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Recent years have witnessed an increased attention to studies of sex

differences, partly because such differences offer important considerations

for personalized medicine. While the presence of sex differences in human be-

haviour is well documented, our knowledge of their anatomical foundations in

the brain is still relatively limited. As a natural gateway to fathom the human

mind and behaviour, studies concentrating on the human brain network

constitute an important segment of the research effort to investigate sex differ-

ences. Using a large sample of healthy young individuals, each assessed with

diffusion MRI and a computerized neurocognitive battery, we conducted a

comprehensive set of experiments examining sex-related differences in the

meso-scale structures of the human connectome and elucidated how these

differences may relate to sex differences at the level of behaviour. Our results

suggest that behavioural sex differences, which indicate complementarity of

males and females, are accompanied by related differences in brain structure

across development. When using subnetworks that are defined over functional

and behavioural domains, we observed increased structural connectivity

related to the motor, sensory and executive function subnetworks in males.

In females, subnetworks associated with social motivation, attention and

memory tasks had higher connectivity. Males showed higher modularity com-

pared to females, with females having higher inter-modular connectivity.

Applying multivariate analysis, we showed an increasing separation between

males and females in the course of development, not only in behavioural

patterns but also in brain structure. We also showed that these behavioural

and structural patterns correlate with each other, establishing a reliable link

between brain and behaviour.
1. Background
While the presence of sex differences in human behaviour and cognition is well

documented [1,2], our knowledge of anatomical foundations for such sex differ-

ences, specifically in the brain, is still relatively limited. The enigmatic interplay

between brain and behaviour, and its modulation by sex, has intrigued scien-

tists, philosophers and the general public for decades. Behavioural differences

include, but are not limited to, enhanced motor [3,4] and spatial skills [5,6] in

males and improved memory [7,8] and social cognition [9,10] skills in females

[11]. These differences may be attributed to the complementary roles that the

sexes play in procreation and social structure; however, increasing evidence

suggests the presence of corresponding sex differences in brain structure and

function [12–17], as well as the presence of a strong connection between behav-

iour and brain structure [12,18]. Thus, relying merely on social and cultural

effects to explain sex-induced variance in behaviour seems insufficient. Notably,

although sex differences in the brain are present even in childhood [16,17], the
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developmental trajectory of sex differences as related to the

brain–behaviour relationship remains relatively unexamined.

With the advent of neuroimaging, both the structure and

function of the human brain can be studied in vivo. This

capacity facilitates enquiries on large samples and investi-

gation of possible differences between males and females.

Several research groups [19–23] including ours [17] have

used diffusion tensor imaging (DTI) [24] to study sex-related

structural differences in the brain, as characterized by altera-

tions in white matter (WM) microstructure and fibre tracts

that connect different grey matter (GM) regions, as well as in

overall communication architecture of the brain network.

Studying the structural brain network, also known as the

structural connectome [25], enables the inference of current and

future states of brain connectivity at local, global and inter-

mediate (meso) scales. In a connectome, the identification of

network properties pertaining to meso-scale structures such

as communities [26] or the communication backbone [27]

can reveal how the complex human behavioural repertoire

emerges from the simultaneous processes of segregated neuronal

clusters and their integration during complicated cognitive tasks

[28,29]. In this work, we have investigated sex differences in

the meso-scale architecture, specifically in subnetworks, of the

structural connectome. A subnetwork is a collection of brain

regions (nodes) and their connections (edges) that forms a part

of the whole-brain network [30,31].

Previous work on sex differences in brain structure

suggested diverse outcomes including microstructural dif-

ferences demonstrated via changes in DTI-based measures,

like fractional anisotropy (FA); namely, increased FA values

in major WM regions and tracts in males [19,20,23], and in

the corpus callosum in females [22]. Consistent with these

findings, we have performed a comprehensive analysis on

the structural connectome to elucidate sex differences in

terms of individual connections [17], revealing stronger intra-

hemispheric connectivity (within both hemispheres) in males

and stronger inter-hemispheric connectivity in females. The

developmental course of sex differences is a less explored

domain [11], mostly due to lack of large datasets spanning

age ranges that include the developmental period, with a few

exceptions in the case of structural, functional and behavioural

modalities [11,16,17,21,32].

