φ′⟩S d dIJ
kl

Ik Jl k l
(4)

a double sum over Slater determinant overlaps. We write the
Slater determinants, which are constructed from four
potentially different sets of spin−orbitals {ϕp}, {ϕq′}, {ϕr},
and {ϕs′}, in the form

ϕ ϕ ϕ ϕΦ ⟩ = ̅ ̅+α α
... ...k k k n k n k n(1) ( ) ( 1) ( ) (5)

ϕ ϕ ϕ ϕ|Φ ′⟩= ′ ′ ̅ ′ ̅ ′+α α
... ...l l l n l n l n(1) ( ) ( 1) ( ) (6)

where the notation k(i) is used to denote the index of the
orbital that is at position i in Slater determinant |Φk⟩, n is the
number of electrons, nα the number of α spin electrons, and the
bar marks the β spin orbitals. In the above equations, it is
assumed that the α orbitals are positioned in front of the β
orbitals in the Slater determinant. Obtaining this arrangement is
always possible but care has to be taken to preserve the correct
sign when the columns of the determinants are rearranged.20

The overlap of the two Slater determinants is given by the
determinant of the matrix containing all mutual orbital overlaps
(see Appendix A and refs 9 and 21).
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(7)

Using the arrangement chosen in eqs 5 and 6, the matrix
becomes block diagonal due to the fact that overlaps between
orbitals of different spin vanish. The two blocks can, in turn, be
evaluated individually

ϕ ϕ ϕ ϕ
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(8)

It is important to realize at this point that the two factors kl

and ̅kl are not unique to the determinant pair |Φk⟩ and |Φl′⟩,
but that they reappear for other determinants with the same α
or β spin occupation pattern. As will be described below,
precomputing and storing these factors is one of the main
points responsible for efficiency.
To evaluate eq 8, it is assumed that the MOs are given in

terms of atomic orbitals (AOs)

∑ϕ χ=
μ

μ μCp p
(9)

∑ϕ χ′ = ′ ′
ν

ν νCq q
(10)

where the MO coefficients Cpμ and the AOs χμ are both allowed
to vary between the bra and the ket. Consequently, the MO
overlaps are given as
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∑ϕ ϕ χ χ⟨ | ′⟩ = ′ ⟨ | ′⟩
μν

μ ν μ νC Cp q p q
(11)

linear combinations of the mixed AO overlap integrals ⟨χμ|χν′⟩.
The overlaps ⟨ϕp|ϕq′⟩ of the β orbitals are computed
analogously in the case of an unrestricted MO basis.
Two special situations can occur here: the cases of identical

AOs and identical MOs in the two wave function expansions. If
the AOs on both sides are the same, i.e., χμ = χμ′ , then it is not
necessary to compute mixed AO overlap integrals, but the
⟨χμ|χν′⟩ terms are simply the overlap integrals ⟨χμ|χν⟩ already
computed in the standard quantum chemistry job. Further-
more, as discussed in ref 22, it is not necessary to use these
integrals at all (e.g., if they are not available for technical
reasons). Whenever the MO-coefficient matrix C is square and
nonsingular, the AO overlap matrix can be constructed as

= − −S C CAO
1,T 1

(12)

In the second case, when the MOs on both sides are the same,
i.e., ϕp = ϕp′, the whole formalism is greatly simplified, yielding

δ⟨Φ |Φ′⟩ =k l kl (13)

and the overlap computation (eq 4) reduces to a simple scalar
product of the CI vectors. Assuming eq 13 to be approximately
valid allows for computing the overlap as a simple scalar
product between CI vectors (expanded either in a Slater
determinant or CSF basis), yielding a strategy that has indeed
been applied successfully for dynamics simulations (see, e.g.,
refs 4 and 5). However, inspection of the above equations
shows that the ⟨Φk|Φl′⟩ terms do not only depend on the
resolution of quasi-degenerate orbitals, present for example
during charge and energy transfer processes,3,23 but are even
affected by the phases of the individual orbitals. For this reason,
special care has to be taken when such a strategy is applied and
a prior diabatization of the orbitals7 may be necessary.
Finally, it is worth noting that an alternative strategy for

computing the Slater determinant overlaps lies in a trans-
formation of the orbitals yielding biorthogonal orbitals and
consequently biorthogonal Slater determinants, avoiding the
necessity for computing the determinants of eq 8. This can be
achieved either by a singular value decomposition of the mixed
MO overlap matrix shown in eq 11 to obtain the
“corresponding orbitals”24,25 or by a somewhat more involved
formalism involving nonunitary orbital transformations13,26 as
implemented in the MOLCAS 8.0 suite.27 However, an orbital
transformation could significantly enlarge the CI expansion and
appears practical only for specific wave function classes. We are
not aware of any implementation of such a formalism that
allows for the generality aimed at here. Another way of
computing matrix elements between nonorthogonal Slater
determinants proceeds by a generalized Wick theorem.28

2.2. Implementation. The algorithm presented above
requires the computation of two determinants for every pair of
bra and ket Slater determinants, see eq 8. Without further
considerations, this would lead to a formal scaling on the order
of ×n n( )pair

3 where npair = nCI × nCI′ , and n is the number of
electrons. This steep scaling shows that an efficient
implementation is of utmost importance if the code should
be generally applicable. Therefore, an algorithm with more
favorable scaling behavior has been devised.

The most important realization is that the factors kl and ̅kl
are not unique to a determinant pair |Φk⟩ and |Φl′⟩. Assuming,
for example, that four determinants are given as

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

|Φ ⟩ = | ̅ ̅ ̅ |

|Φ ⟩ = | ̅ ̅ ̅ |

|Φ′⟩ = | ′ ′ ′ ̅ ′ ̅′ ̅′|

|Φ′ ⟩ = | ′ ′ ′ ̅ ′ ̅′ ̅′|

1 1 2 3 1 2 3

2 1 2 3 1 2 4

1 1 2 4 1 2 4

2 1 3 5 1 2 4

it follows that |Φ1⟩ and |Φ2⟩ share the same α spin part. This
leads to the situation that 11 and 21 are identical

