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Stationary and nonstationary spatiotemporal pattern formations
emerging from the cellular electric activity are a common feature
of biological cells and tissues. The nonstationary ones are well
explained in the framework of the cable model. Inversely, the
formation of the widespread self-organized stationary patterns of
transcellular ionic currents remains elusive, despite their impor-
tance in cell polarization, apical growth, and morphogenesis. For
example, the nature of the breaking symmetry in the Fucus zygote,
a model organism for the experimental investigation of embryonic
pattern formation, is still an open question. Using an electrodif-
fusive model, we report here an unexpected property of the
cellular electric activity: a phase-space domain that gives rise to
stationary patterns of transcellular ionic currents at finite wave-
length. The cable model cannot predict this instability. In agree-
ment with experiments, the characteristic time is an ionic diffusive
one (<2 min). The critical radius is of the same order of magnitude
as the cell radius (30 �m). The generic salient features are a global
positive differential conductance, a negative differential conduc-
tance for one ion, and a difference between the diffusive coeffi-
cients. Although different, this mechanism is reminiscent of Turing
instability.

S tationary and nonstationary spatiotemporal pattern forma-
tions emerging from the cellular electric activity are a

common feature of biological cells and tissues (1, 2). The
propagation of an action potential along an excitable cell and
cardiac spiral waves are well known examples of bioelectric
nonstationary spatiotemporal patterns (3). Patterns of station-
ary transcellular ionic currents are also widespread. They have
been observed in fungi, plants, alga, protozoa, and insects [refs.
2, 4–7; see also www.mbl.edu�labs�BioCurrents�Pub�index.html
of the Biocurrents Research Center of the Marine Biological
Laboratory (Woods Hole, MA), which contains numerous ref-
erences on stationary transcellular ionic currents]. These cur-
rents enter the cell in one region, f low through the cytoplasm,
and exit at a separate location, providing a current loop. They are
intriguingly correlated to cell polarization, nutrient acquisition,
calcification, apical growth, and morphogenesis, from which
comes their importance in cellular biophysics. They are often
thought to reflect natural asymmetries, but several experimental
evidences indicate that symmetry breaking arises in the absence
of any external cues (8). In Fucus, a model organism for the
experimental investigation of embryonic pattern formation (6,
8–10), a few minutes after fertilization, the zygote of radius R of
�30–50 �m exhibits a dipolar circulation of calcium ions �0.1–1
�A�cm2 that breaks the initial spherical symmetry (9–12). This
circulation is one of the first signs of breaking symmetry. The
axis of the dipolar ionic circulation can be fixed initially by any
perturbation like sperm entry, chemical gradients, or electric
fields (9, 10, 13, 14), a property very reminiscent from dynamical
instability mechanism (15, 16). An F-actin patch is present as
early as 30 min after fertilization (17). However, the axis is always
labile during few hours. This example of pattern formation seems
to occur with a characteristic diffusive time T � R2�D, where R
is the cellular radius and D is the relevant coefficient of ionic

diffusion. It has been suggested previously that a Turing insta-
bility (18–21) or a self-aggregation of membrane proteins (22–
24) could initiate this self-organized phenomenon. The models
of self-aggregation predict the occurrence of transcellular ionic
currents on a characteristic time T � R2�Dp, where Dp is a
characteristic coefficient of membrane diffusion of proteins. For
a usual value of Dp � 10�9 cm2�s in cellular membranes and R �
30 �m, we get T � 9�103 s, which is larger than the characteristic
time of actin polymerization in the case of Fucus (17). Moreover,
whatever the mechanism, Turing or self-aggregation, experimen-
tal evidences supporting these models are still lacking. Another
model based on membrane conductances has also been pro-
posed. It is only valid in the unrealistic limit of vanishing
permeability and it can neither solve the experimental results of
the vibrating probe and nor predict the wavelength domain of
occurrence (25). We will show that stationary patterns of
transcellular ionic currents arise from an unexpected coupling
between bulk ionic diffusion and voltage-dependent ion chan-
nels. In the case of voltage-gated ion channels, two results are
predicted in the literature: either an electric relaxation for a
positive total differential conductance or a wave propagation
(action potential) for a negative total differential conductance
(1, 3). Here, we will show that a third response occurs when the
ions flowing through the membrane diffuse outside the mem-
brane with a significantly different diffusion rates. In response to
a local membrane potential f luctuation, the diffusing ions will
slowly set up a local electric field (due to the mismatch between
diffusion coefficients) that will overcome the fast lateral dissi-
pation along the cell membrane (also called the cable effect).
The resulting electric field will enhance the initial membrane
potential f luctuation providing a positive feedback response that
drives the growth of the pattern around the zygote (see Origin of
the Instability and Fig. 7 for a qualitative diagram).