Although it is generally tempting to derive (possibly

stereotypical) conclusions based on the structural and

functional sex differences in the brain, pertaining to the be-

havioural manifestations, scientifically sound inferences

require a multimodal investigation that includes behavioural

measurements as a modality. The Philadelphia Neurodevel-

opmental Cohort (PNC) dataset [33], which is a collection

of structural, functional and behavioural modalities, provides

a unique opportunity to achieve this investigational purpose.

Using a large sample of healthy young individuals from

the PNC dataset, each assessed using diffusion MRI and a

computerized neurocognitive battery (CNB), we identified

structural changes in the subnetworks of the structural

connectome and elucidated how these changes may relate to

sex differences at the level of behaviour. In our previous

work [17], the analyses were mostly limited to individual con-

nections between regions, while in this work, we have mainly

studied subnetworks of the brain network in order to establish

a reliable link between brain structure and behaviour. Hence,

our findings on the structural connectome augment but do

not repeat our previously reported findings. The analyses
were repeated in different age ranges to render a developmen-

tal portrait of sex differences. Our results suggest that sex-

related differences in functional and behavioural dimensions

are accompanied by related changes in the network properties

of the structural connectome, establishing a reliable link

between brain structure and behaviour.
2. Results
Presented here are our findings on the network-level sex differ-

ences in the human structural connectome, as well as their

relation to sex differences in behaviour. First, we identified

overall sex-related changes in the network topology of the

structural connectome and explored possible differences

between male and female groups in terms of alliance of the

brain regions, i.e. the way the subnetworks are formed. Then,

we identified group differences on these subnetworks by

comparing intra- and inter-subnetwork connectivities between

males and females. Finally, we established possible links

between features of subnetworks and the behavioural

measures, with an aim of demonstrating the interplay between

brain structure and behaviour. For the developmental analysis,

we divided the entire dataset into three age ranges, namely

children (aged 8–13.3 years), adolescents (aged 13.4–17

years) and young adults (aged 17.1–22 years). The age

ranges were chosen to reflect conventional classification and

also to ensure that the samples are balanced in terms of the

number of participants.

(a) Network topology of the structural connectome
We first investigated differences in network topology of the

structural connectome between males and females. We

measured the modularity of the network, a measure of struc-

tural/functional segregation that quantifies the degree to

which the network can be subdivided into densely intercon-

nected groups of regions [34]. A higher modularity means

increased segregation of such groups of regions, as well as

increased integration inside the groups, possibly pertaining

to the functional specialization of neuronal clusters. In our

experiments, males showed significantly higher modularity

compared with females, evident in all age ranges (children,

p , 0.05; adolescents, p , 0.01; young adults, p , 0.01).

We also compared intra- and inter-modular communi-

cations between groups, by first extracting modules of the

brain network for each participant using the Louvain commun-

ity detection algorithm [35]. Then, we calculated the average

connectivity within the modules (intra-modular) and between

the modules (inter-modular). Consistent with the decreased

modularity, females had higher inter-modular connectivity,

with significant differences emerging only with the entire

dataset ( p , 0.05) and in the oldest age range ( p , 0.01).

(b) Alliance of brain regions into subnetworks
Before performing further analysis on structurally cohesive sub-

networks, using the methodology that is described in §4, we

first investigated whether there was a statistically significant

difference between males and females in the alliance of the

brain regions into subnetworks. The absence of such a differ-

ence demonstrated that a common subnetwork portrait could

be defined for the entire sample to facilitate a comparison

between groups. With a significance level of 0.05, we could



female > male(a) (b)

male > female

Figure 1. An illustration of structurally cohesive subnetworks, with 10 subnetworks (a), and a set of example group differences between males and females, with
mean connectivity within and between subnetworks being compared (b). Females show higher connectivity in the inter-hemispheric connections, and males have
higher connectivity in the intra-hemispheric connections. The complete set of group differences is given in table 1. (Online version in colour.)