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

= =

⟨ | ′⟩ ⟨ | ′⟩ ⟨ | ′⟩

⟨ | ′⟩ ⟨ | ′⟩ ⟨ | ′⟩

⟨ | ′⟩ ⟨ | ′⟩ ⟨ | ′⟩
11 21

1 1 1 2 1 4

2 1 2 2 2 4

3 1 3 2 3 4

and it similarly holds that =12 22 as well as ̅ = ̅S S11 12 and
̅ = ̅S S21 22. In summary, out of the 2 × npair = 8 spin

determinants, there are only nfac = 4 unique factors, cutting
the required computational effort in half in this toy model. This
reduction occurs independently in the α and β spin spaces and
thus also applies for unrestricted MOs. For larger wave function
expansions, in particular, when a large number of simultaneous
α and β excitations are present, the reduction can be dramatic.
Using the CASSCF(12,12) case as an extreme example, the
reduction from 2 × npair = 7.8 × 1011 spin determinants to nfac =
1.3 × 106 unique factors exceeds 5 orders of magnitude. In
general, it can be worked out for large CASSCF wave functions
that ≈n n2fac pair , showing that CASSCF wave functions

profit optimally from this reduction.
The determinants are first individually sorted according to

their α and β parts, and the repetitive blocks are identified. In a
next step, all required kl and ̅kl factors are precomputed and
stored in memory. The final overlap computation amounts to a
contraction step of the form

∑ ∑= ′ ̅
= =

′

S d dIJ
k

n

Ik
l

n

Jl kl kl
1 1

CI CI

(14)

where the outer sum over k is implemented as an explicit loop,
and the inner sum over l is realized as a matrix-vector product
using the BLAS (basic linear algebra subprograms) library. If
the number of unique factors is given as nfac, then the scaling of
the determinant computations is reduced to ×n n( )fac

3 . By
contrast, the contraction step (eq 14) considers the full number
npair = nCI × nCI′ of CI coefficients and scales as n( )pair times
the number of pairs of states. In practical calculations, either
one of these steps can be the time-critical one depending on the
ratio npair/nfac, the number of electrons n, and the number of
states.
The downside of precomputing and storing the factors is the

high memory demand. However, in general we find that
whenever the computation is feasible with respect to CPU time,
memory restrictions do not play a significant role. Furthermore,
an additional algorithm was implemented, which rearranges the
CI vectors in a way that the kl factors can be computed on-
the-fly, whereas only the ̅kl factors have to be precomputed.
This semidirect algorithm allows for cutting the memory
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demands in half while showing similar performance with
respect to storing all factors in memory. A notable loss of
performance is only observed when the available memory is
reduced even further.
Even when the kl and ̅kl factors are precomputed, the

computation of determinants is still a time critical step. To
make this computation as fast as possible, we combine two
prominent methods of calculating determinants. As one option,
determinants can be computed by Laplace’s recursive formula29

∑| | = − | ̃ |
=

+ AA A( 1)
i

j
i j

ij ij
1 (15)

where Ãij denotes the matrix A with the ith row and the jth
column deleted. A full recursive implementation of this
equation would lead to an undesired factorial scaling.
Therefore, LU factorization is used as the main tool30 because
it allows for computing determinants with n( )3 scaling.
Taking a close look at eq 15, however, one realizes that it allows
the reuse of intermediates. Especially in the context of CI
expansions, it is observed that many determinants differ only
with respect to the last orbital. In such a case, it is beneficial to
perform a Laplace expansion along the last column and
precompute the cofactors (−1)i+n|Ãin| to be used for all related
determinants. In the present implementation, an automatic
algorithm is used to decide case-by-case which determinants are
computed directly and which ones via their cofactors, as given
in eq 15. The cofactors are in turn computed by LU
decomposition, and no further recursion is carried out. This
procedure is particularly efficient for wave functions con-
structed as single excitations out of one or a few references, and
it is therefore complementary to the application of the kl
factors, which are applicable for higher excitation levels. An
alternative to this approach would be to use the matrix
determinant lemma as discussed, e.g., in ref 25. However, the
advantage of the present approach is that it does not require
any matrix inversions or other numerically unstable steps.
In addition to the previous algorithmic changes that do not

affect the computed result, we also want to discuss two
approximation schemes that do affect the results. First, a
threshold t for a truncation of the CI vector is introduced. The
elements dIk are sorted by their magnitude, and then all the
elements beyond a given index kt are discarded. The index kt in
turn is determined as the smallest number giving

∑ ≥
=

d t( )
k

k

Ik
1

2
t

(16)

The overlaps are computed with respect to the truncated wave
function

∑|Ψ̃⟩ = |Φ ⟩
=

dI
k

k

Ik k
1

t

(17)

where, following eq 16, the squared norm of this wave function
is greater or equal to t

⟨Ψ̃|Ψ̃⟩ ≥ tI I (18)

This approximation allows for significantly reducing the
number of terms to be computed while recovering the major
part of the wave function.
Truncation of the wave functions will generally lead to an

underestimation of the overlaps. To overcome this problem, we

suggest a simple correction. If it can be assumed that the angles
between the original and truncated wave functions are
approximately equal

⟨Ψ|Ψ′⟩
Ψ Ψ′

≈
⟨Ψ̃|Ψ̃′⟩

Ψ̃ Ψ̃′
I J

I J

I J

I J (19)

then the overlap between the normalized functions |ΨI⟩ and
|ΨJ′⟩ can be approximated by the renormalization

≈
⟨Ψ̃|Ψ̃′⟩

Ψ̃ Ψ̃′SIJ
I J

I J (20)

The assumption of eq 19 should be valid if the same general
wave function model is applied for |ΨI⟩ and |ΨJ′⟩. In cases
where very accurate values are required, the convergence of the
results should be studied by varying the threshold values.
Below, an orthogonalization procedure is discussed, which has a
similar effect on truncated wave functions but also allows for
the correction of terms stemming from orbital displacements.
The second approximation is based on discarding a number

ncore of frozen core orbitals. For these orbitals, which are
required to be occupied in all the determinants, it is assumed
that