Model Description
To describe the dynamics of both ions and membrane electric
potential difference, we consider electrodiffusive models cou-
pled to the membrane conductances to account for the mem-
brane transport processes. For the sake of simplicity, we only
consider two ions 1 and 2 of charge number z1 and z2, which
diffuse at different rates in solution. Dj is the coefficient of
diffusion of the ion j. In the initial state, the membrane potential
V and each ionic concentration, respectively, are equal to V0 and
Cj0 (j � 1, 2).

Membrane Currents. The current of each ion occurs through
membrane proteins and is characterized by a current-voltage I–V
curve: I1(V) and I2(V). The differential conductances G1 and G2
around the initial state V � V0 control the linear response of the
cell to all perturbations. In all of the following, we assume that
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G1 is negative and that G2 and the sum G1 � G2 are positive (Fig.
1). This assumption is supported by experiments showing the
presence of both voltage-dependent calcium channels and a
potassium leak in Fucus (26). We model such a current by a cubic
variation to have a N shape (Fig. 1):

I1 � G1�V0�v�v � v1��v � v2�/v1v2 � z1FP�C1 � C10� [1]

I2 � G2�V0�v � z2FP�C2 � C20�, [2]

where v is the dimensionless membrane potential v � (V �
V0)��V0�, F is the Faraday constant, v1 and v2 are two character-
istic dimensionless membrane potentials, and P is a permeability
coefficient that evaluates the dependence of the current with the
intracellular concentrations. For the sake of simplicity, we take
the same value for Ij and ignore the variations with the extra-
cellular concentrations. We also define a dimensionless param-
eter p � FP(z1

2C10 � z2
2C20)�G2�V0�, which quantifies the variation

of the currents with the concentrations versus the variation with
the membrane potential. The results reported here do not
depend on the exact shapes of the currents, which affect only the
magnitude of the results.

2D and 3D Models. We consider a circular cell of radius R. In the
extracellular and intracellular media, each ionic concentration Cj

and the electric potential � satisfy a continuity equation based
on Nernst–Planck electrodiffusive flux and the Poisson equation:

�Cj

�t
� Dj�Cj �

eDj

kBT
zj�� �Cj�� �� [3]

�� � �(F/�)�z1C1 � z2C2�. [4]

The boundary conditions at cell membrane are:

zjFJ�j�n� � Ij [5]

n� � �� �i � n� � �� �e � 0 [6]

Cm��i � �e� � �(�/2)�n� � �� �i � n� � �� �e�, [7]

where J�j is the molar electrodiffusive flux, F is the Faraday
constant, n� is the outer normal unit vector, � is the bulk

permittivity, and Cm is the membrane capacitance: Cm � �m�d,
where d is the membrane thickness. The subscripts i and e refer
to the inside and the outside of the cell. The membrane potential
V is equal to �i � �e. Eq. 5 is valid at the two sides of the
membrane, which means that the current of each ion through the
membrane, Ij, is equal to the outer and inner electrodiffusive
ones. Eq. 6 provides the continuity of the electric field. Eq. 7 is
the dielectric one where the right member ��n� .�� �i(e) is approx-
imately a charge per unit area because of mobile ions integrated
across the Debye layer. Eqs. 6 and 7 have been calculated from
Maxwell boundary conditions at each interface (extracellular
medium-membrane and membrane-intracellular medium), as-
suming the absence of fixed charges (due to lipids or proteins).
We have assumed that the normal component of the electric field
inside the membrane is a constant. This assumption is valid in
biological cells where the characteristic length of membrane
potential variations is large compared with the membrane
thickness. Then, in the framework of this model, we determine
explicitly the ionic charge density in the extracellular and
intracellular media; the ionic charge density is not zero, notably,
in the Debye layers. Far from the cell, the electric potential and
the concentrations are equal to the initial values.