Table 1. Summary of sex differences on the connectivity within and between structurally cohesive subnetworks. Subnetworks are illustrated in figure 1. FDR,
false discovery rate correction.

connectivity

mean (s.d.) statistical analysis

male female statistic (t) p-value (FDR)

M1 – M7 128.27 (35.72) 115.06 (28.87) 3.15 0.016

M3 – M7 42.92 (12.75) 36.96 (10.71) 3.09 0.016

M4 – M8 104.93 (31.24) 93.57 (24.26) 2.98 0.018

M0 – M1 0.93 (0.88) 1.08 (1.01) 22.69a 0.037

M0 – M2 21.43 (4.93) 21.57 (5.08) 23.56a 0.006

M0 – M7 0.19 (0.20) 0.27 (0.36) 23.02a 0.018

M3 – M6 1.61 (1.42) 1.88 (1.68) 22.68a 0.037

M3 – M9 0.03 (0.05) 0.04 (0.06) 23.31a 0.011

M4 – M4 208.85 (57.44) 213.76 (54.69) 23.55a 0.006

M5 – M9 16.72 (9.57) 19.26 (11.61) 23.56a 0.006

M7 – M9 0.09 (0.12) 0.13 (0.18) 24.03a 0.003
aHigher connectivity in females.
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not find any statistically significant sex difference between the

regional compositions of the subnetworks. We repeated this

experiment for different age ranges and with different subnet-

work scales (i.e. the number and size of subnetworks), with

the same result.
(c) Connectivity within and between subnetworks
We defined three types of subnetworks (see §4(e) for details).

First, we extracted structurally cohesive subnetworks by detect-

ing densely connected brain regions (also known as

communities [26]). An illustration of such 10 subnetworks is

given in figure 1. We repeated this analysis with different num-

bers of subnetworks, with similar results. Second, we defined
subnetworks based on the functional definitions of regional

combinations, adapted from the fMRI literature. Third, we

defined subnetworks that are putatively associated with specific

behavioural domains, based on neuropsychological literature.

Consistent with our previously published edge-wise ana-

lysis [17], the connectivity within and between structurally

cohesive subnetworks, when the connections were predomin-

antly inter-hemispheric, was higher in females, and was

higher in males when connections were predominantly intra-

hemispheric. Illustrative results are shown in figure 1, and a

complete list of group differences is provided in table 1.

For the functionally defined subnetworks, the structural

connectivity between motor, sensory (auditory and visual)

and default mode subnetworks, as well as subnetworks



Table 2. Summary of sex differences on the connectivity within and between functionally defined subnetworks. FDR, false discovery rate correction.

connectivity

mean (s.d.) statistical analysis

male female statistic (t) p-value (FDR)

motor – auditory 30.80 (10.27) 26.20 (9.00) 4.77 0.000

motor – fronto-parietal 59.11 (14.38) 52.05 (11.93) 2.77 0.039

cingulo-opercular – dorsal attention 60.60 (21.56) 52.21 (17.84) 3.22 0.018

default mode – subcortical 34.70 (11.45) 30.68 (10.13) 2.69 0.045

default mode – visual 34.52 (10.11) 30.08 (8.78) 2.91 0.034

subcortical – others 13.17 (3.62) 13.16 (3.35) 22.8a 0.039

subcortical – auditory 20.88 (7.59) 22.02 (7.73) 23.82a 0.004

dorsal attention – visual 118.93 (34.18) 117.62 (31.77) 22.99a 0.031

ventral attention – auditory 7.77 (5.43) 7.60 (5.23) 23.28a 0.018
aHigher connectivity in females.

