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Physiological stress may result in short-term benefits to organismal per-

formance, but also long-term costs to health or longevity. Yet, we lack an

understanding of the variation in stress hormone levels (i.e. glucocorticoids)

that exist within and across species. Here, we present comparative analyses

that link the primary stress hormone in most mammals (i.e. cortisol) to meta-

bolic rate. We show that baseline concentrations of plasma cortisol vary with

mass-specific metabolic rate among cortisol-dominant mammals, and both

baseline and elevated concentrations scale predictably with body mass. The

results quantitatively link a classical measure of physiological stress to

whole-organism energetics, providing a point of departure for cross-species

comparisons of stress levels among mammals.
1. Background
Studies on physiological stress have provided insights into how animals cope

with environmental conditions and respond to disturbance. We have learned

how short-term stress may benefit organismal performance [1], and how chro-

nic or high-intensity stress may be detrimental to the behaviour, ecology and

physiology of species [2–4]. Over the longer term, factors that cause stress

(e.g. social structure, predation; [5,6]) may negatively impact species’ health,

reproduction and longevity [2,7].

Physiological stress is typically characterized in vertebrates by the concen-

tration of glucocorticoid (GC) hormones (cortisol and/or corticosterone), which

are produced by the adrenal cortex along the hypothalamic–pituitary–adrenal

axis [8,9]. These hormones serve an important role in the stress response in all

major classes of vertebrates [10,11] by signalling the upregulation or downregula-

tion of relevant physiological systems (e.g. immune, metabolic; [7–9,12]). Stress is

often assessed by comparing ‘baseline’ to ‘elevated’ concentrations of GC

hormones among individuals of a species. The difference in these levels may be

as much as an order of magnitude within species and two to three orders of

magnitude across species, for reasons that remain unclear [13,14].

Here, we examine the relationship between the dominant GC hormone in

mammals, cortisol, and a more general feature of their physiology, metabolic

rate. As with cortisol, we know mammals increase metabolic rates (i.e. energy

use) upon disturbance or exertion. But unlike cortisol, we have a better under-

standing of the factors that govern variation in metabolic rates within species at

different levels of activity (i.e. metabolic scope) and across species differing in

body size [15,16]. Establishing a general relationship between cortisol concen-

trations and metabolic rate in mammals could therefore serve as a point of

departure for understanding intra- and interspecific differences in stress levels.

We hypothesize that cortisol concentration varies proportionally (i.e. linear-

ly) with mass-specific metabolic rate across species, and thus exhibits the
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Table 1. Outputs from Bayesian generalized linear mixed-models relating plasma cortisol concentrations (ng ml21) to body mass (g) and resting mass-specific
metabolic rate (mW g21). DIC and conditional R2 are reported, as well as the slopes and intercepts of the relationships with 95% CI.

model DIC slope (95% CI) intercept (95% CI) R2

baseline cortisol versus resting metabolic rate

metabolic rate þ phylogeny 86.86 0.97 (0.36, 1.56) 3.30 (2.50, 4.18) 0.55

metabolic rate only 98.34 1.28 (0.75, 1.80) 3.07 (2.52, 3.62) 0.49

metabolic rate þ covariates 130.62 1.53 (0.63, 2.52) 5.25 (20.46,1.18) 0.49

baseline cortisol versus body mass

mass þ phylogeny 162.47 20.22 (20.40, 20.05) 6.12 (4.19, 7.98) 0.54

mass only 164.53 20.29 (20.41, 20.17) 6.77 (5.56, 8.04) 0.57

mass þ covariates 185.32 20.35 (20.53, 20.21) 8.16 (2.45, 10.35) 0.61

elevated cortisol versus body mass

mass þ phylogeny 204.74 20.22 (20.32, 20.12) 7.26 (6.02, 8.36) 0.63

mass þ covariates 219.70 20.25 (20.33, 20.18) 7.72 (5.57, 9.62) 0.64

mass only 223.90 20.24 (20.38, 20.15) 6.99 (4.42, 9.31) 0.63

elevated cortisol versus baseline cortisol

cortisol þ phylogeny 69.39 0.57 (0.37, 0.75) 3.01 (2.04, 3.95) 0.53

cortisol only 79.75 0.61 (0.53, 0.77) 2.53 (2.02, 3.02) 0.47
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same body mass-dependence. We hypothesize that corti-

sol concentration is related to mass-specific metabolic rate

(B/M, in mW g21) and body mass (M, in g) as:

½cortisol� ¼ a
B
M
¼ ab M�0:25, ð1:1Þ

where a is a constant that relates cortisol concentration to

the flux of metabolic energy per gram of tissue (ng cortisol

(ml plasma)21 mW21 (g tissue)21, and b is a metabolic normali-

zation constant that describes the mass-independent rate of

energy flux per gram of tissue (mW g0.25). The above equation

predicts cortisol concentrations will scale to the 20.25 power

of body mass (i.e. B/M 1 M20.25) across species, the same

way as mass-specific metabolic rate [17]. We evaluate this

model for plasma cortisol levels among mammal species that

inhabit different environments, vary by orders of magnitude

in mass and exhibit considerable taxonomic diversity (see the

electronic supplementary material). Note that to the extent

baseline cortisol levels correspond to resting metabolic rate,

and elevated levels correspond to active metabolic rate, we

expect the two levels to be linearly related to each other and

vary similarly with body mass. This is because active metabolic

rates are linearly related to resting rates, and both show similar

body mass-dependencies [17,18].
2. Methodology
We compiled published data on total plasma cortisol concentrations

for placental mammals considered ‘cortisol-dominant’ [13]. We

categorized data as representing ‘baseline’ or ‘elevated’ cortisol

concentrations based on the original author(s)’ classification or

descriptions. Cortisol measures from faecal or saliva samples

were not included as these may differ from plasma measures [19].

