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Bale TL. 2016 Sex differences in the gut

microbiome – brain axis across the lifespan.

Phil. Trans. R. Soc. B 371: 20150122.

http://dx.doi.org/10.1098/rstb.2015.0122

Accepted: 19 November 2015

One contribution of 16 to a theme issue

‘Multifaceted origins of sex differences in

the brain’.

Subject Areas:
neuroscience, developmental biology,

behaviour, bioinformatics, microbiology,

systems biology

Keywords:
development, lifespan, microbiome, sex

differences

Author for correspondence:
Eldin Jašarević
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Sex differences in the gut microbiome –
brain axis across the lifespan
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Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia,
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In recent years, the bidirectional communication between the gut microbiome

and the brain has emerged as a factor that influences immunity, metabolism,

neurodevelopment and behaviour. Cross-talk between the gut and brain

begins early in life immediately following the transition from a sterile

in utero environment to one that is exposed to a changing and complex

microbial milieu over a lifetime. Once established, communication between

the gut and brain integrates information from the autonomic and enteric ner-

vous systems, neuroendocrine and neuroimmune signals, and peripheral

immune and metabolic signals. Importantly, the composition and functional

potential of the gut microbiome undergoes many transitions that parallel

dynamic periods of brain development and maturation for which distinct

sex differences have been identified. Here, we discuss the sexually dimorphic

development, maturation and maintenance of the gut microbiome–brain

axis, and the sex differences therein important in disease risk and resilience

throughout the lifespan.
1. Introduction
The mammalian brain poses an evolutionary paradox: while it has a high meta-

bolic demand, requiring more energy than any other tissue in the body, it contains

no energy reserves and is critically dependent on the continual supply of sub-

strates from the periphery [1]. Over the course of evolution, transitions to high-

quality and nutrient-dense plant- and animal-based resources have provided

access to previously unavailable nutrients, and this considerable expansion in

the metabolic pool is considered a key event underlying the rapid enlargement

and reorganization of the human brain [1–3]. However, expansion of the

human frontal cortex occurred at the cost of other metabolically expensive tissues,

such as the gastrointestinal tract, suggesting coevolution of the gut and brain

where expansion of the brain resulted in a corresponding reduction in overall

size of the gut [1]. Paradoxically, the reduction of the mammalian gut was paral-

leled by increased capacity to synthesize essential amino acids, ferment complex

carbohydrates and more efficiently extract energy, suggesting an essential coevo-

lution between bacterial communities residing within the gut and increased

metabolic demands necessary for an energetically expensive brain [4]. This coevo-

lution between host and microbe has been recently suggested to impact the

expression of an array of phenotypes across the lifespan, and the evolutionary

processes driving these interactions have been the focus of a number of excellent

reviews [5–9].

Nevertheless, these communities of microorganisms, including fungi,

protozoa, Archaea, viruses and microbiota that reside within our bodies are esti-

mated to be as much as 10 times greater than the total cell number in the human

body, and their genetic information is at least 150-fold greater than that of the

human genome [10]. This tremendous genetic repertoire of the microbiome pro-

vides extensive metabolic, immunological and endocrine potential otherwise

unavailable to the host [11]. For instance, early in development, the gut microbiota

educate the immune system, fine-tune neural circuits within the gut, induce

antimicrobial peptides to ensure rapid clearance of pathogens, metabolize vital

dietary components and distribute dietary fat to peripheral tissues [5,6,12–17].

Moreover, animals devoid of any microorganisms, termed germ-free, have
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Figure 1. The gut – brain axis represents a bidirectional communication system that facilitates the integration of peripheral and central immune, metabolic and
endocrine signals. The gut and the brain send both direct and indirect signals via immune, neural, endocrine and metabolic pathways in order to influence function
of the other tissue. Surrounded by a single layer comprising intestinal epithelial cells (IECs), microbes produce metabolites such as SCFAs and chemotactic peptides
that are able to both influence the brain directly as well as bind to receptors expressed on EECs to enable the secretion of metabolically active peptides such as
neurotransmitters. Further, microbes interact with immune cells within the gut to alter the number of cytokines, which can also affect brain function and behaviour.
Centrally, activation of neural circuits can impact the gut by release of hormones and other peptides that can alter the release of cytokines and the composition of
microbial communities within the gut.
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contributed to our appreciation of the complex network

between the gut microbiome and the brain, and have demon-

strated that microbial communities are essential for brain

development and function, neural metabolism and mediate a

variety of gut–brain axis disorders [18–23].