ϕ ϕ δ⟨ | ′⟩ = ∀ ≤i j n: ,i j ij core (21)

and consequently that they are also orthogonal to all noncore
orbitals. Under this assumption, these orbitals can simply be
eliminated from the calculation leading to smaller determinants
in eq 8. Furthermore, as discussed below, discarding core
orbitals can improve the numerical stability of the computation
if atoms are moved, because displacements of atoms with tight
core orbitals can introduce numerical artifacts.
Scheme 1 summarizes the implemented algorithm. Four

types of input quantities are needed: the mixed AO overlaps,

the MO coefficients, the occupation strings of the determinants,
and the CI coefficients. The mixed AO overlaps have to be
computed explicitly in cases where the molecular geometry or
the basis set are varied. Technically, this step is most readily
performed by using a standard integral code and computing the
overlap integrals for a formal double molecule. The MO
coefficients are usually directly available in ASCII format. With
respect to the CI vectors, three preparation steps are necessary:

Scheme 1. Schematic Depiction of the Computation of Wave
Function Overlaps SIJ with Input Data and Intermediates
Shown in Gray and Blue, Respectively
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conversion from configuration state functions to Slater
determinants, extraction of the determinant strings, and
rearrangement of the orbitals to comply with eqs 5 and 6.
After the input is read, the AO overlaps are combined with the
MO coefficients according to eq 11 to compute the mixed MO
overlaps. These are in turn used in connection with the
determinant strings to compute the unique kl factors (eq 8).
In the final step (eq 14), these factors are contracted with the
CI coefficients to give the overlap. The code is written in a
modular fashion, which allows for an easy interface to various
quantum chemical programs and file formats when reading the
input quantities shown on the left in Scheme 1. Currently,
interfaces to the COLUMBUS 7.0 and MOLCAS 8.0 program
packages are available for accessing the CI vectors, MO
coefficients, and binary integral files.27,31,32 An extension to the
ADF program33 is in progress.
2.3. Properties of the Overlap Matrix. In this section, we

want to inspect the properties of the overlap matrix S under the
assumption that the two sets {|ΨI⟩} and {|ΨJ′⟩} are individually
orthonormal. Then, a wave function |ΨI⟩ of the first set can be
expanded using the resolution of the identity

∑ ∑

∑

|Ψ⟩ = |Ψ′⟩⟨Ψ′|Ψ⟩ + − |Ψ′⟩⟨Ψ′| |Ψ⟩

= |Ψ′⟩ + |Ψ ⟩

= =

=

⊥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

S

1I
J

N

J J I
J

N

J J I

J

N

J IJ I

1 1

1 (22)

Here, |ΨI
⊥⟩ is used to denote the component of |ΨI⟩ that

belongs to the orthogonal complement of the space spanned by
the {|ΨJ′⟩}. This suggests to think of a decomposition of the
wave function |ΨI⟩ in terms of the individual projection
components and the “missing part” belonging to the orthogonal
complement. Projection of the above equation onto ⟨ΨI|

∑

∑

= ⟨Ψ|Ψ⟩

= ⟨Ψ|Ψ′⟩ + ⟨Ψ|Ψ ⟩

= + ∥Ψ ∥

=

⊥

=

⊥

S

S

1 I I

J

N

I J IJ I I

J

N

IJ I

1

1

2 2

(23)

shows that the combined weight of these components is
normalized to unity and consequently that the sum of the
squared overlap values along a column (or equivalently a row)
of the overlap matrix is less than or equal to one.
If the two sets {|ΨI⟩} and {|ΨJ′⟩} span the same space, then

the orthogonal component |ΨI
⊥⟩ vanishes, and S becomes the

transformation matrix between the two sets. Furthermore, a
projection of eq 22 onto a function of the first set ⟨ΨK|
immediately shows that S is an orthogonal matrix

∑δ = ⟨Ψ |Ψ⟩ =
=

S SKI K I
J

N

KJ IJ
1 (24)

In practical applications, the calculated overlap matrix could
deviate from orthogonality due to different reasons. For
example, when modifying the molecular geometry during a
dynamics simulation, such a deviation could be an indication of
interactions with external states. In this case, the ∥ΨI

⊥∥ value
contains important nontrivial information. On the other hand,
nonorthogonality of the matrix could simply be present for

numerical reasons, e.g., from the wave function truncation or
from displaced basis functions. Then, the stability of the results
can benefit from an orthogonalization of the raw overlap matrix.
For this purpose, a symmetric (Löwdin) orthogonalization is
performed following the idea of ref 2. First, a singular value
decomposition of the overlap matrix is performed

λ λ= × ×S U Vdiag( , ..., )n1
T

(25)

to determine the transformation matrices U and V along with
the singular values λ1,...,λn. Then, the orthogonalized overlap
matrix is simply obtained as the matrix product

= ×S U Vortho
T

(26)

i.e., all singular values are rescaled to 1. Following numerical
tests in ref 3, we suggest applying this procedure for dynamics
simulations, preferably in connection with the local diabatiza-
tion formalism.2 However, special attention has to be paid to
interactions with external states.
When a comparison of wave functions constructed with

different models is performed, the ∥ΨI
⊥∥ term is an integral

component of the discussion as it allows for quantifying
discrepancies in the description. In such a case, the
orthogonalization procedure is not expedient, but a renormal-
ization (eq 20) can be carried out to correct for the wave
function truncation.

2.4. Nonadiabatic Interactions. The application of wave
function overlaps for nonadiabatic dynamics has been discussed
in detail elsewhere.1,8,9,12 Therefore, we shall only present some
relations immediately relevant for the following discussion. The
symbol |ΨI (R)⟩ is used to denote the parametrical dependency
of the electron wave function on the nuclear geometry R,
whereas the electronic coordinates are considered only
implicitly. In this nomenclature, the nonadiabatic coupling
vector between states I and J is defined as

= ⟨Ψ |∇Ψ ⟩h R R R( ) ( ) ( )IJ I J (27)

Coupling vectors can be computed by response theory using a
similar formalism to the computation of gradients.34−37 Aside
from the optimization of conical intersections,35,38 they are
indeed widely used in nonadiabatic dynamics simula-
tions.7,39−41 However, there are a number of issues that can
come into play for different application areas. First, coupling
vectors are only available for a limited number of methods and
program packages. Second, the computation of the required
one- and two-electron derivative integrals can be the overall
time-limiting step if large molecules or extended basis sets are
used in connection with restricted wave function expansions.
Third, the convergence of the coupled-perturbed MCSCF
equation system is not trivial as discussed, e.g., in ref 7. Finally,
numerical problems can arise in the case of highly peaked
coupling vectors.3,6 For these reasons, it is beneficial to have an
efficient and general alternative available, which is provided by
wave function overlaps.
To understand the connection between overlaps and

coupling vectors, eq 27 is written in the form

= ∇′⟨Ψ |Ψ ′ ⟩ = ∇′ ′′= ′=Sh R R R R R( ) ( ) ( ) ( , )IJ I J IJR R R R

(28)

where the symbol ∇′ is used to denote the gradient vector with
respect to the R′ coordinates. The directional derivative with
respect to a displacement vector RD is evaluated as
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+
= ·