Table 3. Assignment of brain regions to subnetworks defined over behavioural domains. Regions from both hemispheres are included, unless otherwise
specified in parentheses. Several regions are assigned to multiple behavioural domains. (Online version in colour.)

auditory executive memory motor reward social visual others

auditory banks of the superior temporal sulcus, superior temporal, transverse temporal

executive caudal middle frontal, medial orbitofrontal, pars triangularis, frontal pole, caudal anterior cingulate, pars opercularis, pars orbitalis, rostral

anterior cingulate, rostral middle frontal

memory hippocampus, entorhinal, parahippocampal, amygdala

motor paracentral, post central, precentral, cerebellum

reward caudate, putamen, pallidum, hippocampus, nucleus accumbens, ventral dc, amygdala, medial orbitofrontal

social amygdala, fusiform (right), banks of the superior temporal sulcus (right), superior temporal (right), insula (right), lateral orbitofrontal

visual cuneus, entorhinal, fusiform, inferior temporal, lateral occipital, lingual, pericalcarine
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associated with executive control tasks (fronto-parietal and

cingulo-opercular) was higher in males. In females, connect-

ivity among subcortical, sensory and attention subnetworks

was higher. The results are listed in table 2.

Using the subnetworks that are associated with specific

behavioural domains (see table 3 for assignment of nodes to

the subnetworks), we observed higher connectivity in males

related to the motor, sensory and executive function subnet-

works. In reward and memory subnetworks, we observed

higher connectivity in females. Table 4 lists all significant

group differences.
(d) Cognition and motor abilities
We then investigated sex differences in performance on the

CNB. Sex differences in cognition and motor abilities in

different subsets of the PNC dataset have been repeatedly

reported [11,16]. We confirmed these group differences in

our subsample of PNC participants. Specifically, in the com-

plex reasoning category of the CNB [11], males were more
accurate on spatial and language tasks, while females were

faster on non-verbal reasoning ( p , 0.05, FDR). In motor

and sensorimotor tasks, males performed faster ( p , 0.05,

FDR). Although females were faster in emotion identification,

unlike previously reported results, the difference was not

statistically significant ( p ¼ 0.26, FDR) in our sample.
(e) Multivariate pattern analysis for classification of sex
The univariate analyses that we have performed thus far help

investigate simple structural and behavioural differences

between males and females, based on single features such as

the mean connectivity in a specific subnetwork or the accuracy

of a single cognitive task. Next, we undertook a multivariate

analysis to facilitate the investigation of complex interactive

patterns of behaviour or connectivity. By training a pattern

classifier to distinguish between males and females, we can

learn how multiple features (e.g. connectivity of multiple

subnetworks) interact and contribute towards the separation

of the groups.
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Figure 2. Classification accuracy ( y-axis) with different age groups in years (x-axis), when using (a) structural connectivity patterns and (b) behavioural patterns. Box
plots depict the range of the classification accuracy as estimated using 10-fold cross-validation, repeated by 100 randomization. For both cases, the average
classification accuracy increases steadily across development, although the structural scores show a higher increase. (Online version in colour.)

Table 4. Summary of sex differences on the connectivity within and between subnetworks that are defined over behavioural domains. FDR, false discovery rate
correction.

connectivity

mean (s.d.) statistical analysis

male female statistic (t) p-value (FDR)

motor – executive 27.50 (7.58) 23.11 (5.93) 3.75 0.003

motor – auditory 23.13 (7.70) 19.67 (6.76) 4.79 0.000

reward – auditory 18.00 (6.36) 19.00 (6.49) 23.66a 0.003

memory – auditory 22.43 (7.94) 22.95 (7.58) 22.82a 0.045
aHigher connectivity in females.
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We trained two separate classifiers using structural

subnetwork features and behavioural features (see §4(f)). The

classification using subnetwork features yielded an overall

accuracy of 0.79, while the accuracy of the behavioural classifier

was 0.64. Thus, the separation between males and females at

the level of brain structure was significantly larger ( p , 0.01)

compared with the separation at the level of behaviour.

For both classifiers, there was a trend of increasing classifi-

cation accuracies with age, with the highest accuracy

achieved when the oldest groups were used; this is illustrated

in figure 2.

We then assigned each participant a dimensional classifi-

cation score (for each classifier separately), quantifying the

certainty of assignment of the participant to its sex group.