Thus, a critical function of the gut microbiome is to orches-

trate the bidirectional communication between the gut and

the brain, facilitating the integration of peripheral and central

immune, metabolic and endocrine signals [24–27]. This axis

starts with the intestinal tract, which continuously monitors

and responds to the composition of its content to optimize

assimilation of substrates and competitive exclusion of patho-

gens [28]. Microbial by-products such as short-chain fatty

acids (SCFAs) and chemotactic peptides bind to receptors

expressed on enteroendocrine cells (EECs) to facilitate secretion

of a variety of metabolically related peptides involved in food

intake, lipid storage, energy homeostasis, neurotransmission

and behaviour [26,29,30]. In turn, EECs release hormones

that signal to the intestinal epithelium and immune cells, trans-

locate into the periphery to act at remote sites such as the

brain and activate neurons of the enteric nervous system [28].

The signals produced either directly from the microbiota or
indirectly through its interaction with lymphocytes, dendritic

cells and EECs are relayed to the brain by the enteric nervous

system via efferent and afferent fibres as well as interneurons

[29]. Centrally, activation of neural circuits, such as those

controlling appetite and satiety within the hypothalamus,

influence the release of hormones and other peptides that

impact the gut by altering the release of cytokines by mucosal

immune cells and the composition of microbial communities,

giving the signals from the brain the ability to influence overall

gut health [24,31–34] (figure 1).

The formation of the gut microbiome–brain axis begins

very early in life, immediately following colonization by

microbial communities that reside within the birth canal

[35–39]. The composition of gut microbes, their genetic reper-

toire and the metabolites they produce are dynamic across the

lifespan as they are shaped by many factors, including host

genetics, age and sex [40–48]. While the mechanisms involved

in the development, maturation and maintenance of the gut

microbiome are only beginning to be dissected, recent studies

suggest that the composition and functional potential of the

microbiome undergoes transitional stages that parallel similar

dynamic periods in brain development [49]. This observation
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further implicates the role of the gut microbiota and the consor-

tium of microbial genes in meeting the metabolic demands of a

growing brain during developmental stages.

As males and females exhibit sexually dimorphic patterns

in energy and nutritional requirements across the lifespan,

sex differences in the gut microbiome–brain axis may be an

important biological factor in these processes [2,50–52]. This

is supported by a wealth of research highlighting critical sex

differences in downstream targets of this axis, including neuro-

endocrine and neuroimmune systems [53,54]. For instance,

female-biased prevalence in functional gastrointestinal dis-

orders, such as irritable bowel syndrome, may result from

sex differences in gastrointestinal transit time, visceral sensi-

tivity, central nervous system pain processing and hormone-

dependent effects on gut physiology [55–58]. More recent

studies in mice demonstrated that the female-biased risk for

autoimmune disorders is significantly impacted by sex differ-

ences in the gut microbiome, whereby adoptive transfer of

male microbiota to recipient females delayed onset and les-

sened severity of disease [47,59]. Further, sex-specific changes

in the composition of the gut microbiome in response to

environmental factors, including infection and stress, may rep-

resent a component of sex differences in disease risk, as these

same environmental factors result in sex-specific alterations

in immune function, metabolism, stress responsiveness and

behaviours [33,60–62]. Thus, consideration of sex differences

in the gut microbiome across the lifespan provides novel

mechanistic insight into sex differences in disease prevalence,

age of onset and severity, and, may ultimately lead to novel

interventions and treatments [63,64] (figure 2).