We evaluated possible relationships of baseline cortisol con-

centration with metabolic rate and both baseline and elevated

concentrations with body mass using Bayesian generalized

linear mixed-models (see the electronic supplementary material).

In performing these analyses, we explicitly considered the
possible effects of six additional factors on cortisol levels (i.e. cor-

tisol collection method, sex, anaesthesia, stressor type, captivity

and season) and any non-independence due to shared evolution-

ary history. The six factors were included as covariates in the

models, and a recent phylogeny of mammals was included as

a random effect [20]. We then used deviance information

criteria (DIC) to select the best models [21].
3. Results
Baseline cortisol concentration was linearly related to resting

mass-specific metabolic rate based on the 95% CI of the

slope (0.97 (0.36, 1.56); table 1 and figure 1a). Metabolic rate

explained 55% of the variation in baseline plasma cortisol

concentrations across species of mammals. Elevated cortisol

was highly correlated with baseline cortisol, though the

slope was significantly less than 1 (slope ¼ 0.57 (0.37, 0.75);

table 1 and figure 1b). The best models for these relationships

included phylogeny, but excluded covariates.

Baseline and elevated cortisol concentrations both

showed relationships with body mass that are similar to

those observed for mass-specific metabolic rate (table 1 and

figure 2), though elevated levels were approximately three-

fold higher than baseline levels on average. Consistent with

equation (1.1), these relationships were well described by

power laws, with scaling exponents that were not signifi-

cantly different from the 20.25 value (i.e. 20.25 fell within

CIs; table 1). Body mass explained 54% and 63% of the vari-

ation in baseline and elevated cortisol concentrations,

respectively. Here, too, the best models included phylogeny,

but excluded covariates (table 1).
4. Discussion
These results provide an a priori expectation for how plasma

cortisol concentration should vary across species of mammals
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Figure 1. Relationships in cortisol-dominant mammals (a) between baseline plasma cortisol concentrations (ng ml21) and resting mass-specific metabolic rate
(mW g21; N ¼ 49) and (b) between elevated plasma cortisol concentrations and baseline cortisol concentrations (N ¼ 43). Data are natural-log transformed.
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Figure 2. Relationships in cortisol-dominant mammals of (a) baseline (N ¼ 49) and (b) elevated plasma cortisol concentrations (ng ml21) (N ¼ 78) to body
mass (g). Data are natural-log transformed.
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based on the observed relationships between cortisol, mass-

specific metabolic rate and body mass (equation (1.1)). While

it has long been understood that GCs play a role in metabolic

function by helping to maintain blood glucose concentrations

[22], it is still perhaps surprising to observe that the concen-

tration of cortisol is proportional to mass-specific metabolic

rate as opposed to production rates of this hormone. This

could be achieved if cortisol production showed similar

relationships with body mass and metabolic rate, but the turn-

over of individual molecules of cortisol was independent of

these factors.

Perhaps more surprising is our observation that the slopes

of the relationships with body mass are similar for both base-

line and elevated levels of cortisol, given potential differences

in GC-binding proteins and receptor density of stressed ani-

mals [22,23]. It is also noteworthy that elevated levels of

cortisol were on average threefold greater than baseline levels

for a given body mass (table 1), a difference that (perhaps coin-

cidentally) corresponds to the average difference in resting and

active metabolic rates reported for mammals [18]. If baseline

and elevated levels of cortisol correspond to resting and

active metabolic rates, respectively, it would suggest that
there exists an approximately constant relationship between

cortisol concentration and energy flux across activity levels. It

is unclear, however, how such a relationship would correspond

to the coordinated activities of GC and mineralocorticoid (MR)

receptors during stress. High-affinity MR receptors are thought

to play a primary role at low stress levels, or early in the stress

response, while low-affinity GC receptors become more impor-

tant at higher levels of stress, or later in the stress response, as

MR receptors become saturated [24].

Unexplained variation about the fitted lines shown in

figures 1 and 2 is perhaps explained by the following: first,

we did not attempt to account for all of the many factors that

may influence cortisol concentration (e.g. environment), includ-

ing intra-individual variation at baseline or elevated levels

[25,26]. Still, at the scale of our analyses, the six covariates we

did consider (i.e. cortisol collection method, sex, anaesthesia,

stressor type, captivity and season) were not statistically signifi-

cant. Second, criteria used to categorize cortisol concentrations

as ‘baseline’ or ‘elevated’ are more subjective than those used to

categorize metabolic rate because they were primarily designed

for intraspecific comparisons [27]. Finally, while cortisol was

the primary GC hormone considered here, corticosterone may
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still play a significant role. At present, we lack a clear under-

standing of how relative concentrations of cortisol and

corticosterone vary across species [13,14].

Considering stress in terms of individual energetics may

provide insights into the trade-off between its short-term

benefits and long-term costs [9]. Assuming that species possess

a finite lifetime energy budget, an observation that forms the

basis of the ‘rate of living’ hypothesis [28], increases in meta-

bolic rate as part of the acute stress response may result in

greater oxidative damage, which affects long-term health or

longevity [29,30]. The relationship between stress and individ-

ual energetics may also explain why many basic attributes of

organisms related to health and longevity have been shown

to be negatively correlated with both cortisol concentration

and mass-specific metabolic rate (e.g. lifespan; [31]). In this

context, chronically high stress hormone levels in smaller
mammals should perhaps not be viewed as negatively impact-

ing evolutionary fitness, but rather as reflecting a different rate

of living. Future work that relates measures of stress to meta-

bolic energy expenditure may provide further insights into

the relationship between the short- and long-term effects

of stress.
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