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Abstract

Estimates of the effective stiffness of a composite containing multiple types of inclusions are 

needed for the design and study of functionally graded systems in engineering and physiology. 

While excellent estimates and tight bounds exist for composite systems containing specific classes 

and distributions of identical inclusions, these are not easily generalized to complex systems with 

multiple types of inclusions. For example, three-point parameters are known for only a few 

inclusion shapes and orientations. The best estimate available for a composite containing multiple 

classes of inclusions arises from the Kanaun-Jeulin approach. However, this method is analogous 

to a generalized Benveniste approach, and therefore suffers from the same limitations: while 

excellent for low volume fractions of inclusions, the Kanaun-Jeullin and Benveniste estimates lie 

outside of three-point bounds at higher volume fractions. Here, we present an estimate for 

composites containing multiple classes of aligned ellipsoidal inclusions that lies within known 

three-point bounds at relatively higher volume fractions of inclusions and that is applicable to 

many engineering and biological composites.

Keywords

Tendon-to-bone insertion site; enthesis; composite materials; homogenization methods

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
J Mech Phys Solids. Author manuscript; available in PMC 2016 September 01.

Published in final edited form as:
J Mech Phys Solids. 2015 September 1; 82: 367–377. doi:10.1016/j.jmps.2015.05.017.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Composite structural materials offer the potential for efficient solutions to engineering 

problems and are central to many mechanical functions in physiology. Extensive effort has 

been devoted to predicting the overall mechanical responses of composites based on 

knowledge of the mechanical properties, geometries, and distributions of their constituent 

phases (e.g.,(Torquato, 2001; Milton, 2002)). However, many challenges remain, especially 

for composites having inclusions of varying shapes, sizes, and mechanical properties. An 

additional challenge is that most homogenization techniques provide the best estimates for 

relatively low volume fractions of inclusions. Here, we present a homogenization scheme 

that appears to provide reasonable predictions under these conditions.

To highlight the need for this method and the ways that it differs from existing methods, we 

briefly review literature on both homogenization of multiphase composites as well as the 

accuracy of micromechanical methods at high volume fraction of inclusions. Predicting 

effective moduli of composites containing relatively high volume fractions of inclusions is 

challenging even for materials containing only a single class of inclusions Ferrari (1991); 

Roumi and Shodja (2007); Ju and Yanase (2010, 2011); Kwon and Dharan (1995). The best 

of these render good correlation with experimental data for inclusion volume fractions 

below about 60% or for special distributions of the inclusions. Numerous homogenization 

techniques use the effective medium method, which builds from the work of Eshelby (1957) 

by considering an equivalent effective medium embedded with non-interacting 

inhomogeneities. These include the method of cells Aboudi (1989), the Mori and Tanaka 

(1973) approach ,the generalized self-consistent method Budiansky (1965); Kerner (1956); 

Hill (1965), the models of Castañeda and Willis (1995), and the Kuster and Toksöoz (1974) 

model. These approximations depend only upon the volume fractions and geometries of 

inclusions and are independent of the spatial or probabilistic distributions of inclusions. 

Accordingly, they are pertinent to heterogeneous solids containing a low concentration of 

identical inclusions and cannot be easily generalized to composites with multiple classes of 

inclusions. Higher-order bounds such as those of Weng (1992); Silnutzer (1972); Torquato 

and Lado (1986) and Sen et al. (1987) and the three-point bounding technique (e.g., Milton 

and Phan-Thien (1982)) are far tighter than classic Voigt and Reuss (Hill, 1952) or Hashin 

and Shtrikman (1963) bounds. However, the parameters needed for three-point bounds and 

estimates are known only for a few classes of inclusion shapes and orientations (Torquato, 

2001). While these can be combined to estimate the mechanics of composites containing 

multiple class of inclusions (Genin and Birman, 2009), they are limited to cases for which 

the three-point parameters are known. More recent homogenization procedures (e.g., Tucker 

III and Liang (1999); Torquato (2001); Kakavas and Kontoni (2006); Sevostianov and 

Giraud (2013)) are also limited to low inclusion volume fraction.