In this review, we outline a conceptual framework for sexu-

ally dimorphic communication between the gut microbiome

and the brain. Specifically, we discuss the parallel develop-

ment, maturation and maintenance of the gut microbiome

and brain across the lifespan, and highlight those known sex

differences at each stage (figure 2). Finally, we consider the

points in which environmental perturbations such as stress

influence or reshape gut–brain signalling, emphasizing poten-

tial sex-specific consequences across a number of behavioural

domains. We conclude by providing some perspectives on

future directions in this area.
2. Sex differences in the gut microbiome – brain
axis

Differences between males and females in anatomical, physio-

logical and behavioural traits have been described in nearly

all vertebrate species, including humans [65]. Mechanisms

through which males and females differ involve a delicate

orchestration between the environment, genes, hormones and

epigenetic processes—which emerge with different roles

during distinct life stages [66,67]. As the gut microbiome is

critical in maintaining organismal homeostasis, as evidenced

by significant shifts in composition and gene content to accom-

modate key periods of development and maturation, it is likely

an additional mechanism contributing to these important

sex differences [52]. Importantly, the nutritional and energetic

demands of growth, development and reproduction differ

between males and females, suggesting that sex-specific

shifts in the ecological structure of the gut microbiome to

meet these demands may represent an adaptation by which

organisms maintain sex differences in physiology and
behaviour throughout life [2,50–52]. During dynamic periods

of life, including infancy, puberty and aging, the composition

of the microbiota shows high instability and variability that

correlate with age- and sex-specific disease risk. Such evidence

further underscores the adaptive contribution of the gut

microbiome during distinct life stages [49,68–73].
(a) Prenatal
The prenatal period presents both a window of susceptibility

and opportunity for intervention with respect to normal

brain development and fetal antecedents of disease [74]. As

the developing fetus receives all nutrients from the maternal

circulation, and as the metabolic demand of male and female

fetuses differs during gestation, the capacity of the maternal

gut microbiome to mediate maternal energy balance and nutri-

tional status may exhibit significant sex-specific effects on

development [75,76]. Emerging evidence suggests that the

maternal gut microbiome orchestrates nutrient and metabolite

availability in a temporal-specific manner [77]. During the first

trimester, the human maternal gut microbiome is over-

represented by communities belonging to the Clostridiales

order, a large cluster of bacteria that metabolize fibre to produce

SCFAs such as butyrate, propionate and acetate [77,78]. SCFAs

cross the placental barrier from maternal serum and enter fetal

circulation, suggesting the possibility that maternal-derived

microbial substrates can influence neurodevelopment [79].

Indeed, increased availability of butyrate during early preg-

nancy parallels the dynamic window of blood–brain barrier

(BBB) development, and a role of butyrate-producing micro-

biota in the normal formation of the mouse BBB has been

recently demonstrated [80]. Although not included in currently

available studies, sex differences in the transport, uptake and

downstream effects of maternal microbe-derived substrates on

neurodevelopment are exciting areas of research that warrant

further study.

Although SCFAs are essential for normal fetal develop-

ment, prolonged and elevated levels during prenatal

development are associated with increased disease risk later

in life [81,82]. Late gestation exposure to the microbial metab-

olites butyrate and propionate is associated with sex-specific

delays to reach developmental milestones and altered social

behaviour in rodents, which are potential endophenotypes

of neurodevelopmental disorders [82,83]. Specifically, exposed

males, but not females, exhibited increased anxiety-like behaviour

and stereotypy, decreased social interaction and exaggerated

stress responsivity. As butyrate and propionate serve a

number of epigenetic functions such as balancing histone

acetylation and deacetylation activity, exposure to these

substrates during critical windows may have important

implications for early life programming [84,85]. Interestingly,

the human maternal gut microbiome undergoes dynamic

remodelling during late gestation characterized by a decrease

in SCFA-producing microbiota in exchange for high-energy-

yielding microbial communities [77]. While this transition

in community composition likely occurs to meet the increased

nutritional and metabolic demand associated with rapid off-

spring development, it may also serve as an adaptation to

protect the offspring from prolonged exposure to specific

microbial substrates. As microbiome-derived metabolites far

exceed the number of metabolites produced by the host, there

are likely other microbial metabolites that influence prenatal

neurodevelopment that remain to be discovered and their role
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Figure 2. Timeline showing that critical shifts in maturation of the gut, hormones and the brain occur in parallel, and that sex-specificity in these systems emerges
at similar points in development. Across the gut – brain axis, there are several periods of dynamic shifts in tissue development, including infancy, puberty and aging.
Here, the microbial communities within the gut, the structure of the gastrointestinal tract and the brain are characterized by dramatic shifts in structure and function,
providing windows where perturbations such as stress may result in long-term disruptions of normal function. Sex differences within these systems arise at similar
ages, suggesting the potential for sexually dimorphic communication between the gut microbiome and the brain.
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characterized [86]. Additional avenues for future studies might