→

S t

t

R R R
h R Rlim

( , )
( )

t

IJ
IJ

0

D
D (29)

Replacing the limit with a fixed small value of t and setting ΔR=
tRD yields the discrete approximation

+ Δ ≈ ·ΔS R R R h R R( , ) ( )IJ IJ (30)

Although this expression reduces to the exact directional
derivative in the limit of |ΔR| → 0, the linear approximation is
not necessarily stable when ΔR is increased. In such cases, the
use of a somewhat more extended formalism using a locally
diabatic wave function propagation is recommended for
dynamics simulations.2,3,41

3. ACCURACY AND PERFORMANCE
In this section, we investigate the accuracy and performance of
the new implementation of wave function overlaps. First, a
general numerical verification of the results will be performed.
Then, two crucial numerical questions that have not received
much attention so far despite the wide application for wave
function overlaps in nonadiabatic dynamics simulations will be
addressed. These are concerned with the consequences of wave
function truncation as applied to keep the computational effort
at an acceptable level and with numerical artifacts stemming
from displaced atoms and orbitals. Finally, the performance and
the parallel scaling of the individual computation steps are
examined.
3.1. Verification. Before proceeding to more specific

numerical and performance issues, we want to verify the
general numerical accuracy of the present code. For this
purpose, we will first show that the results are consistent with
general nonadiabatic theory by computing a path integral in
molecular coordinate space and then proceed to a comparison
of the results with respect to two different implementations.
Following previous work by some of us,15 the example
molecule used throughout much of this work is selenoacroleine,
shown in Figure 1. We will first discuss the torsion θ around its

CC bond, using results computed at the MR-CI level with
single excitations (MR-CIS). In Figure 2a, the energies of the
lowest two triplet states are plotted with respect to this torsion.
Both states have their minimum energy at the planar geometry
(θ = 0). At this point, T1 is of nπ* character, whereas T2 is a
ππ* state. As the torsion angle is increased, the T1 (nπ*)
energy increases strongly, whereas the T2 (ππ*) state shows a
flatter profile. At around 55°, the states exhibit an avoided
crossing, and at larger torsion angles, they exchange their state
character. The path integral over the coupling vector was
computed by numerical integration using eq 30.

∫ ∑ ∑≈ ·Δ ≈ + ΔSh R R h R R R R R( ) d ( ) ( , )IJ
i

IJ
i

IJ
(i) (i) (i)

(31)

where R(i) are intermediate geometries. The results are
presented in Figure 2b. As expected, the strongest interaction
is experienced in the area of the avoided crossing. The value of
the line integral over the 0° to 90° rotation amounts to
approximately π/2. By symmetry, it is clear that the full rotation
over 360° amounts to four times this value. Accordingly, the
integral around a closed path gives

∮ π≈h R R( ) d 2IJ (32)

a multiple of π, in line with general considerations.19 We have
therefore shown that the wave function overlaps computed here
give not only a qualitatively but also a quantitatively correct
picture of a passage through an avoided crossing, justifying the
application of these quantities for nonadiabatic dynamical
simulations.
As a next step, the numerical results will be compared to two

different previous implementations, a general overlap code12

that has been extensively used for surface hopping dynamics
within the NEWTON-X14,17,40 and SHARC41−43 packages and an
implementation based on the state interaction formalism13,26

that is part of the MOLCAS 8.0 program package.27 Furthermore,
results deriving from a simple scalar product of the CI vectors
will be presented. To allow for a quantitative numerical
comparison of results obtained with different program
packages, meticulous control of all wave function parameters
is necessary, and therefore, only a few selected examples are
discussed in the following. We again choose selenoacroleine
and compute the overlap between wave functions constructed
at two different geometries around the avoided crossing with θ
= 50° and 55° representing the geometries that could be
present in two subsequent time steps in a dynamics simulation.
First, CASSCF computations are carried out considering 6
electrons in 5 active orbitals and state-averaging over only the
two triplet states, denoted CASSCF(6,5)[0,2]. As this approach

Figure 1. Molecular structure of the selenoacroleine molecule and
indication of the torsion angle θ.

Figure 2. Torsion of selenoacroleine along the CC double bond: (a)
Energies of the T1 and T2 states computed at the MR-CIS/ANO-
RCC-VDZP level and (b) line integral over the nonadiabatic coupling
vector converging against π/2.
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is implemented in MOLCAS 8.0 as well as in COLUMBUS 7.0, we
can compare all of the above methods for overlap computation,
and the results are presented in Table 1. There are nCI = nCI′ =
90 Slater determinants contained in the CASSCF(6,5) wave
function, which in turn means that npair = nCI × nCI′ = 8100 pair-
determinant computations are necessary, each of which requires
the computation of the α and β spin-factors kl and ̅kl. Thus,
in summary, 16200 spin-factors are involved. Although all of
these are computed explicitly in the code of ref 12, only the
nfac = 200 unique ones of them are evaluated with our new
methodology. For this small case, the computational time
expended is negligible in both cases. Almost perfect numerical
agreement is observed with respect to the program of ref 12,
and the differences are below 1 × 10−9. A comparison with the
state interaction13 computation shows a semiquantitative
agreement, giving a difference of 0.001−0.002 with respect to
the previous results. This discrepancy probably derives from the
fact that, as to our understanding, the overlap terms of
displaced AOs ⟨χμ|χν′⟩ are neglected in the state interaction
implementation. The CI vector dot product is also qualitatively
correct here, showing however a somewhat larger discrepancy
on the order of 0.005.
The above calculation including only triplet states was