This was used to examine how patterns of connectivity and be-

haviour relate to each other, while being modulated by sex. The

correlation between classification scores of structural and be-

havioural classifiers was statistically significant ( p , 0.01),

albeit small (0.31). This remained significant even when correl-

ating the classification scores of male and female groups

separately (female: 0.12, male: 0.16, p , 0.01), indicating that

sex-typical patterns of behaviour and connectivity could be

related within a given sex.
3. Discussion
Recent years have witnessed an increased attention to studies

of sex differences due to their implications in personalized

medicine, and gender-specific medicine has evolved as
diseases follow a different aetiology based on gender [36].

As a natural gateway to fathom the human mind and

behaviour, studies concentrating on human brain networks

constitute an important segment of this sophisticated research

effort to understand sex differences. In this work, we studied

sex-related differences in brain connectivity by conducting

a comprehensive set of experiments on the structural

connectome, with an emphasis on its meso-scale structures.

Starting from the global properties of the brain network,

we discerned important group differences. We observed

higher modularity in males compared with females. This

might be due to either increased intra-modular or decreased

inter-modular connectivity in males. Simultaneously, females

showed increased inter-modular connectivity, possibly conse-

quent to increased inter-hemispheric connectivity [17] (see

also table 1 and figure 1) since the modular structure of the

human brain is predominantly shaped by the hemispheres.

The distribution of connections between intra- and inter-

modular communications may provide an insight into how

the network manages to orchestrate segregated neuronal clus-

ters, each of which is putatively associated with a different set

of functions.

Notably, the reverse (i.e. decreased modularity and

increased inter-modular connectivity in males) has been

shown previously [16], using resting state fMRI connectivity

in another subsample of the PNC dataset. These findings jointly

render a complex picture of the simultaneous processes in

the brain. The structural basis of the brain network points to a

more integrated modular architecture for females beginning

in early childhood, and perhaps the increased inter-modular
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functional connectivity in males may reflect compensation

to attain integration at the functional level. Increased inter-

modular functional connectivity is possibly achieved by using

highly connected functional systems such as the default mode

network (the regions of which are part of the structural core

of the brain network [37]) that integrates cognitive processes

[38]. Our results support such a hypothesis by demonstrating

higher structural connectivity in the default mode network in

males (table 2).

The alliance of brain regions when forming structurally

cohesive subnetworks does not differ significantly between

males and females, indicating a fixed reference frame within

which we can compare subnetworks between groups without

concern for bias by the sex of the sample being used. In other

words, we can define a common set of subnetworks for

males and females, and then compare them based on their

subject-specific manifestation on inter- and intra-subnetwork

connectivities. The resting state fMRI study [16] mentioned in

§2(c) reported the same conclusion that the regional compo-

sitions of subnetworks do not differ between male and

female brains. This finding is crucial as it indicates that the

network organization of male and female brains does not

differ despite the significant difference in volume between

the sexes (in our sample, there was a significant difference in

volume between the sexes, p , 0.01). As the alliance of individ-

ual brain regions is similar in males and females, one may

stipulate similar functional associations for the neuronal

clusters (subnetworks).

Links between brain structure and behaviour possibly

rely on a complex interplay between multiple features of

the neurobiological mechanisms in the brain network. Net-

work theoretic studies pertaining to the properties of the

structural connectome may provide pioneering insights into

these links. Here, we have established sex-related differences

in the connectivity of the subnetworks that were defined

based on structural characteristics, functional systems and

finally behavioural domains. From a structural perspective,

when subnetworks were identified as structurally cohesive

communities, we observed higher inter-hemispheric connec-

tions in females and increased intra-hemispheric connections

in males (figure 1 and table 1). Elaborate behavioural inferences

based on these differences, however, require direct and rigor-

ous investigations, performed over specific functional

systems of the brain.