explore how environmental factors such as infection and stress

affect maternal gut microbial composition and metabolite avail-

ability, and how those interactions subsequently influence

sex-specific neurodevelopment.
(b) Postnatal
During parturition, the neonate ingests the primary inoculum of

microbes within the vagina as it passes through the birth canal.

The neonatal gut lacks the functional innate and adaptive
immune defences that will serve as a ‘demilitarization zone’

between microbes and the intestinal epithelium later in develop-

ment. In addition, the early neonatal gut allows passive transfer

of maternal immunity, and ongoing intimate host–microbe

interaction during early life promotes normal progression of gut

mucosal immunity and maturation of the intestine [16,87–89].

As a result, the colonizing microbes come in direct contact

with the host during these initial stages [87]. Thus, the compo-

sition of this pioneer community, as well as its genetic

repertoire, is likely to exert critical consequences on long-term

health outcomes, including programming of host immunity
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within the gut, modulating energy balance and homeostasis,

and influencing neurodevelopment and behaviour [35,39,49].

In the first few days to weeks of life, a limited consortium of

genera, including Bacteroides, Bifidobacterium, Parabacteroides
and Escherichia/Shigella, dominate the human neonate gut

[90]. Interestingly, Escherichia and Shigella are members of the

Proteobacteria phylum, which are Gram-negative bacteria

with their outer membranes composed of immune-eliciting

lipopolysaccharides (LPS) [88,91]. The role of LPS in guiding

sex-specific long-term programming of the nervous system

has been the focus of numerous rodent models of early post-

natal immune challenge [92]. Although these models have

focused on exogenous LPS administration, endogenous

sources of LPS derived from the transient colonization of

Proteobacteria during early life may be adaptive for the host

[88,91]. Proteobacteria-derived LPS may influence neurodevel-

opment through direct, paracrine or endocrine mechanisms.

These include direct communication via vagal afferents,

production of microbial metabolites or EEC-derived hormones

signalling to the circumventricular organs, induction of periph-

eral cytokines that cross the BBB or eliciting resident cells

that form the BBB to secrete neuroimmune substrates [93].

In addition, more recent evidence suggests that microbial

colonization influences immunocompetent cells in the brain

such as the microglia, suggesting the possibility that the

immunological and metabolic consequences of microbial col-

onization may influence sex differences in microglia function,

and, further may impact long-term programming of brain

and behaviour [94].

The advent of modern obstetric practices such as caesarean

delivery, accounting for nearly 30% of all births in the

United States and nearly 90% in Brazil, has provided a

natural human experiment that highlights the importance

of maternal–offspring microbial transmission on long-term

health outcomes [39,95–99]. As discussed above, vaginal

bacteria from the mother initially colonize the intestine of va-

ginally delivered infants, whereas bacteria from the mother’s

skin and the local environment (e.g. healthcare workers, hos-

pital and other newborns) colonize infants born via

caesarean section [100]. For example, newborns delivered by

caesarean section showed delayed colonization by Bacteroides
and Bifidobacterium, as well as an increased risk for overgrowth

of the enteric pathogen Clostridium difficile. As the Bifidobacter-
ium genome contains a large cluster of genes involved in the

utilization and metabolism of maternal breast milk oligosac-

charides, delayed colonization by these bacteria may alter

nutrient and energy availability necessary for normal growth

and development [9,101,102]. The resulting differences in colo-

nizing microbiota for vaginally and caesarean delivered

children persist well into childhood and are associated with

increased body mass and childhood obesity [103]. In addition,

children born by caesarean section exhibit increased risk of

allergies, such as allergic rhinoconjunctivitis, and this risk is

highest in females born after multiple caesarean sections, par-

alleling well-established observations of female-biased risk in

the development of allergies [104,105]. In addition, a recent

meta-analysis reported that caesarean delivery is associated

with increased odds of autism spectrum disorder, although a

formal test failed to confirm this relationship [106,107].