Although a wealth of literature exists on the estimation of effective elastic properties of 

composites containing a single class of inclusions, few methods are available for analysis of 

composites with multiple types of inclusions (Torquato, 2002; Hashin, 1983; Tucker III and 

Liang, 1999; Hu and Weng, 2000; Christensen, 2012). For example, Lim (2002) presented a 

generalized mechanics of materials approach to evaluating the moduli of three-phase 

composites consisting of two types of reinforcement (fibers and/or particles) embedded 
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within the matrix. Kanaun and Jeulin (2001) developed a model allowing for the special 

statistical distribution of the centers of inclusions of various orientations and shapes. The 

Maxwell scheme was modified and extended to the case of anisotropic multiphase 

composites by Sevostianov (2014).

Challenges involved in the homogenization of multiphase composite materials were outlined 

in a recent paper by Sevostianov and Kachanov (2014). In particular, they pointed that the 

Mori-Tanaka approach applied to multiphase composites may violate the Hashin-Shtrikman 

bounds as well as compromise the symmetry of the stiffness tensor. The latter problem was 

resolved by imposing a symmetrization of the stiffness tensor as demonstrated in their paper. 

Although the Kanaun and Jeulin (2001) effective field estimate applied to multiphase 

composites avoids the violation of the symmetry of the stiffness tensor by assuming that 

different effective fields affect different composite phases, this results in the violation of the 

principle of superposition. Without the adaptation of different effective fields, the Kanaun-

Jeulin estimate is analogous to a generalized formula of Benveniste (1987) that represents a 

modified Mori-Tanaka approach, and therefore suffers from the same limitations (Genin and 

Birman, 2009). While excellent for low volume fractions, both the Kanaun-Jeulin and 

Benveniste estimates lie outside three-point bounds at higher volume fractions. and therefore 

sufferings from the same limitations (Genin and Birman, 2009). While excellent for low 

volume fractions, the Kanaun-Jeulin and Benveniste estimates lie outside of three-point 

bounds at higher volume fractions in cases for which one would desire them to lie within the 

three-point bounds.

As follows from this discussion, the estimation of effective properties of composites 

containing high volume fractions of inclusions continues to present a challenge, especially in 

cases of multiple classes of inclusions. In engineering structures, these issues arise in the 

study of functionally graded materials (Birman et al., 2013; Suresh et al., 1998; Byrd and 

Birman, 2007), especially for aerospace applications, that employ high-performance 

polymers with high volume fractions of inclusions. Hence, it is necessary to predict the 

effective moduli of composites featuring multiple classes of inclusions over the full range of 

volume fractions and geometries.

Besides homogenization methods applicable to a broad range of engineering structural 

materials, our specific interest is the modeling of partially mineralized tissue. Bone, a highly 

mineralized tissue, is a composite material made up primarily of flexible collagen fibers and 

a high (50%) volume fraction of stiff mineral inclusions (Alexander et al., 2012). The shapes 

of these inclusions have been variably described as plate-like (Eppell et al., 2001; Kim et al., 

1995), needle-like (Traub et al., 1992), and amorphous (Mahamid et al., 2008; 

Boonrungsiman et al., 2012). At the attachment of tendon to bone, the volume fraction of the 

mineral inclusions increases from 0% in tendon to 50% in bone over a distance on the order 

of tens of micrometers Genin et al. (2009). One important mechanism of toughening in 

biologic systems such as the tendon-to-bone attachment is stress redistribution associated 

with the progressive stiffening of collagen fibers by mineral (Liu et al., 2012, 2014; 

Thomopoulos et al., 2006). Predicting this is particularly important for defining design 

criteria for tissue engineered constructs needed for improving surgical outcomes 

(Thomopoulos et al., 2010, 2011). In spite of the progress reflected in the above-mentioned 

Saadat et al. Page 3

J Mech Phys Solids. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



publications, modeling the mineralized collagen tissues remains challenging. 