The 1D Model. To understand and characterize the results ob-
tained in two dimensions, we have studied in details a 1D case
that has the great advantage to be less time-consuming. It does
not change the qualitative results. The 1D model (a cell cylinder
of radius r) is based on the 1D Nernst–Planck equation with an
additional capacitive relation:

�Cj

�t
� Dj

�2Cj

�x2 �
eDj

kBT
zj

�

�x
� �Cj

��

�x� �
2
r

Ij/zjF [8]

Cm�V � V0� � �Fr/2�	z1�C1 � C10� � z2�C2 � C20�
.

[9]

Several authors have applied this model to relatively small
intracellular structures such as dentritic spines (27). We have
checked that the 3D model reduces to the 1D one for a
cylindrical cell if the correlation space constant is large com-
pared with the cell radius.

Numerical Methods. All the simulations are performed with
dimensionless parameters, which vouches for the scope of the
results. The dimensionless coordinates X and Y in two dimen-
sions are equal to x��2 and y��2, where �2 is the characteristic
correlation space constant of the current I2:�2 � �r	�2G2,
where 	 is the solution conductivity. The dimensionless time T
is equal to tD1D2��2

2D̃, where D̃ is a mean ionic diffusion
coefficient: D̃ � 
1D1 � 
2D2, with 
j � zj

2Cj0�(z1
2C10 � z2

2C20). We
recall that 	 � (eF�kBT)(z1

2C10 � z2
2C20)D̃. For all the figures, z1 �

2, z2 � 1, 
j � 0.5, v1 � �0.2, v2 � 0.15, 2Cm�V0��Fr(z1
2C10 �

z2
2C20) � 0.001, and e�V0��kBT � 4. These values are not critical

for the results. p � 0.1 for all of the figures except the stability
diagram (see Fig. 5). Other parameters are provided in the
following section. We assume an initial white noise of the
membrane potential and analyze the response of our system by
computing the electrodynamic equations.

Results
Let us consider a circular cell of radius R corresponding to the
Fucus zygote (Fig. 2). The relevant ions are the calcium (ion 1)
and potassium (ion 2) ones. The relevant value of the intracel-
lular calcium diffusion coefficient must take into account the
binding to buffers, reaction with organelle, and so on. We have
collected the intracellular apparent values from different spe-
cies. They vary from 2.010�6 to 10�8 cm2�s (4, 28, 29). We have

Fig. 1. Dimensionless membrane currents versus dimensionless electric
membrane potential v � (V � V0)��V0�. The current I2�G2�V0� (���) of ion 2 is
assumed to be linear. I1�G2�V0� (***) has an N shape characterized by a negative
differential conductance G1 at V0. The dimensionless total current (I1 � I2)�
G2�V0� (�) has a positive differential conductance. G1�G2 � �0.8. The concen-
trations are assumed to be at equilibrium.
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used an intermediate value, DCa2� � 2.010�7 cm2�s. This value
provides a large ratio of coefficients of diffusion D2�D1 � 100.
The differential membrane conductances are assumed to be of
the same order: G1�G2 � �0.8. For a dimensionless radius
2G2R�	 � 0.01, a stable stationary dipolar circulation of ions
appears, breaking the initial symmetry as observed in Fucus (Fig.
2). Calcium ions and the electric field enter at the depolarized
pole in agreement with experiments (9–12). An asymmetry
exists between the magnitudes of the electric field at the two
poles, reflected by the relative length of the arrows. It arises from
the asymmetry of the N shape of I1(V).