Disruption to maternal–offspring transmission of microbes

during critical windows of development leads to long-term off-

spring health outcomes [61,71,73,102,108–110]. Maternal

insults, including natural disasters, maternal anxiety, immune
compromise and maternal diet, have been linked with increased

incidence of offspring neurodevelopmental disorders

[111–113]. In non-human species, including mice, rats, guinea

pigs and non-human primates, prenatal stress increases

offspring stress sensitivity, anxiety and depressive-like behav-

iour, and cognitive deficits [114–124]. Offspring sex is a

critical factor in mediating the outcomes of maternal stress,

where male offspring are more susceptible to the effects of pre-

natal stressors, as indicated by altered performance on a variety

of tasks, including spatial learning, stress-induced locomotor

activity and sucrose preference [117–122,125,126]. Interestingly,

the potential involvement of the microbiome in mediating any

of these neurodevelopmental programming changes has not

previously been considered. Certainly, if the stress exposure

during pregnancy were to alter the maternal vaginal micro-

biome composition, the potential existed for the neonate’s gut

to also be changed, thereby setting the stage for a progression

of developmental programmes that could ultimately result in

important differences in the gut microbiome–brain axis.

To directly probe the potential contribution of changes in

the maternal vaginal microbiota in offspring programming

effects following maternal stress during pregnancy, we used

our established mouse model of early prenatal stress (EPS), in

which male, but not female, offspring demonstrate significant

neurodevelopmental changes in hypothalamic and limbic cir-

cuits and in regulation of stress responsivity, cognitive

dysfunction and post-pubertal growth, and examined changes

in the vaginal microbiota composition and their vertical trans-

mission to offspring at birth [108,117–121]. Consistent with our

hypothesis, maternal stress altered proteins related to vaginal

immunity and abundance of Lactobacillus, the prominent

taxon in the maternal vagina and an important primary coloni-

zer of the neonate gut [108]. These results add to a growing

number of studies in rodent models, primates and humans

demonstrating that maternal stress decreases Lactobacillus
abundance in neonates, suggesting the possibility that the

mechanisms by which stress alters Lactobacillus are conserved

[71,109,110,127–129]. Further, loss of maternal vaginal Lactoba-
cillus also resulted in decreased transmission of this bacterium

to EPS-exposed offspring, which may disrupt the ability of the

offspring gut to perform critical functions such as fermenting

breast milk lactose and casein, producing lactic acid and

maintaining an acidic intestinal environment during early

development [130–132]. Interestingly, depletion of Lactobacil-
lus corresponded with a sex-specific and developmentally

premature increase of obligate anaerobes, Bacteroides and

Clostridium, in EPS-exposed males, but not in EPS-exposed

females. This altered microbiota composition in the neonate

gut corresponded with sex-specific changes in the availability

of nutrients known to influence sex differences in neurodevelop-

ment, such as histidine and glutamate [133,134]. Further, these

peripheral shifts in nutrient availability were also associated

with sex-specific disruptions of amino acid profiles in the devel-

oping paraventricular nucleus of the hypothalamus. Taken

together, these results add to accumulating evidence that the

maternal vaginal microbiota and subsequent colonization of

the neonate gut are important sex-specific factors in prenatal

stress programming of both the gut and the brain.
(c) Childhood and puberty
The gut microbiome, following early life colonization, continues

to mature throughout childhood and puberty [135,136].
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Recent evidence demonstrates that childhood and puberty

are critically active and developing phases of gut microbiome

compositional and functional changes [137]. For example,

bacterial communities during childhood were characterized

by both increased complexity and instability relative to

adult communities [137]. The compositional differences in chil-

dren paralleled alterations in the relative abundance of

functional pathways previously associated with anti-inflamma-

tory properties such as vitamin B12 synthesis and methane

metabolism, while adult communities were more enriched

with pathways associated with inflammation, including bio-

synthesis of immune-eliciting molecules, steroid hormone

biosynthesis and oxidative phosphorylation [137]. As childhood

is characterized by gonadal hormone quiescence and little sex-

specific development, it is not surprising that there were no

sex differences in childhood gut microbiome composition [65].