performed for technical reasons, as it allows a comparison to
the implementation in MOLCAS 8.0, which only supports state-
averaging within a spin multiplicity. We will now proceed to
state-averaging over two singlets and two triplets simulta-
neously, i.e., the CASSCF(6,5)[2,2] level, which is the level
used in the remaining part of this work. As seen in Table 1, the
overlap elements are modified significantly by the different
orbitals present due to the altered state-averaging, e.g., the
⟨T1|T1′⟩ element is lowered from 0.924 to 0.687. This shows the
critical impact that state-averaging can have on the resulting
wave functions. Moving from CASSCF to MR-CIS increases
the computational time significantly. We start with a smaller
active space of 4 electrons in 3 orbitals. For these MR-CIS(4,3)
computations, perfect agreement between the new code and
the implementation of ref 12 is observed, and at the same time
the computational time is reduced by a factor of 1000, i.e., from
half a day to half a minute. A factor of approximately 40 of this
speedup derives from the reduction in the number of spin
factors from 1.7 × 109 to 4.6 × 107, and a similar effect derives

from the additional algorithmic improvements, as discussed
above. The largest calculation here is MR-CIS(6,5), requiring
the computation of 5 × 1010 pair determinants. This
computation took approximately 11 min using the new
implementation. By contrast, it was not possible for us to
compute the exact overlap with the code of ref 12, and a
screening formalism12 was used to reduce the number of spin
factors to 1.2 × 1010, yielding a computation that could be
finished in 2 days. The discrepancy in this case is on the order
of 0.001, and the error of a simple CI vector overlap is 1 order
of magnitude larger. The results of this comparison are very
promising. Although a quantitative agreement with ref 12 is
obtained, the results could be accelerated by 3 orders of
magnitude, thereby significantly expanding the scope of
problems that can be treated.
As a second example, selected results on the model iridium

complex fac-tris(3-iminoprop-1-en-1-ido)iridum [Ir(C3H4N)3],
as shown in Figure 3, will be presented, a system that some of

us have studied in detail recently.44 Here, we want to verify our
results against the state-interaction implementation in
MOLCAS.13 To construct a job that can be properly compared
between the two implementations, the geometry and active
space are left unaltered between the bra and ket states. The
only parameter varied is the number of singlet states in the
state-averaging procedure using values of 1, 4, and 10. The
results are presented in Table 2. At first glance, the strong
impact that state-averaging exerts on the resulting wave
functions is apparent. Switching from one to four states, the
overlap between the 11A ground states only amounts to 0.892,
and there is also some non-negligible overlap of −0.044
between this state and the excited 21A state. A similar situation
is present between nav = 1 and nav′ = 10. By contrast, the ground

Table 1. Benchmark of the Numerical Accuracy of the New Wave Function Overlap Code Compared against Previous
Implementations and a Simple Scalar Product between CI Vectors: Overlap Terms of the T1 and T2 States of Selenoacroleine
between Geometries with 50° and 55° Torsion Computed for Different Wavefunction Expansionsa

implem. method ⟨T1|T1′⟩ ⟨T1|T2′⟩ npair nfac t (s)

current CASSCF(6,5)[0,2] 0.9236998365 0.3525350680 8100 200 0
ref 12 CASSCF(6,5)[0,2] 0.9236998368 0.3525350673 8100 16200 0
ref 13 CASSCF(6,5)[0,2] 0.92560296 0.35369919
CI vec. CASSCF(6,5)[0,2] 0.9330964879 0.3555705289
current CASSCF(6,5)[2,2] 0.6873547950 0.7107005295 8100 200 0
ref 12 CASSCF(6,5)[2,2] 0.6873547949 0.7107005297 8100 16200 0
CI vec. CASSCF(6,5)[2,2] 0.7087592682 0.7037994229
current MR-CIS(4,3) 0.9839833569 0.1084043350 8.32 × 108 4.62 × 107 33
ref 12 MR-CIS(4,3) 0.9839833570 0.1084043349 8.32 × 108 1.66 × 109 43769
CI vec. MR-CIS(4,3) 0.9830660844 0.0903168964
current MR-CIS(6,5) 0.9752933771 0.1676405562 5.02 × 1010 1.34 × 108 673
ref 12 MR-CIS(6,5) ∼0.9745715572 ∼0.1674970271 <5.02 × 1010 1.18 × 1010 >181021
CI vec. MR-CIS(6,5) 0.9560951427 0.1457014401

anpair and nfac denote the number of Slater determinant pairs in the expansion and the number of k l and ̅kl spin factors actually computed,
respectively.

Figure 3. Molecular structure of the model complex Ir(C3H4N)3
studied in this work.
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state wave functions are almost equivalent between four and ten
states, showing that the higher excited states require similar
orbitals as the lower ones. From a methodological point of
view, a quantitative agreement with deviations below 1 × 10−8

between our implementation and ref 13 is observed. In Table 2,
the results of a simple scalar product of CI vectors are also
shown. These are qualitatively consistent with the actual wave
function overlaps but exhibit significantly larger deviations.
In Table 2, the signs of the overlap elements are also given.

These signs derive from the overall phases of the wave
functions as computed by MOLCAS. Although the phases possess
no physical meaning in isolated calculations, it is crucial to
control them in dynamics simulations to obtain smoothly
varying matrix elements along a trajectory.41 Here, wave
function overlaps offer a clear way to monitor wave function
phases, independent of any orbital rotations or orbital phase
changes. Indeed, consistent sign information is obtained
between the current implementation and the one of ref 13.
By contrast, a simple scalar product between CI vectors yields
the opposite signs for the off-diagonal elements in this example.
3.2. Wave Function Truncation. Despite the significant

algorithmic improvements reported above, it is necessary to
allow for a truncation of the wave function to keep the
computational cost acceptable for large wave function
expansions. For this purpose, the threshold t (eq 16) is used,
pertaining to the minimal squared norm of the truncated wave
function. Selenoacroleine is considered, and overlaps are
computed between the two geometries at θ = 50° and 55°
torsion. Computations are performed at the MR-CIS(6,5) and
MR-CISD(6,5) levels of theory, and the threshold t is varied
systematically. The value for the overlap between the T1 state at
50° and the T2 state at 55° torsion is depicted in Figure 4a. The
MR-CISD values (red) differ significantly from the MR-CIS
values (black): whereas the former indicate strong nonadiabatic
interactions with overlap elements above 0.8, the latter values
are below 0.2. This type of discrepancy, which derives from
slightly altered potential surfaces due to dynamic electron
correlation, is well-known in the literature (see, e.g., ref 45) and
will not be discussed in more detail here. The current focus is
an analysis of the numerical stability of the results within a
chosen computational protocol. For this purpose, three values
are considered: (i) the raw overlap between the truncated wave
functions, (ii) the renormalized overlap according to eq 20, and
(iii) the orthogonalized overlap value. At the MR-CIS level of
theory, all three values are almost equivalent for thresholds

above 0.95. A stronger deviation exists for the smallest value of
0.90. However, even in this case, qualitative agreement is found,
and all of the wave function phases are reproduced correctly.
Furthermore, it is observed that the raw overlaps are always
somewhat smaller than the renormalized ones, which are in
turn smaller than the orthogonalized ones. The first effect
derives from the wave function truncation, and the second
derives from the geometric displacement, as will be analyzed in
the next section. The convergence of the raw MR-CISD results
is significantly worse when compared to MR-CIS. However, the
renormalized and the orthogonalized results show satisfactory
stability.
Figure 4b presents the number of Slater determinant pairs