In order to provide a better association between the struc-

ture and function of the brain, we delineated subnetworks

based on the definitions of functional systems in the fMRI lit-

erature [39]. Analysis of these subnetworks revealed several

functionally related differences between male and female

groups. Consistent with the behavioural findings on sex differ-

ences [3,11], males had increased connectivity between motor

and sensory (auditory) systems, along with increased connect-

ivity in the fronto-parietal and cingulo-opercular systems that

are traditionally associated with complex reasoning and con-

trol (table 2). Furthermore, males had higher connectivity in

the integration of the default mode network with subcortical

and sensory (visual) systems. Default mode network has

been associated with self-related and internal processes such

as stimulus-independent thoughts and introspection [40]. It is

also believed to play an important role in the integration of cog-

nitive processes [38]. On the other hand, females had increased

connectivity with subcortical regions, attention (both dorsal

and ventral) systems and sensory (both visual and auditory)
systems (table 2). The subcortical regions including amygdala,

hypothalamus, hippocampus, dorsal striatum (caudate and

putamen), ventral striatum (nucleus accumbens), thalamus

and pallidum have been mainly associated with emotion

processing, social cognition and motivation [41–43]. In agree-

ment with our findings, improved socially relevant skills

have been reported in females [9,10]. We showed that the

integration between attention systems and sensory systems

was stronger in females, also consistent with behavioural

literature [11].

Similar results were observed when we defined subnet-

works based on their putative behavioural domains (table 4).

Males had higher connectivity between motor, executive func-

tions and sensory (auditory) systems. Females, on the other

hand, had higher connectivity between reward, memory and

sensory (auditory) systems. Higher memory performance in

females has been extensively reported [7,8]. The neuropsycho-

logical processes that are managed by the reward circuitry

have been traditionally linked to social motivation because

anticipation of the rewarding value of a stimulus and then

determination of its relevance in other cognitive tasks are crit-

ical for engaging and maintaining social interactions [42,44].

Both sets of results regarding functionally defined and

behaviourally relevant subnetworks point to an intriguing

sex difference in the processing of sensory inputs (auditory

and visual). Males had higher connectivity between sensory,

motor and default mode systems, while for females higher

connectivity was observed between sensory, subcortical,

reward and attention systems (tables 2 and 4). This might

suggest a better perception–action coordination in males,

and better anticipation and subsequent processing of socially

and emotionally relevant cues in females.

In our final set of experiments, we identified complex and

subtle relationships between behaviour and brain structure,

using multivariate analysis techniques. We were able to dis-

tinguish males from females using a pattern classifier, with

features extracted from both structural connectivity patterns

as well as behavioural assessments. The classification

accuracy showed an improving trend across development,

suggesting an increasing sex difference both in the brain struc-

ture and behaviour (figure 2). This indicates an augmented

separation between males and females in the course of develop-

ment, not only in terms of behavioural patterns but also those

related to the brain structure. Hence, it is clear that the behav-

ioural differences between males and females are accompanied

by related structural differences across their development. The

separation at the level of brain structure was higher than that

at the level of behaviour, suggesting that not all structural

differences manifest themselves in the behavioural measures

used in the current battery. We also showed a statistically sig-

nificant, but relatively small, correlation between the

classification scores of individuals, which quantify the certainty

of their assignment to one of the groups (males or females),

when this score is calculated using structural and behavioural

patterns. Overall, these findings may indicate that the causal

relationship between brain structure and behaviour, should

any exist, may not be linear. It could be affected by numerous

nonlinearities contributed by other factors such as environ-

ment, culture, even economics or politics.

Importantly, except for the multivariate classification

analysis, all our findings are observations on sample averages,

i.e. they are not individual level but group differences. In order

to conclude structural and behavioural distinctness of an



Table 5. Demographics of our sample.

no. participants age mean (s.d.) in years no. Caucasians education mean (s.d.) in years

female 491 15.212 (3.454) 193 8.179 (3.317)

male 409 14.913 (3.525) 206 7.714 (3.339)

total 900 15.076 (3.488) 399 7.968 (3.334)
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individual compared to the general population, one will need

to perform more direct analyses on individual differences.

The methodology used in this work paves the way for such

future studies, as the features that we used here (e.g. the

mean within subnetwork connectivity) are calculated for

each individual participant. Thus, one may assign a standard-

ized score to each individual based on the distribution of a

feature, quantifying the status of the individual compared to

their group. This may also facilitate a function specific analysis,

as we were able to define subnetworks based on their func-

tional definitions, with individuals being assigned scores

pertaining to each functional subnetwork. More sophisticated

analyses can be performed by using multivariate pattern

analysis methods trying to predict specific behavioural

measurements using structural network features.