Following the relatively dormant period of sex-specific

development in childhood, the transition to puberty is

marked by an initiation of sexually dimorphic processes

[138]. Time-series studies in which the gut microbiome compo-

sition of male and female mice was characterized during

puberty, adolescence and adulthood revealed that sex differ-

ences in the gut microbiome emerged during puberty and

continued to diverge into adulthood [59]. Specifically, the

microbial communities of males deviated during puberty

and acquired a distinct phenotype during adulthood, whereas

the communities of females remained more similar to that of

pubertal mice of both sexes [59]. Reduction of testosterone

by castration during the pubertal window eliminated sex

differences in gut microbiota composition in adult mice,

demonstrating the importance of pubertal testosterone in

organizing sexually dimorphic microbial communities of

males that are maintained in adulthood; however, the mechan-

ism by which testosterone mediates host selection of microbial

communities is currently not understood [59]. Transfer of adult

male mouse caecal content, which contains the largest number

and greatest diversity of bacteria in the intestinal tract of mice,

into pubertal female mice masculinized microbiota compo-

sition, metabolomic profiles and elevated testosterone levels

in the female recipients that persisted into adulthood

[47]. Co-administration of adult male caecal content and the

androgen receptor antagonist flutamide attenuated all male

microbiome-specific changes in female recipients, demonstrat-

ing mechanistically that testosterone elevation caused by male

microbiome transfer was critical for these downstream pheno-

types [47]. While these studies provide a proof-of-concept

that microbial communities drive expression of testosterone,

it is currently unclear whether transfer of female-specific

microbiomes is capable of influencing oestrogen levels in

males and warrants further study. Likewise, the capacity of

the microbiome to transfer behavioural phenotypes has been

recently demonstrated, as germ-free NIH Swiss male mice

inoculated with caecal contents from male BALB/c mice,

an innately anxious strain of mice, displayed a behavioural

phenotype similar to the donor species [21,139]. As sex differ-

ences have been observed in anxiety, the possibility that

sex-specific microbiome transfers can impact sex differences

in behaviour is intriguing and warrants future study. Never-

theless, these results highlight the importance for future

studies to examine whether sex-specific microbial transfer

influences brain and behaviour through modulation of go-

nadal hormones. Thus, mounting evidence suggests that

microbial communities in the gut may be capable of altering
the individual at a phenotypic level, including hormone-

driven metabolic and behavioural phenotypes.

Microbial communities may alter host hormones through

a variety of mechanisms. Recent bioinformatics analyses of

commensal microbes identified large gene clusters that

encode hydroxysteroid dehydrogenases, enzymes that regu-

late the balance between active and inactive steroids, which

is consistent with recent metagenomic studies showing that

the microbiome exerts steroid hormone synthesizing capacity

[137,140]. In addition, enzymatic and kinetic experiments

have demonstrated that some microbiota can perform hydro-

lytic, reductive and oxidative reactions of androgens and

oestrogens as well as readily convert glucocorticoids to andro-

gens [141–144]. Importantly, the influence of microbial

communities on host hormones stretches far beyond oestro-

gens and androgens [145–147]. Gut microbiota also produce

and respond to neurotransmitters that are critical for normal

feedback between the gut and brain, including serotonin,

dopamine and norepinephrine [148,149]. For instance, under

both normal and germ-free conditions, gut microbiota have

been shown to modulate serotonin output, impacting sero-

tonin-related signalling both locally, as evidenced by activity

of myenteric neurons and gut motility, as well as peripheral

serotonin-related signalling [150]. Reports in germ-free mice

demonstrate sex-specific effects of microbiota on serotonin pro-

duction, whereby the attenuated sex differences in serotonin

concentration in germ-free mice were reversed following

microbial colonization and resulted in re-establishment of sex

differences in hippocampal serotonergic neurocircuitry [23].