(npair, filled symbols) and the number of actually computed
determinant factors as shown in eq 8 (nfac, empty symbols).
There is a steep increase in the number of terms to be

Table 2. Benchmark of the Numerical Accuracy of the New
Wavefunction Overlap Code against the Implementation in
MOLCAS 8.0 and a Simple Scalar Product of CI Vectorsa

implem. ⟨nav| |nav′ ⟩ ⟨11A|11A′⟩ ⟨11A|21A′⟩
current 1 4 −0.89215658 0.04432758
ref 13 1 4 −0.89215658 0.04432758
CI vec. 1 4 −0.91830990 −0.01986185
current 1 10 0.88965905 −0.04019029
ref 13 1 10 0.88965905 −0.04019029
CI vec. 1 10 0.93209422 0.01055738
current 4 10 −0.99748992 0.00185985
ref 13 4 10 −0.99748993 0.00185985
CI vec. 4 10 −0.95355419 −0.00559357

aOverlap terms of the 11A and 21A states of Ir(C3H4N)3 between
CASSCF(12,9) wavefunctions considering different numbers of singlet
states nav, nav′ in the state-averaging procedure.

Figure 4. Performance of the wave function overlap code for the ⟨T1|
T2′⟩ element at the MR-CIS(6,5) and MR-CISD(6,5) levels of theory
in the case of selenoacroleine between geometries with 50° and 55°
torsion using varying screening thresholds t: (a) the overlap
considering raw, renormalized, and orthogonalized results, (b) the
total number of determinant pairs (npair) and the number of unique kl

and ̅kl factors (nfac), and (c) the computation time and memory
requirements.
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computed as the threshold goes against 1. In the case of MR-
CISD, npair goes up to 1.7 × 1013, whereas in the case of MR-
CIS, this value reaches 2.4 × 1010. However, not all of these
terms are unique, and the number of factors computed (nfac) is
significantly lower than npair, differing by approximately 2 orders
of magnitude in most cases. Figure 4c shows the computation
time expended and the memory needed. In the MR-CIS case,
all of the computations are finished in at most a few minutes,
and the memory requirements never exceed one gigabyte (GB).
By contrast, for MR-CISD, a steep scaling of time and memory
with the threshold becomes apparent. The largest computation
shown here requires over a million core-seconds, which
amounts to approximately 10 h on 32 cores. Storing all 7.4 ×
1010 factors occurring in this case would require 567 GB. To
somewhat reduce this workload, a semidirect algorithm is
implemented, which reduces the memory requirements by
approximately one-half.
The MR-CIS wave function calculation in COLUMBUS 7.0

takes approximately 1 min. The computation of the non-
adiabatic coupling vectors adds another 2 min, and the overlaps
are computed in only 12 s (t = 0.99). In the case of MR-CISD,
two and a half hours are required for the wave function
calculation and, again, 2 min are added for the coupling vectors.
In this case, the coupling vectors are cheaper than overlaps,
which require at least 16 min of computation time (t = 0.95).
Still, in both cases, the overlaps can be computed in less time
than the wave function calculations. In general, the question of
whether nonadiabatic coupling vectors or overlaps are cheaper
will depend on the wave function model, the basis set, and the
number of electrons, and it is beneficial to have both methods
available.
The above results show that qualitative information about

wave function character and phase can be obtained in a few
seconds when using a threshold value of t = 0.9. Almost
converged results are obtained at t = 0.95 or 0.97 while still
allowing for favorable computation times when compared to
the effort of the actual MR-CI computation. Enhanced
numerical stability is obtained if the results are additionally
renormalized or orthogonalized. For quantitative applications,
we suggest using 0.95 as a minimal threshold value. However,
in many cases, larger thresholds are affordable, and for smaller
wave function expansions, such as in CASSCF calculations,
truncation becomes unnecessary.
3.3. Displacement of Atoms. Whenever atoms are

displaced, as is the case most prominently in dynamics
simulations, the overlaps are not only affected by the actual
nonadiabatic interactions of interest but also by more trivial
consequences of the displacement, e.g., the shift of the orbitals
in space. As a consequence, the step size in nonadiabatic
dynamics simulations will not only affect the general numerical
stability of the wave function propagation,3,46 but when
overlaps are applied, the specific effect of displaced orbitals
should be taken into account, as well. It is worth noting that
this problem is not a consequence of the use of atom-centered
basis functions, but that it also exists in the complete basis set
limit.
To construct a controlled test for this issue, we again

consider the selenoacroleine molecule and its two geometries at
θ = 50° and 55°. While one geometry (θ = 55°) is kept
stationary in space, the other (θ = 50°) is translated in the x-
direction (cf. Figure 1) up to a displacement of 0.1 Å. From a
physical point of view, the nonadiabatic interactions should not
be modified by this translation, and any modulations of the

overlap elements are therefore unwanted artifacts. The ⟨T1|T2′⟩
overlap element is computed at the CASSCF(6,5) level of
theory using different settings. On the one hand, three numbers
of discarded core orbitals are used: 0, 5 (Se-1s, Se-2s, Se-2p),
and 12 (also Se-3s, Se-3p, 3 × C-1s). On the other hand, raw
and orthogonalized overlaps are plotted. The results are
presented in Figure 5. At zero displacement, all values agree,