Physiologically, debate continues about where mineral lies within collagen, how it 

accumulates, and the shape it has (Schwartz et al., 2012; Thurner et al., 2007; Pasteris et al., 

2008).

The present paper presents an approximation that is applicable to composites with multiple 

classes of inclusions and that retains high accuracy at higher volume fractions. Expressions 

for effective moduli were derived under two conditions: (i) we required the total strain 

energy stored in a homogenized material to equal that in the actual material, with the 

average inclusion and the average matrix strains evaluated based on Eshelbys approach; and 

(ii) we modeled the effective matrix and inclusions as acting in parallel. Contrary to the 

Mori-Tanaka technique, we replaced the evaluation of the strain in the representative 

volume element using the rule of mixtures with a strain energy equivalence requirement; this 

leads to a formulation that therefore differs from the Kanaun-Jeulin estimate. Our results 

suggest that the new formulation is useful at higher volume fractions, although it is less 

useful at lower volume fractions.

Subsequently, the developed theory was specified for the case of a three-phase composite. 

For verification of the proposed theory, we compared predictions to experimental data and 

to other estimates. Our method provided good accuracy for a simultaneously fiber- and 

particulate-reinforced composite, and lay within three-point bounds at relatively high 

volume fractions for all cases studied. The method was also applied to study stiffening of 

tissue at the tendon-to-bone attachment.

2. Estimate of overall elastic properties of a composite

Our model emanates from the Kanaun-Jeulin methodology (Kanaun and Jeulin, 2001) for 

estimating the stiffness tensor of a three-phase composite. This was shown by Genin and 

Birman (2009) to arise as an extrapolation of the method of Benveniste (1987) for multiple 

types of inclusions. These methods under-predict the stiffness of a great number of 

composites of interest. In this section, we review the Kanaun-Jeulin methodology, then 

present our adaptation of it.

Like the Kanaun-Jeulin estimate, the adaptation was conducted within the framework of 

linear elasticity assuming that the perturbed strain in the matrix, due to the presence of 

inclusions, was not affected by interactions between different types of inclusions. In other 

words, each type of inclusion affects the strains in the matrix, but the perturbed matrix 

strain, due to the interaction between these inclusions, was assumed to be of second order. 

We considered a certain representative volume V0 of an infinite three-dimensional linear 

elastic medium embedded with N types of linear elastic inclusions that are aligned but 

randomly distributed. The properties of the matrix and of the different types of inclusions 

will be identified by the subscripts j = 1 and j > 1, respectively. We assumed perfect 

adhesion between the matrix and each inclusion. Each type of inclusion had uniform elastic 

properties and possessed a known geometry.
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2.1. Kanaun-Jeulin methodology

The Kanaun-Jeulin methodology expanded upon the Mori-Tanaka approach, in which the 

tensors of average strain in each type of inclusion can be written in terms of the tensor of the 

average strain in the matrix by:

(1)

where

(2)

and . Here, Sj are fourth-order Eshelby tensors corresponding to the jth type of 

inclusions, and I is a fourth-order identity tensor. Explicit examples of the Eshelby tensor 

are presented in the appendix for the cases of spheroidal inclusions, penny-shaped 

inclusions, and long cylindrical inclusions (fibers). Equation (1) can be used jointly with the 

condition that the stresses on the homogenized and actual representative volume are equal, 

with matrix and inclusions resisting deformation in parallel:

(3)

Noting that σ̄
j = Lj∊̄j and combining Eq.(3) and Eq.(1), the resulting system of (j+1) linear 

algebraic equations can be solved to express the tensor of strains in the matrix and inclusions 

in terms of the tensor of strains in the homogeneous material:

(4)

where j = 1, 2, …N and T1 = I.