To understand this mechanism fully, we needed to return to
the 1D model that allows both reasonable time computations
and analytical calculations. In one dimension, for D2�D1 � 100
and G1�G2 � �0.8, the system is still unstable; any perturbation
is amplified. After a characteristic time, a stable spatial modu-
lation of finite wavelength � of the membrane potential has
developed along the cellular axis. It arises from ionic currents
(Fig. 3A) that break the symmetry along the cell. On Fig. 3B, we
have also computed the patterns of the intracellular ionic
concentrations C1 and C2. The variations of the extracellular
concentrations are opposite. The width and the amplitude of
both depolarized and hyperpolarized bands are different. Such
a property is uncommon in pattern formation (30). The char-
acteristic time is typically an ionic diffusive time: T � R2�D1 in
the limit of large ratio D2�D1 (Fig. 4). In agreement with
experiments, the characteristic time is �1 min for the Fucus
zygote (9–12). This time is shorter than that required for any
cytological modification [F-actin polymerization, notably (17)],
which suggests that ionic current pattern could be the initial
event leading to the symmetry breakage. The difference between
the total ionic current and the ohmic current is described in
Discussion.

To investigate the domain of occurrence of this cellular
diffusive instability, we vary the two parameters D2�D1 and
G1�G2. For instance, for a typical ratio of diffusion coefficients,
D2�D1 � 0.7, which corresponds to K� (ion 1) and Na� (ion 2)
and the same ratio of differential membrane conductances,
G1�G2 � �0.8, the membrane potential difference V relaxes to
zero (Fig. 4 Inset) on a characteristic electric time t � Cm�(G1 �
G2) as predicted in literature (1, 3). This response corresponds
to domain 1 of the stability diagram (Fig. 5). Note the tremen-
dous difference between the diffusive and electric time relax-
ation (four orders of magnitude). When G1�G2 � �1, we recover

the expected domain of wave propagation for a total negative
differential conductance (Fig. 5, domain 3). The stability dia-
gram depends also on the variation of the currents with the
concentrations (Fig. 5, domain 2). We have computed this
diagram for three values of p. The large ratio of coefficients of
diffusion D2�D1 used here arise from the low calcium mobility
caused by the intracellular buffering activity (4, 28, 29). As shown
in Fig. 5, for small p, the diffusive cellular instability can appear
as soon as D2�D1 
 1, indicating that a huge value is not essential.

Discussion
Critical Size Evaluation. A linear analysis and numerical compu-
tations permit also the determination of the dispersion relation
(Fig. 6). Contrary to previous works on electrodynamic insta-
bilities (25), for D2�D1 � 100, when the conductance G1 is
decreased from positive values to negative ones, the membrane
potential becomes unstable at a finite characteristic wavelength
and, beyond, a finite range of wavelength exists for which there
is instability (Fig. 6). If the cellular radius is less than a critical
one, Rc, the membrane potential is stable. Above Rc, the first
mode that is unstable is the dipolar mode as shown in Fig. 2. If
the radius is further increased (or D1 is decreased), the quadru-

Fig. 2. A 2D pattern formation. The Fucus zygote has a dimensionless radius
X � 0.01. The two relevant ions transported through the cell membrane are
the calcium (1) and the potassium (2), D2�D1 � 100 and G1�G2 � �0.8. A
stationary dipolar circulation of ions occurs through the cell, breaking the
initial symmetry. The color bar indicates the value of the dimensionless electric
potential (zero at infinite). The white arrows are proportional to the local
electric field, and the isopotential curves are shown by white lines.