giving a value of 0.71069 for the raw overlaps and 0.71884 for
the orthogonalized ones. Once the molecule is displaced, a very
steep decline of the raw overlaps (shown as dashed lines) is
observed. This effect is particularly pronounced with zero
discarded core orbitals, whereas the results are somewhat more
stable when this number is increased to 5 or 12. To understand
this effect, it is instructive to regard the size of the 1s core
orbitals, which can be estimated as a(Z) = a0/Z, where a0 is the
Bohr radius and Z is the nuclear charge. The smallest orbital in
the system is the Se-1s orbital with a(34) = 0.016 Å. Indeed,
this distance corresponds approximately to the displacement
where the dashed black curve reaches half its maximum. Once
the Se-1s orbital and the other core orbitals are discarded, the
decay of the overlap is less steep but still significant.
Considering, for example, a displacement of 0.1 Å, which
amounts to only a small fraction of an interatomic bond
distance, the values for 0, 5, and 12 discarded core orbitals are 9
× 10−7, 0.009, and 0.057, respectively. This decay is
problematic for dynamics simulations because even the smallest
translation of the molecule, which might occur because of
numerical inaccuracies, can affect the computed overlap values.
A similar effect, albeit more difficult to quantify, should occur in
the case of variations of the molecular geometry. In contrast to
the raw overlap values, excellent numerical stability is observed
after orthogonalization. Even in the case of 0.1 Å displacement,
the orthogonalized overlap matrix elements are all 0.71882
irrespective of the number of discarded core orbitals. The good
performance of the orthogonalization process can be under-
stood by the fact that all elements of the overlap matrix are
scaled down uniformly by the translation and that the
orthogonalization then simply amounts to renormalizing
these elements. Two important conclusions can be drawn

Figure 5. Computation of the CASSCF(6,5) ⟨T1|T2′⟩ overlap element
for a selenoacroleine molecule displaced in the x-direction (θ = 50°)
with respect to a stationary one (θ = 55°). Raw overlaps are given as
dotted lines, and results after orthonormalization are given as solid
lines (all overlapping). The number of discarded core orbitals (ncore) is
indicated by the color.
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from Figure 5: First, core orbitals can have an unwanted effect
on the overlap values despite not being involved in the
nonadiabatic process. Discarding them improves the numerical
stability while at the same time saving computational effort.
Second, orthogonalization of the overlap matrix is a powerful
tool to dispose of unwanted effects deriving from the molecular
displacement.
Whereas the focus of this investigation was concerned with

the effects of discrete displacements, it would be of interest to
evaluate whether a similar procedure can be applied to
eliminate the lack of rotational and translational invariance of
nonadiabatic coupling vectors.37,47 However, this question is
out of the scope of this work.
3.4. Performance and Parallelization. In a next step, the

general performance of the new implementation is examined.
For this purpose, five distinct wave function expansions are
chosen for the selenoacroleine molecule. Aside from the MR-
CIS(6,5) and MR-CISD(6,5) methods discussed before,
CASSCF(10,10) and CASSCF(12,12) computations are also
performed to represent the case of larger active spaces, all using
the ANO-RCC-VDZP basis set. Furthermore, the MR-
CIS(4,3)-1x expansion (see Computational Details) is chosen
as a case with only two references in connection with the larger
ANO-RCC-VTZP basis set. Various values of the threshold t
were used to produce a set of 20 data points. In Figure 6, the

computation times are plotted against the number of pair
determinants npair = nCI × nCI′ . All these data points are roughly
on a straight line, highlighting the uniform performance
characteristics of the code with respect to this diverse set of
wave functions. In a simple direct algorithm, formal linear
scaling of the timings with respect to npair is expected (see
section 2.2). By contrast, the effective scaling behavior seen
here, obtained as the slope in the logarithmic plot, is close to

n( )pair
1/2 . It is observed that the above algorithm is particularly

efficient for large CASSCF expansions owing to the fact that
these allow for the strongest reduction in the number of spin
factors. In the case of CASSCF(12,12), there are npair = 3.9 ×
1011 terms to be computed that can be represented by only nfac
= 1.3 × 106 spin factors. Indeed, in this case, the computation
time is determined by the final contraction (eq 14), whereas the
primary determinant computation (eq 8) requires less than 1%

of time. The MR-CIS expansions profit from the one-step
Laplace recursion of eq 15, which again allows for efficient
computation of the determinants. By contrast, the MR-CISD
results are somewhat above the remaining data points, showing
that further speedup would be possible through a more
extended use of the Laplace recursion (eq 15) or a similar
formalism. However, also in these cases, 10−20% of the
computation time is used for the contraction step (eq 14),
setting a clear limit for the effect of any possible improvement
in the determinant computation.
The parallel performance in shared memory is tested in the

case of an extended MR-CISD(6,5) calculation on selenoacro-
leine covering npair = 6.7 × 1012 determinant pairs (i.e., the t =
0.995 case in Figure 4). The speedup going from 1 to 32 cores
is presented in Figure 7a. This figure presents the good

scalability of the code, showing in fact superlinear scaling. In
Figure 7b, the total computation time is dissected into the
different relevant steps. The core hours consumed are plotted
against the number of cores, a representation where perfect
parallel scaling amounts to a horizontal line. The two major
time-consuming tasks are the determinant computations (eq 8)
and the final contraction of the kl factors with the CI vector
(eq 14). Both of these tasks have been parallelized. As seen in

Figure 6. Performance of the wave function overlap code for varying
wave function expansions: computation time plotted against the
number of determinant pairs (npair).

Figure 7. Parallel performance of the overlap code for a
selenoacroleine MR-CISD(6,5) computation requiring the evaluation
of 6.7 × 1012 Slater determinant overlaps: (a) speedup from 1 to 32
cores and (b) computation times for the different steps as discussed in
the text.
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Figure 7b, almost ideal scaling is obtained in the case of the
determinant computations as this is a CPU-time-limited step
with little memory overhead. By contrast, the contraction step
shows somewhat erratic behavior, even providing a superlinear
speedup for an intermediate number of cores. This behavior is
probably a consequence of the fact that this step is limited by
memory bandwidth and the precise usage of various cache
levels. Figure 7b also presents timings of the sorting step with a
parallelization up to four cores and the sequential I/O step. The
relative contributions of these steps increase linearly with the
number of cores. However, even at 32 cores, these amount to
only 1% of the total computation time, and further
parallelization is not necessary.