This estimate has been shown to provide an underestimate of the strain energy stored by a 

composite material under a given loading; that is, the estimate is too compliant (Genin and 

Birman, 2009). This is expected because the approach uses both averaged stresses and 

averaged strains, which are bound to combine to yield a strain energy lower than that stored 

by the composite except in special cases.

2.2. Estimate based upon energy-based effective strains

To improve upon this approximation, we replaced the average strains ∊̂
i in the phases with 

effective strains ∊̄
j that better represented the energy stored in the composite. That is, we 

identified effective strains so that the strain energy in the homogenized material equaled that 

in an actual material, under the above assumptions. We partitioned the energy amongst the 

phases:
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(5)

where the sum of the volumes of the matrix and of all phases equals that of the 

representative volume ( , and σ and ∊ are the tensors of engineering stress 

and linearized strain, respectively. We defined the effective strain ∊̂
j for each phase j within 

a representative volume so that each term in Eq.(5) can be written as:

(6)

Note that ∥ ∊̂
j ∥ ≤ ∥ ∊̄

j ∥. Then Eq.(5) can be rewritten:

(7)

Substituting Eq.(4) into Eq.(7) yields the following explicit expression for the effective 

stiffness tensor:

(8)

Substituting for Q and solving for Le,

(9)

where in the last step we employed the fact that L and Ns are symmetric.

2.3. Specific result for effective elastic stiffness of three-phase composites

For the simple case of two types of inclusions within a matrix,

Hence, the effective stiffness tensor is:

(10)
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3. Results and discussion

We studied Eqs. 9 and 10 in two ways. First, predictions were compared to available 

experimental data and to several estimates and bounding techniques for the case of glass 

inclusions in an epoxy matrix, including inclusion volume fractions beyond the range over 

which the Mori-Tanaka and Benveniste estimates are deemed reliable. Second, we checked 

predictions against existing models and predictions for three-phase composites. Thereafter, 

we simulated the spatial variation of the mechanics of partially mineralized collagen fibers.

3.1. Epoxy with glass inclusions

Analytical predictions compared well to two well known experimental datasets for two-

phase composites containing randomly distributed elastic spheres: the data of Smith (1976) 

(E1 = 3:01 GPa, ν1 = 0:394, E2 = 76:0 GPa, ν2 = 0:23), and the data of Richard (1975) (E1 = 

1:69 GPa, ν1 = 0:444, E2 = 70:3 GPa, ν2 = 0:21). Predictions were close for effective shear 

and Young’s moduli for particle volume fractions ranging from 0 to ~ 0:6 (dense) (Figs. 1 

and 2). Minor deviations of predictions for effective bulk modulus K and Poisson’s ratio ν 

were expected due to both datasets relying on uniaxial tests for ν. Predictions lay within 

three-point bounds at high volume fractions (Figs. 1 and 2). Significantly, this remained the 

case for the effective Poisson’s ratio and the effective bulk modulus. Like the Benveniste 

(and hence Kanaun-Jeulin) estimate, the new method lay slightly outside of the three-point 

bounds at very low volume fractions. The Benveniste estimate follows the Hashin-

Shtrikman lower bound and drops increasingly beneath the three-point bounds at larger 

particle volume fractions (the inverse of this trend occurs for the effective Poisson’s ratio) 

(cf. (Genin and Birman, 2009)). Like the Mori-Tanaka theory, the Benveniste approach is 

accurate only for materials containing dilute or low volume fraction distributions of 

inhomogeneities.

The effect of the aspect ratio of inclusions on effective elastic properties was then evaluated 

for two-phase composites consisting of an epoxy matrix (E1 = 3:12 GPa, ν1 = 0:38) 

embedded with 30% aligned glass (E2 = 76 GPa, ν2 = 0:25) ellipsoidal particles of a variable 

aspect ratio (Fig. 3). As expected, estimates lay within the Hashin-Shtrikman bounds for 

nearly spherical particles, and within the Voigt-Reuss bounds for both large aspect ratio 

(continuous fiber-like) and small aspect ratio (disc-like inclusions. Expected trends (e.g., 