Findings such as these are important in expanding our

understanding of what makes puberty a time of increased

sex-specific risk for stress to precipitate later life affective dis-

turbance, with females particularly vulnerable to disruptions

during this period [138]. In parallel to the gut microbiome,

the brain is becoming more sex-specific throughout pubertal

development. The gut may be linked to brain development

indirectly, as the gut provides critical metabolic information

that informs the onset of puberty, triggering a cascade of sexu-

ally dimorphic processes [51]. However, the gut may also be

linked more directly to brain development by changing the

gonadal hormone and neurotransmitter environment. Studies

have shown that alteration of gonadal hormones during the

pubertal window has long-term consequences on sexually

dimorphic brain development that cannot be recovered by hor-

mone treatment in adulthood [138]. Thus, any disruption to the

gut microbiota that alters hormone or neurotransmitter

environment may have significant consequences for brain

development, an exciting possibility that will require much

future study.
(d) Adulthood and aging
The transition from puberty to adulthood is marked by

increased stability and evenness of the gut microbiome that

appears better adapted to the continuous ebb and flow of

stress, infection, diet and antibiotics [151]. Environmental chal-

lenges, such as deprivation from food, water and bedding,

decrease the abundance of beneficial bacteria and increase

the susceptibility to opportunistic pathogens in mice [152].

Chronic social stressors disrupt intestinal barrier function,

alter bacterial composition, increase bacterial translocation

into lymphoid tissue and induce immune activation at the

intestinal epithelium that facilitates release of chemokines
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and cytokines into circulation [153–158]. Interestingly, these

physiological responses and the composition of microbial com-

munities return to baseline following cessation of stressors,

suggesting increased resilience to environmental challenges

during adulthood [159].

However, a more detailed examination of the adult micro-

biome highlights the importance of sex in determining risk

for negative symptoms associated with changes in the gut.

A recent cross-sectional study demonstrated sex differences

in microbial communities, where males exhibited increased

abundance of Bacteroides and Prevotella compared with females,

suggesting the potential contribution of gonadal hormones in

mediating these sex differences in microbial communities

[160]. Sex differences are actively maintained in adulthood

through differing regulation of the hormonal milieu, with

males reaching fairly steady-state testosterone expression and

females experiencing a regular cycling of hormone levels

[65,161]. In rodent models, microbial communities in females

exhibit high variability relative to males, suggesting a pos-

sible contribution of the pulsatile nature of oestrogens in the

maintenance of a variable female gut microbiome [59]. In par-

ticular, periods of declining ovarian hormones are associated

with the occurrence and exacerbation of gastrointestinal symp-

toms, increased risk for infection, hypersensitivity to visceral

pain and co-morbidity with affective disorders, including

anxiety and depression [56,162–164]. Conversely, these symp-

toms are frequently alleviated during periods of high ovarian

hormone levels, such as pregnancy [165]. The maternal gut

microbiome undergoes dynamic remodelling during the first

and third trimester of pregnancy, with vast expansion of bac-

terial diversity between mothers during the third trimester

when oestrogens are at maximal peak [77]. Similar to the

sex differences in the community structure of the gut micro-

biome, the sex differences in the adult brain are responsive to

fluctuating hormones [166]. Oestrogen and progesterone play

important roles in several facets of sex-specific morphology

and function of the brain, likely through interactions with

numerous neurotransmitter systems, including glutamate,

GABA, dopamine and serotonin [166–169]. Brain regions

such as the hippocampus, prefrontal cortex and amygdala

respond to the presence of oestrogen and progesterone with

changes in synaptic density and spine formation [170–172].

In relation to disease risk and resilience, adulthood rep-

resents an important period when many of the pathological

consequences of early life programming appear in a sex-

specific manner [74]. Although the adult gut microbiome

appears more resistant to environmental challenge, it is unclear

to what extent early life adversity can mediate the magnitude

of response to these challenges. For example, the male-specific

stress hyper-responsivity in our EPS mouse model emerges

only following exposure to an acute stressor, demonstrat-

ing that an environmental challenge during adulthood may

be required to unmask latent early life reprogramming

[117,119–121]. Thus, a critical challenge for early life studies

is the necessity to connect alterations in colonization patterns

of the neonate gut to long-term health outcomes. Indeed,

long-term programming of the offspring gut microbiome has

been recently demonstrated in a rat model of late gestation

maternal stress exposure [128]. As adults, male rats exposed

to prenatal stress showed lower abundance of Streptococcus
and Lactobacillus but increased abundance of taxa belonging