4. CONCLUSIONS

A new algorithm for the computation of wave function overlaps
between many-electron wave functions is presented. By virtue
of an optimized algorithm, which makes extended use of
recurring intermediates, a highly efficient code was generated,
which allows for computations with MR-CISD wave functions,
with large active space, and with extended basis sets. Because of
the general formalism employed, there are no restrictions with
respect to the wave functions except that they have to be given
in a Slater determinant expansion based on restricted or
unrestricted molecular orbitals. Consequently, it is possible to
vary the wave function model, the orbitals, the one-electron
basis set, and the molecular geometry. The code is directly
applicable to models producing explicit wave functions, i.e., the
configuration interaction and multiconfigurational SCF meth-
ods. Extensions to time-dependent density functional theory,
coupled cluster, and other response theory methods are
straightforward using approximations that have been described
previously.8,9,17

The code was verified against general nonadiabatic theory19

by computing a circular path integral in coordinate space and
against two existing implementations12,13 by using appropriate
example computations, showing excellent agreement. Further-
more, the effects of using truncated wave functions were
studied, and it was found that values of t = 0.95 or 0.97 for the
squared norm of the truncated wave function could already
provide satisfactory results. In addition, attention was devoted
to understanding unwanted effects deriving from discrete
displacements of atoms and orbitals, which naturally occur in
dynamics simulations. For both cases, wave function truncation
and orbital displacement, it was found that an orthogonalization
of the overlap matrix2 can improve the results dramatically.
The wave function overlap code has been interfaced to the

SHARC program package41,43 with the focus of performing
nonadiabatic dynamics simulations. Because of the general
formalism employed, the code is certainly not limited to this
application, and other tasks can be envisaged where the new
code will be beneficial, for example, the comparison of wave
functions constructed at different levels of theory and probing
the initial electronic states after β-decay48 or after the
photoionization of core-electrons.49 Furthermore, the compu-
tation of Dyson norms,50 as required for the simulation of
photoelectron spectra, can be achieved by a slight modification
of the code. Some of these tasks are currently being investigated
by the authors.

5. COMPUTATIONAL DETAILS
Most calculations on selenoacroleine were performed using an
active space containing 6 electrons in 5 active orbitals (2 × π,
nSe, 2 × π*), i.e., CASSCF(6,5) and MR-CI(6,5), in connection
with the ANO-RCC-VDZP basis set51 including state-averaging
over the lowest two singlet and triplet states. The active space
was enhanced for CASSCF(10,10) and CASSCF(12,12)
computations, whereas a smaller active space of 3 orbitals (π,
nSe, π*) was used for MR-CIS(4,3) and MR-CIS(4,3)-1x
computations. In the latter case, the maximum number of
reference excitations into the π* orbital was restricted to 1,
resulting in only two reference configurations, and the
computation was performed using the larger ANO-RCC-
VTZP basis set. Scalar relativistic effects were taken into
account in these all-electron calculations by using the second-
order Douglas−Kroll−Hess Hamiltonian.52 Unless otherwise
specified, 12 core orbitals corresponding to the s and p orbitals
in the first, second, and third shells on Se and the 1s orbitals on
C were frozen in the MR-CI computations and discarded in the
wave function overlap computations. For the triplet/triplet
overlaps, generally, the ms = −1 wave functions were
considered, as these contain fewer determinants than the
ms = 0 ones, allowing for speedup of the computations while
not affecting the results.
CASSCF computations on Ir(C3H4N)3 were performed by

including 12 electrons in 9 orbitals (3 × π, 3 × d, 3 × π*). The
iridium atom was described by the LANL2DZ effective core
potential (ECP), in its “small-core” version, and the
corresponding basis set for the active (5s, 5p, 5d, 6s, 6p)
orbital shells,53 whereas for the remaining atoms, the 6-31G*
basis set54 was employed.
The MR-CI computations were carried out with the

COLUMBUS 7.0 program package31,55,56 using its parallel MR-
CI implementation,57,58 whereas MOLCAS 8.027,59 was applied
for the integrals and most of the CASSCF calculations. In the
cases of comparing different overlap programs, generally no
frozen core orbitals were considered to allow for a clear
comparison. The benchmark calculations for varying wave
function models (Figure 6) were performed on one core of an
Intel Xeon E5-2650-V3 CPU at 2.3 GHz, whereas the parallel
performance tests (Figure 7) were carried out on an HP
DL580G7 server with 512 GB of main memory and 4 Intel E7-
4850 (Westmere) CPUs at 2.0 GHz with 10 cores each.

APPENDIX A. SLATER DETERMINANT OVERLAPS
In this part, we present a simple derivation for the overlap
between two nonorthogonal Slater determinants, a formula that
was originally derived by Löwdin.21 Given two Slater
determinants

ϕ ϕ|Φ⟩ = | |... n1 (33)

ϕ ϕ|Φ′⟩ = | ′ ′|... n1 (34)

it is shown that their overlap is given by the determinant of the
matrix containing all mixed orbital overlaps

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
=

⟨ | ′⟩ ⟨ | ′⟩

⋮ ⋱ ⋮
⟨ | ′⟩ ⟨ | ′⟩

D

...

...

n

n n n

1 1 1

1 (35)

First, the explicit form of the Slater determinants is invoked
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∑ σ ϕ ϕ|Φ⟩ =
!

· · ·
σ

σ σ
∈n

r r
1

sgn( ) ( ) ... ( )
S

n n(1) 1 ( )
n (36)

∑ τ ϕ ϕ|Φ′⟩ =
!

· ′ · · ′
τ

τ τ
∈n

r r
1

sgn( ) ( ) ... ( )
S

n n(1) 1 ( )
n (37)

where Sn is the symmetric group of order n, i.e., the set of all
possible permutations of n elements. This yields the following
expression for the overlap

∑ ∑σ τ ϕ ϕ ϕ ϕ⟨Φ|Φ′⟩ =
!

⟨ | ′ ⟩· ·⟨ | ′ ⟩
σ τ

σ τ σ τ

ϕ ϕ ϕ ϕ
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n n

n
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(1) 1 (1)

( ) 1 ( )

(38)

The part underlined is the determinant introduced in eq 35 but
with permuted rows. It possesses the value D multiplied by the
sign of σ, which in turn means that

∑ σ σ⟨Φ|Φ′⟩ =
!

=
!

! =
σ∈n

D
n

n D D
1

sgn( )sgn( )
1

Sn (39)
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