Tucker III and Liang (1999)) were reflected in Fig. 3, including an increase of longitudinal 

elastic modulus (EL) and a reduction of transverse modulus (ET) for increasing aspect ratios 

of inclusions that were greater than 1. Asymptotes in all moduli were reached at very small 

inclusion aspect ratios, when the composite behaves as a matrix embedded with discs 

oriented perpendicular to the longitudinal axis, and at very high inclusion aspect ratios, 

when the composite behaves as a matrix embedded with aligned fibers. The Kanaun-Jeulin 

estimate predicts a more compliant material for all inclusion aspect ratios. The current 

method appears fully adequate for two-phase composites.

Although much discussion of them can be found, experimental characterizations of three-

phase composites are not available in the literature. To assess the validity of the proposed 

method in predicting effective elastic properties of three-phase composites, we instead 

compared the current approach to bounds and estimates for a model three-phase system that 
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we studied previously (Genin and Birman, 2009). The model system studied had a matrix of 

epoxy (E1 = 3:12 GPa, ν1 = 0:38) that was reinforced by both spherical particles (phase 2) 

and long fibers (phase 3) made of glass (E2 = E3 = 76 GPa, ν2 = ν3 = 0:25). Three types of 

analyses were compared to the current approach, as presented by Genin and Birman (2009) 

(Fig. 4). The first were “bounds” that serve not as true bounds but rather as guidelines for 

appropriate trends. These were obtained by using the three-point bounds (cf. Torquato 

(2001)) for a matrix that contained a volume fraction f3 of glass fibers; the matrix had 

properties obtained from the three-point bounds for epoxy reinforced with a volume fraction 

f2/(f1+f2) of randomly distributed glass spheres. The second were “two-step” estimates 

obtained using three-point estimates (cf. Torquato (2001)) in the same way (Genin and 

Birman, 2009). The third was the Kanaun-Jeulin estimate.

For the range of particle and fiber volume fractions examined, the Kanaun-Jeulin estimate 

lay just outside of the “bounds,” with smaller deviations at lower volume fractions of 

inclusions (Fig. 4). This is expected because the Kanaun-Jeulin approach is acceptable only 

for relatively low particle volume fractions. In all cases, the properties evaluated by the 

proposed approach were within the bounds, except for the longitudinal elastic modulus (EL), 

which was slightly outside the bounds for larger particle volume fractions. Note that, except 

for estimates obtained for Poisson’s ratio, the “two-step” estimate and the current method 

were close.

3.2. Partially mineralized collagen fibers

The current approach was then used to estimate the stiffening of collagen fibers by mineral. 

The accommodation of bioapatite mineral within fibers and fibrils follows a sequence that is 

debated. A sequence supported by our own work involves mineralization inside of collagen 

fibrils (“intrafibrillar”) preceding mineralization outside of collagen fibrils (“extrafibrillar”) 

(Alexander et al., 2012; Schwartz et al., 2012). In this interpretation, bioapatite mineral 

accumulates inside collagen fibrils at tissue-level volume fractions 0% ≤ ϕm ≤ 21%, 

displacing water, and then accumulates outside of fibrils, displacing extra-fibrillar matrix 

proteins (“EFM”). The stochastic finite element estimates of Liu et al. (2014) for the 

stiffening of fibers associated with this mineralization sequence (symbols in Fig. 5) showed 

relatively minor stiffening for intrafibrillar mineralization (ϕm ≤ 21%) followed by much 

higher stiffening beyond a percolation threshold for extrafibrillar mineralization. Due to the 

long, slender shapes of collagen fibrils, the percolation threshold is higher for the 

longitudinal modulus of a fiber (ϕm ≈ 30%) than for its transverse modulus (ϕm ≈ 21%). 

Note that in Fig. 5, the bioapatite volume fraction was plotted for consistency with Liu et al. 