to the Clostridiales family [128]. Further, changes in the

microbial community composition were associated with
respiratory instability, hypertension, exaggerated stress

response to acute restraint, and a deficit in innervation intensity

of the distal colon of exposed adult male rats [128]. Although

animal model, type of stressor and window of exposure

differ, it is tempting to draw parallels between observed

differences in Lactobacillus and Clostridia during colonization

and the stable disruption of the same taxa that persist into

adulthood, although future series profiling studies are

needed to confirm these relationships. Further, as prenatal

stress phenotypes typically present with males exhibiting

greater vulnerability to disruption, this suggests the possibility

of female-biased resilience to prenatal stress [115,117,119,120,

124–126,173]. Inclusion of females may reveal a resilience

signature of the gut microbiome that, paired with adoptive

transfer techniques, could be used to mechanistically assess

whether male-biased prenatal stress phenotypes could be

rescued via the gut microbiome.

Similar to the dynamic changes that occur to the gut micro-

biome–brain axis during early life colonization and succession,

there are equally notable alterations in aging populations that

likely impact signalling between the gut microbiome and

brain [151,174]. Slower intestinal transit times that lead to

altered nutritional availability and absorption, reduced stability

and diversity of microbial communities, thinning of the muco-

sal lining and subsequent dysfunction of the intestinal barrier,

and increased inflammation are all common manifestations of

aging in the gastrointestinal tract [175]. Although the number

of metagenomic studies of the gut microbiome in aged subjects

is severely underrepresented, a hallmark study by the ELDER-

MET consortium reported age-related changes to microbial

communities in relation to a number of health parameters,

such as measures of frailty, nutritional status, metabolic profiles

and markers of inflammation [176–178]. Microbial community

composition and function between young and aged individ-

uals was strikingly distinct. Further, the gut microbiome

composition of the older subjects correlated with multiple

health measures, including mood, affect, cognition and

increased pro-inflammatory cytokine levels. As cytokines can

both regulate mood and affect and be affected by gut micro-

biome function, it is possible that age- and sex-related shifts

in microbial communities play a role in the senescent brain [68].

Aging is a particularly dramatic time of hormonal change

for women, as the transition into menopause is signalled by a

decline in ovarian function and associated hormone levels.

While a host of changes occur in behaviour during the peri-

menopausal transition, it is notable that women experience

a high rate of new-onset major depressive episodes during

this time [179]. Additionally, perimenopausal and meno-

pausal women are at an increased risk for deficits in several

domains of cognitive function, and this has been linked to

the change in hormone levels during this window [180,181].

The influence of hormone withdrawal on the gut microbiome

in aging population is currently unknown. Additional out-

standing questions include the impact of hormone-

replacement therapies on the gut microbiome and subsequent

sex-specific disease risk [180,181].
3. Conclusion and future directions
Research on the microbiome has certainly undergone its own

maturation over the past decade. Seminal reports now exist

demonstrating the contribution of microbial communities in
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various physiological processes in health and disease states. As

neuropsychiatric disorders exhibit sex differences in pres-

entation, age of onset, severity and outcome, a critical

involvement of a sexually dimorphic microbiome in neurologi-

cal function and dysfunction provides an exciting avenue for

discovery of biomarkers and novel intervention strategies. In

order to provide a conceptual framework from which to gener-

ate hypotheses and predictions regarding age- and sex-specific

periods of vulnerability or resilience, we parallel sex differences

in the microbiome across the lifespan to dynamic windows of

brain development and maturation. As sex differences in the

microbiome parallel immune, metabolic and neural changes,

the growing availability of bioinformatic approaches capable

of integrating highly dynamic and complex ‘omics datasets
will be instrumental in identifying programmatic signatures

underlying age- and sex-specific transitions, which, in turn,

will provide insight in how these signatures are altered in

dysfunctional or disease states.
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