Despite their scientific relevance and significance, sex differ-

ences in the brain structure are a sensitive topic and a source of

much ethical and related controversy. The almost hard-wired
nature of structural differences is unfortunately sometimes

interpreted by the media and the general public as defining con-

stant, discrete and immutable boundaries between the sexes.

Therefore, we need to emphasize that structural differences

do not imply aetiology or prognosis, and the current work has

several limitations.

First, several practical limitations prevented us from using

a functional modality (e.g. fMRI) as an investigative inter-

mediary between structure and behaviour. Instead, we made

comparisons to a previously published work that used a sub-

sample of the PNC data and resting state fMRI [16]. Second,

in our developmental experiments, we defined three age

groups and compared cross-sectional findings of these

groups, without using a true longitudinal experimental

design. We divided our sample to have an almost equal

number of individuals in each group, as in Ingalhalikar et al.
[17], without any considerations of puberty or other factors

that may be developmentally relevant, such as race or ethnicity.

It is expected that one of the primary drivers of sex differences

in the brain, especially during puberty, may be the hormonal

regulation of the brain. Similarly, ethnicity may also affect

sex-related differences both in brain and in behaviour. Thus,

future studies that concentrate on developmental aspects of

sex differences should consider such factors in order to

render a more detailed picture. Such a broader scope was not

aimed for in the current study since our sample did not include

any data on the hormonal state of participants. It should be

noted that when the sample is divided into subsamples follow-

ing any rationale, there is always a possibility that some other

factor affects the results. Our main goal is to demonstrate the

synchrony between sex-related differences in the brain net-

work and behaviour, regardless of their underlying causal

mechanisms. Hence, the effect of a factor such as puberty

that possibly modulates interrelation between brain network

and behaviour, thereby having an important role in the
underlying causal mechanisms, is beyond the scope of the cur-

rent work. Third, we did not take into account developmental

differences in GM such as differential growth of regions.

Detailed investigation of the effect of volumetric changes

in GM regions on the creation of the connectome is an

active area of ongoing research. We believe that as the field of

connectomics evolves, the study of connectivity-based sex

differences will gain from new and better ways of creating

the connectomes, leading to further insights.
4. Material and methods
(a) Participants
Institutional Review Board approval was obtained from the

University of Pennsylvania and the Children’s Hospital of

Philadelphia. Participants were excluded due to missing cognitive

data, poor imaging data quality or a history that suggested poten-

tial abnormalities of brain development such as a history of medical

problems that might affect brain function, a history of inpatient psy-

chiatric hospitalization, or current use of psychotropic medication.

The final study sample included 900 participants. Details on the

demographics of the data are given in table 5.

(b) Image acquisition and connectome construction
Diffusion weighted magnetic resonance imaging (dMRI) scans

were acquired for each individual. Details of the image acquisition,

tensor construction and generation of connectome are provided by

Ingalhalikar et al. [17]. The connectome construction is illustrated

in figure 3.

(c) Computerized neurocognitive battery
The CNB [11,45] was administered to all participants, and con-

sisted of 14 tests that evaluated a broad range of cognitive

functions. Each test provided measures of accuracy and speed,

with an exception of the motor tests that only measured speed,

giving a total of 26 cognitive measures. For the multivariate ana-

lysis described in §4(f), we also included five psychiatric

evaluation measures related to symptoms of mood disorders, psy-

chosis, externalizing, phobias and overall psychopathology [46].

(d) Alliance of brain regions into subnetworks
We tested whether there is a significant difference in the regional

compositions of subnetworks between male and female groups.