(2014) as a tissue level volume fraction, ϕm; the fiber-level volume fraction is 25% higher 

than ϕm. The volume fraction therefore ranged from 0 vol% (typical for tendon) to 41 vol% 

(typical for bone) (Hellmich et al., 2008; Hellmich and Ulm, 2002; Hamed et al., 2010).

The modeling of this stiffening was achieved in two stages. In the first stage, mineral 

accumulated on the inside of collagen fibrils, replacing water. The composite considered in 

this stage was a three-phase composite consisting of cross-linked collagen fibrils (treated as 

a transversely isotropic solid), bioapatite mineral, and water. Random spheres of bioapatite 

mineral replaced random spheres of water within the fibrils in this stage. Each phase was 
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assigned moduli consistent with those used by Liu et al. (2014). The cross-linked collagen 

fibrils, transversely isotropic and rotationally symmetric about the x3-axis, were assigned 

Young’s moduli E3 = 814 MPa and E1 = E2 = 8.27 MPa, Poisson’s ratios ν13 = 0.1 and ν12 

= 0:3, and shear modulus G13 = 6.53 MPa. Bioapatite mineral was treated as isotropic and 

much stiffer than the cross-linked collagen fibrils (E=110 GPa, ν=0.27), and water was 

treated as isotropic, nearly incompressible (ν=0.4999), and of negligible shear resistance. 

The predictions of the current approach followed the stochastic finite element predictions of 

Liu et al. (2014) closely in this regime, and was near a Hashin-Shtrikman lower bound 

accounting for the fibrillar nature of collagen fibrils, as described by Liu et al. (2014) (Fig. 

5).

In the second phase, bioapatite mineral accrued on the outside of fibrils, and the nature of 

the relatively compliant, anisotropic EFM had to be accounted for explicitly. For 

extrafibrillar mineralization, we note debate in the literature about the shape of mineral 

inclusions within bone and partially mineralized tissues, and emphasize that uncertainty 

exists with both the current predictions and with the finite element predictions to which they 

were compared. We focussed on the following single example as a means of testing the 

range of validity of the current approach for multi-phase composites. The three-phase 

composite considered consisted of mineralized fibrils (infinitely long, with moduli 

calculated as above for ϕm = 0:21), bioapatite mineral (moduli as above), and EFM 

(isotropic with E = 280 kPa and ν = 0:3). The example chosen was one in which mineral 

accumulates on the outside of fibrils (within and upon fibers) through plate-like segments 

that align transverse to the collagen fiber axes (Alexander et al., 2012). Plate-like segments 

were modeled as randomly distributed mineral platelets oriented perpendicular to the 

collagen fibril axes. Results were consistent with the finite element simulations of Liu et al. 

(2014)) at all volume fractions for the transverse moduli, and up to ϕm ≈ 27% for the 

longitudinal modulus. However, the longitudinal modulus predictions highlight a limitation 

of the current approach, namely that it does not account for the spatial disposition of the 

different phases and can miss a percolation threshold. Nevertheless, the current approach 

was effective at sufficiently high volume fraction to represent the full range of 

mineralization: higher degrees of mineralization could be modeled by beginning with an 

extrafibrillar space that was fully dense with bioapatite mineral, then replacing mineral with 

EFM. This trend, illustrated in the region from 27 vol% to 41 vol% in Fig. 5, matched finite 

element data very well, and intersected the previous predictions at 27 vol% to provide 

estimates of mechanical behavior over the full range of mineralization. This is visible as a 

change in slope in the plots for both longitudinal and transverse moduli.

4. Conclusions

A method was proposed to predict the effective elastic moduli of composites containing 

multiple types of anisotropic ellipsoidal inclusions. The method employed effective rather 

than average strains within phases to ensure that the energy stored within phases summed to 

that stored in the composite. The special cases of two- and three-phase composites were 

predicted. The method reproduced available experimental data with good accuracy, 

especially at the higher volume fractions at which the Kanaun-Juelin estimate is expected to 

perform poorly. The proposed method produced physically consistent results and showed 
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good predictive accuracy. Accordingly, the method is a candidate for the characterization of 

composites with multiple types of anisotropic inclusions, even if these inclusions have 

moderate volume fractions and a variety of aspect ratios.
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Appendix A. Eshelby tensors for various ellipsoidal shapes

For a general ellipsoid, components Sijkl are expressed in terms of (incomplete) elliptic 

integrals (Eshelby, 1957). For a spheroid, Sijkl are elementary functions of the spheroid’s 

aspect ratio.