Fig. 3. A 1D pattern formation. (A) The dimensionless membrane potential
v � (V �V0)��V0� (black), the dimensionless total membrane current (I1 �
I2)�G2�V0� (cyan), and the dimensional ohmic current D̃(I1�D1 � I2�D2)�G2�V0�
(blue) as a function of the dimensionless spatial coordinate X � x��2 along the
cellular axis (�2 is the cable length of 2). (B) v and dimensionless concentrations
(C1 � C10)�C0 (pink) and (C2 � C20)�C0 (red) as a function of X. Parameters are
G1�G2 � �0.8 and D2�D1 � 100. The initial perturbation is a spatial modulation
of small amplitude at v � 0. After a specific time, a stationary spatial pattern
of membrane potential, currents, and concentrations appears along the cel-
lular axis.
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polar mode is the most probable and so on [mechanism of
wavelength selection (15, 16)]. After �10 h, the quadrupolar
mode will generate two opposite growing poles similar to the
mode observed in experiments in response to a change of
calcium diffusion (31) or in the presence of a plane-polarized
light (32). The induction of double rhizoids indicates a mecha-
nism of selection of the developmental axis, supporting such a
theoretical approach. In the limit of high D2�D1, Rc � (D1�
D2)	��G1�. In Fucus, after the fertilization, the total membrane
resistance becomes small, a few kiloohms (26), which provides an
order of magnitude of �G1�. Therefore, for 	 � 0.5 �m, we get
Rc � 31 �m, which is in agreement with the Fucus radius. The
presence of a finite wavelength domain of instability occurrence

is a fundamental property to establish some analogy with
reaction-diffusion system (17–20, 33).

Ohmic Versus Total Extracellular Currents. The vibrating probe
consists of a microelectrode that oscillates on a small ampli-
tude farther from the membrane than the Debye layer but
sufficiently close to measure a signal (12). The vibrating probe
measures the local electric field which, according to Ohm’s
law, is assumed to be proportional to the total extracellular
current. However, this assumption fails in the case of trans-
cellular ionic currents. Indeed, outside the membrane at a
distance longer than the Debye length, it is valid to assume
electroneutrality: � � z1F(C1 � C10) � z2F(C2 � C20) � 0,
where � is the charge density. In this approximation, the total
electrodiffusive current is equal to:

I�1�I�2��z1F�D1 � D2��� C1 � 	E� , [10]

where E� and ��Cj are the local electric field and the local concen-
tration gradient, respectively. The total current I�1 � I�2 reduces to
its ohmic part 	E� when the ions flowing through the membrane
have a similar diffusion coefficient (e.g., Na�, K�, and Cl�) or
when concentration gradients are neglected (34). Unfortunately,
in Fucus, calcium diffuses slower than potassium or sodium ions.
So, a significant test of the validity of our mechanism is to
compute the ohmic part, Iohmic, of the total current. Outside the
membrane at a distance longer than the Debye length, using
electroneutrality, we calculate:

D̃�I�1/D1 � I�2/D2� � �D̃�� � � 	E� � 	E� � I�ohmic. [11]

On Fig. 3A, the computation of D̃(I1�D1 � I2�D2) shows that a
hyperpolarized (depolarized) band matches an output (input) of
the ohmic current in agreement with experiments. In agreement
with Eq. 10 the total extracellular current is opposite to the
ohmic current (Fig. 3A). Note that in the limit where I�1 domi-
nates, the vibrating probe can evaluate the current of ion 1: I�1 �
(D1�D2)	E� .

Origin of the Instability. To understand the origin of the stationary
self-organized pattern described here, let us consider the effect
of a local f luctuation of the membrane potential (Fig. 7A)

Fig. 4. Characteristic time. v � (V � V0)��V0�at X � 18 on Fig. 2 is computed
as a function of the dimensionless time T. G1�G2 � �0.8 and D2�D1 � 100.
Initially, the system was perturbed by a white noise of electric membrane
potential. An unexpected new structure appears on a characteristic ionic
diffusion time. To the contrary, for D2�D1 � 0.7, the membrane potential
relaxes on an expected electrical time (see Inset). More than four orders of
magnitude are between the two times, revealing the different bioelectrical
origins.