To this end, we calculated a mean connectome for both male and

female groups and detected subnetworks in both, using the

Louvain community detection algorithm [35] as implemented

in Brain Connectivity Toolbox [34]. We measured the similarity

between two sets of subnetworks using the normalized mutual

information (NMI) [47]. We then repeated the same measure-

ment 1000 times while permuting gender labels, recalculating

mean connectivity matrices and re-detecting subnetworks. This

produced a null distribution of NMI values, corresponding to

the null hypothesis that the similarity of subnetwork structures
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Figure 3. Construction of the structural connectome. The nodes of the connectome are the anatomical regions of interest. Edges are generated by seeding prob-
abilistic tractography from WM – GM boundaries of regions. The final network representation defines the connectome. (Online version in colour.)
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between two randomly generated groups would be equal to or

lower than the similarity between actual male and female

groups. Finally, we compared the actual NMI value calculated

using the true male and female groups to the null distribution,

to calculate the probability of observing this NMI, or more

extreme values, when the null hypothesis is true.
(e) Comparison of subnetwork connectivity
We generated subnetworks of the structural connectome with

three different procedures, and compared male and female

groups in terms of the mean connectivity within and between

subnetworks. First, we formed structurally cohesive subnetworks

based on their distinct structural connectivity patterns. We used

multi-view spectral clustering [31,48] to decompose the connect-

ome into a common set of subnetworks that are defined by

densely connected brain regions. This facilitates comparisons

between male and female groups in terms of mean connectivity

within and between subnetworks since the subnetworks are

common for males and females.

Second, with the aim of linking sex differences in the

brain structure and function, we defined functionally defined

subnetworks based on the functional associations of the brain

regions based on the fMRI literature [39]. We assigned brain regions

to 10 functional systems, namely auditory, cingulo-opercular,

default mode, dorsal attention, fronto-parietal, motor, subcortical,

ventral attention, visual and others, using the definitions from

Gu et al. [49].

Third, we defined subnetworks by considering several specific

behavioural domains with which they are putatively associated.

For this purpose, we compiled seven subnetworks, namely audi-

tory, executive functions, memory, motor, reward, social

cognition and visual, based on a literature review on the

neuropsychological associations of brain regions. For the motor

and sensory (auditory and visual) subnetworks, we used the

same definitions as the functionally defined subnetworks.

Table 3 gives the region assignments for each of these seven

subnetworks.
( f ) Multivariate pattern analysis for sex classification
We performed a multivariate analysis using a support vector

machine (SVM) classifier [50] to distinguish between males and

females using connectivity and behavioural measures. We treated

subnetwork and behavioural features (CNB scores) separately to

construct two different classifiers, each using only a single set of

features. The final unbiased estimate on the classification accuracy

of each classifier was calculated using a 10-fold cross-validation

procedure where the classifier was trained using 90% of the data

and tested on the rest, with the training and testing data being

changed for each fold. For the connectivity-based classifier, we

compiled the mean connectivity within and between 10 function-

ally defined subnetworks (auditory, cingulo-opercular, default

mode, dorsal attention, fronto-parietal, motor, subcortical, ventral

attention, visual and others), resulting in a 55 dimensional feature

set. For the behavioural classifier, we used 26 CNB scores and five

psychiatric evaluations. We repeated the experiments with differ-

ent age groups to identify the developmental differences in

separation between males and females. Finally, for each classifier,

we assigned each participant a classification score, quantifying the

certainty of assignment of a participant’s pattern of behaviour

or connectivity to their sex group, by measuring the distance of

the participant’s feature vector from the separating hyperplane

in SVM. We used these classification scores to calculate the

correlation between decisions of two classifiers.

(g) Statistical analysis
When comparing males and females on a single feature (e.g.

mean within subnetwork connectivity), we used a two-tailed

t-test. Ages of participants were compared between males and

females with no significant difference being found. Statistical

comparisons were considered significant if corrected p-values

were less than 0.05. The false discovery rate (FDR) correction

[51] was used for multiple comparisons correction. With com-

parison on structural connectivity, we used the total brain

volume as a covariate because it differed significantly between

males and females ( p , 0.01). Accuracy of a single multivariate
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pattern classifier was estimated using K-fold cross-validation,

and comparisons between accuracies of two classifiers were

performed using K-fold cross-validated paired t-test [52].
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