Appendix A.1. General ellipsoid

Components Sijkl are as follows:

(A.1)

(A.2)

(A.3)

(A.4)

where a1, a2 and a3 are general ellipsoid semiaxes. Other Sijkl are found from symmetry 

relations Sijkl = Sjikl = Sijlk and by the cyclic permutation of indices (1,2,3) in quantities Sijkl, 

ai, Ii and Iij. Those components that cannot be obtained by the cyclic permutation of the 

above are zeros. Assuming that a1 ≥ a2 ≥ a3, we have:

(A.5)

Functions F(θ, k) and E(θ, k) are the incomplete elliptical integrals:
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(A.6)

and where it is denoted:

(A.7)

The following equations (and the equations obtained by their cyclic permutations) express 

all Iij in terms of I1, I2, I3:

(A.8)

(A.9)

(A.10)

Appendix A.2. Sphere

In this case (a1 = a2 = a3 ≡ a) we have

(A.11)

(A.12)

(A.13)

(A.14)

Appendix A.3. Needle

In this case (a1 = a2 = a ≪ a3), the terms a/a3 are negligible, so that, to within higher order 

terms, Sijkl do not depend on ratio a/a3 and coincide with their limiting values at a/a3→0:
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(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)
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Figure 1. 
Estimates and bounds for the effective elastic properties of an isotropic epoxy matrix (E1 = 

3:01 GPa, ν1 = 0:394) embedded with spherical glass inclusions (E2 = 76:0 GPa , ν2 = 0:23), 

compared with the experimental data of. All moduli are normalized by the corresponding 

moduli of the matrix.
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Figure 2. 
Estimates and bounds for the effective elastic properties of an isotropic epoxy matrix (E1 = 

1:69 GPa, ν1 = 0:444) embedded with spherical glass inclusions (E2 = 70:3 GPa, ν2 = 0:21), 

compared to the experimental data of Richard, 1975. All moduli are normalized by the 

corresponding moduli of the matrix
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Figure 3. 
The effect of the aspect ratio of ellipsoidal inclusions (volume fraction f2 = 0:3) on the 

effective elastic properties of two-phase composites. Note that the volume fraction of the 

inclusions is considered to be 30%. E1 = 3:12 GPa and ν1 = 0:38 for the epoxy matrix, and 

E2 = 76 GPa and ν2 = 0:25 for the glass particles. All moduli are normalized by the 

corresponding moduli of the matrix.
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Figure 4. 
Theoretical predictions and bounds for the effective elastic properties of an epoxy matrix (E1 

= 3:12 GPa, ν1 = 0:38) containing inclusions of glass (E2 = 76 GPa, ν2 = 0:25). Two types 

of inclusions are considered: infinitely long fibers (volume fraction f3) and glass spheres 

(volume fraction f2, ranging from 0 to the dense packing of 0.63). The upper and lower 

bounds are calculated using the three-point bounds discussed by Genin and Birman, 2009. 

Moduli are normalized by those of epoxy.
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Figure 5. 
Linear estimation of longitudinal (a) and transverse (b) elastic moduli of partially 

mineralized collagen fibers (solid lines), plotted against stochastic finite element results of 

Liu et al. (2014) (gray circles). The darker shaded regions (orange in the online version) 

correspond to Hashin-Shtrikman type bounds that account for the continuous, fibrous nature 

of collagen fibrils, and the lighter shaded regions (yellow in the online version) correspond 

to Hashin-Shtrikman bounds that do not account for this (cf. Liu et al. (2014)).
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