Fig. 5. Stability diagram. The relevant parameters are �G1�G2, D2�D1, and p,
which quantifies the variations of currents with concentrations. Three values
of p are considered: p � 0 (xxx), 0.1 (***), and 0.3 (���). Domains 1 (stability
of the membrane potential due to capacitive relaxation) and 3 (instability, a
wave propagation, leading to a new homogeneous resting state) were ex-
pected. The curve of zero total conductance �G1�G2 � 1 distinguishes domain
1 from 3. Domain 2 defines the new cellular instability that leads to stationary
patterns of transcellular ionic currents on a typical ionic diffusive time.

Fig. 6. Dispersion relation. The homogeneous state becomes unstable
against periodic perturbations in a finite range of dimensionless wave num-
bers k (k � 2��2��, where � is the wavelength of the perturbation) for the
following parameters: G1�G2 � �0.8 and D2�D1 � 100. The typical time of
occurrence 1�w (w is the growth rate) is an ionic diffusive one. The instability
appears at a finite wavelength and not at k � 0 as in other electrodynamic
instabilities. This instability is analogous to the Turing instability.
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around its resting-state value (Fig. 7A). As shown in Fig. 7A, a
local membrane depolarization will occur in response to an
increase of a local positive (negative) charge density inside

(outside) the cell. This f luctuation generates membrane cur-
rents, I1 for ion 1 (Ca2�) and I2 for ion 2 (K�) (Fig. 7A). Because
G1�G2 is negative, these currents are opposite. The first conse-
quence is a local membrane current I1 � I2 (Fig. 7B), which tends
to dissipate the fluctuation as G1 � G2 
 0. The cable model
provides the characteristic dynamic coefficient of this process:
Dm � r	�4Cm, where Cm is the membrane capacitance. For a cell
diameter r of 10 �m, 	 � 0.5 �m and Cm � 0.01 Fm�2, and D2 �
2.0 10�5 cm2�s, Dm�D2 � 106 

 1. Thus, a very fast lateral
inhibition will occur. The second consequence of the local
membrane potential f luctuation is a variation of the ionic
concentrations on either side of the membrane that, in turn,
induces a lateral ionic electrodiffusive flux inside and outside the
cell (Fig. 7C). These fluxes are opposite and, because both ions
diffuse at different speeds, ionic diffusion of 1 and 2 induces
spatial ionic charge differences that, in turn, generate an electric
field determined (and computed) by Eq. 11. The direction of the
electric field depends on the sign of G1�D1 � G2�D2, which is
negative for D2�D1 � 100 (Fig. 8). In this case, the diffusion-
induced electric field amplifies the initial perturbation of the
membrane potential. The characteristic dynamic coefficient of
this process is an ionic diffusive one, D1D2�D̃. This second effect
is a slow local self-activation. Thus, two antagonist effects occur
in response to a membrane potential f luctuation: a very fast
lateral inhibition arising from membrane potential propagation
along the cell membrane due to the cable properties of cell
membranes and a slow local amplification due to ionic diffusion-
induced currents that enhance the local membrane potential
f luctuation. The result is a balance between these two antago-
nistic effects. The unstable case happens as soon as the pertur-
bation lasts longer than the time required for lateral inhibition,
which permits the establishment of a significant ion gradient
around the membrane to initiate the instability. Note that the
total current and the electric field are opposite, breaking Ohm’s
law. This finding underlines why the instability cannot be pre-
dicted by a classic electric cable. For D2�D1 � 0.7 (K��Na�), the
electric field has the other direction (G1�D1 � G2�D2 
 0) (Fig.
8). Therefore, no local positive feedback occurs for D2�D1 � 1
because the two effects depicted in Fig. 7 inhibit the initial
perturbation.

It has been suggested that self-organization of the fluid mosaic

Fig. 7. Origin of the instability. (A) Antagonist effects of an initial membrane
potential fluctuation (solid line) around a stationary pattern (dotted line).
Two membrane currents I1 (blue arrows) and I2 (red arrows) are induced. (B)
The total current I1 � I2 tends to dissipate the fluctuation to zero (dashed and
dotted lines) and propagates laterally rapidly by cable effect. (C) The initial
membrane potential fluctuation generates also a concentration gradient for
each ion, and electrodiffusive fluxes occur outside and inside the cell. Because
the ions are assumed to diffuse at different speeds, the result is the occurrence
of a lateral electric field (C), which amplifies the initial perturbation for a
suitable ratio of diffusion coefficients, D2�D1 
 1. The characteristic dynamical
coefficient of this amplification process is a diffusive one that is slower than
the inhibition process. Thus, as the inhibition effect propagates rapidly, the
perturbation is slowly and locally amplified.

Fig. 8. Dimensionless membrane currents versus dimensionless electric
membrane potential for G1�G2 � �0.8. The total current (I1 � I2)�G2�V0� (�)
does not depend on D2�D1. For D2�D1 � 100 (e.g., Ca2� � 1 and K� � 2), the
ohmic current D̃(I1�D1 � I2�D2)�G2�V0� (E) has a negative differential conduc-
tance at V0, whereas for D2�D1 � 0.7 (e.g., Na� � 2 and K� � 1), it has a positive
differential conductance (●). This sign change with the ratio D2�D1 is at the
origin of the instability.
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of charged channel proteins in membranes could explain the
formation of the ionic current pattern. This phenomenon occurs
with a larger time constant (hours) than that of the diffusive
process described here (minutes). This finding suggests that
electrodiffusion would be the early event for pattern formation,
lateral diffusion of membrane proteins being important to
sustain the pattern, at least in the case of Fucus. Other phe-
nomena (e.g., membrane, cell wall, and cytoplasmic reorgani-
zation and actin polymerization) with large relaxation times
could also contribute to maintaining the pattern and, beyond, the
breaking symmetry as time elapses.

After fertilization, the polar axis remains labile for about 10 h.
During this period it can be reoriented in the presence of an
external cue (9, 10, 13, 14). Two kinds of reorientation can be
differentiated. The first appears soon after the fertilization and
consists of spontaneous reorientation of the polar axis measured
with the vibrating probe (35). The framework of electrodiffusive
instabilities provides a simple explanation for this fast reorien-
tation: the current pattern will reorganize under the electric field
fluctuation. The amplitude required to induce this reorientation
will be larger than thermal fluctuations and of the order of the
electric field generated by the pattern of transcellular ionic
currents. The second kind of reorientation occurs in response to
an environmental cue when the spatial organization of the
cytoplasm is clearly visible. For example, a unilateral light can
reorient the axis after few hours before a characteristic time (axis
fixation). To understand this last process, it is necessary to take
into account other phenomena (e.g., signal transduction path-
ways and cytoplasmic reorganization) with large relaxation
times.

Experimental evidence shows a correlation of the polariza-
tions of neighboring Fucus (36). In our model and in the
self-aggregation model, the electric field generated by the dipo-
lar transcellular ionic currents decreases like 1�r3 far from the
cellular membrane (r is the radial coordinate). Thus, if two Fucus
are sufficiently close, the two loops of currents interact strongly
and the instability will select a peculiar mode; their polarizations
will be correlated. By symmetry, for two Fucus, the simplest
mode is such that the axis is the same as in experiments (36). If
the two Fucus are far from each other, thermal noise will prevent
any correlation.

Finally, the mechanism described here casts a glance on the
role of ionic diffusion in bioelectric self-organization and defines
simple conditions for a new kind of instability. It gives a
reasonable accurate representation of the spatiotemporal pat-
tern of transcellular ionic currents observed in numerous cells
and, notably, in Fucus. The mechanism seems to have the salient
features of a Turing-like pattern (17–20, 33). It can be included
in the general class introduced by Gierer and Meinhardt (33, 37):
local self-activation (diffusion-induced currents) and lateral
inhibition (electric relaxation). However, the condition D1 � D2
is only necessary to have the positive feedback in this mechanism.
In Turing, D1 � D2 contributes to differentiate the timescales of
positive and negative effects what underlies the microscopic
difference between the two mechanisms.
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