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Do the complex processes of angiogenesis during organism
development ultimately lead to a near optimal coronary
vasculature in the organs of adult mammals? We examine this
hypothesis using a powerful and universal method, built on
physical and physiological principles, for the determination
of globally energetically optimal arterial trees. The method
is based on simulated annealing, and can be used to
examine arteries in hollow organs with arbitrary tissue
geometries. We demonstrate that the approach can generate
in silico vasculatures which closely match porcine anatomical
data for the coronary arteries on all length scales, and
that the optimized arterial trees improve systematically as
computational time increases. The method presented here is
general, and could in principle be used to examine the arteries
of other organs. Potential applications include improvement of
medical imaging analysis and the design of vascular trees for
artificial organs.

1. Introduction
Arterial trees are vital for the efficient transport of oxygen
and nutrients to tissue. Their anatomy has been studied for
many centuries through the dissection of cadavers, inspection of
corrosion casts, medical imaging techniques and computational
models. It has been determined that individual arterial bifurcations
follow optimality principles that lower metabolic demand
locally [1–6], as demonstrated by the scaling laws followed by
arterial trees [7–11]. More recently, there has been a high level
of interest in models that mimic arterial growth (angiogenesis)
using physical and physiological principles to simulate vascular
anatomy. These models are created based on local optimization
principles, where the anatomy of each branch in the arterial
tree is governed by a compromise between maximizing fluid
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dynamical efficiency and minimizing the quantity of blood required. However, models of coronary
vasculature, based on local optimization are not able to explain if the organization of major arteries is
the result of fluid dynamical optimization across the ‘whole organ’ [12–16].

The relationship between the radii of vessels in individual bifurcations is well categorized by the
equation: rγ

p = rγ

d1
+ rγ

d2
, where rp is the radius of the parent artery, rd1,2 those of the daughter arteries and

γ is the bifurcation exponent [4,17,18], which has the value 3.0 in Murray’s formulation. This relation
arises from the combination of the continuity equation and the diameter–flow rate relation [9]. Several
current methods for in silico growth of vascular trees into a simulated tissue substrate aim to optimize
the local properties of individual bifurcations [15,19]. A procedure, known as constrained constructive
optimization (CCO), starts by inserting a single artery into the tissue. A new vessel with a position chosen
at random is then connected to the original artery and the link point is moved such that the energy of
the arteries is minimized. New arteries are then iteratively added and optimized until a predetermined
number of terminal sites have been added. The overall result is that CCO and similar methods create trees
whose structure is predetermined by the order in which new arteries are added: if the order is changed,
the final tree structure also changes. Morphologically, CCO reproduces a reasonable distribution of vessel
sizes due to the application of Murray’s law, but creates arterial branches that are more symmetric than
those found in nature (especially for the largest arteries) [20] and significant extensions are required to
generate vessels in hollow organs [21]. The variations in the structure and positions of larger arteries
in CCO generated trees are problematic, as organs such as the heart exhibit only small differences in
large artery structure over a population (aside from rare abnormalities). An alternative method known
as global constructive optimization (GCO) attempts to overcome the problems of CCO by including a
multiscale pruning update that is global in the sense that it acts simultaneously on a significant subset
of the tree, but otherwise only includes updates allowing local modifications to the topology of the tree.
As such, GCO is limited to sampling a subset of the allowed topologies of the arterial trees [22], so while
it is expected to offer improvements over CCO, it carries no guarantee of reaching the global minimum.
Due to the use of local downhill searches, GCO also has similar issues with hollow organs. To obtain
a universal optimization technique to compute in silico arterial trees for arbitrary tissue structures, a
different approach is needed.

Another method for the generation of large scale arterial trees uses extensive morphological
databases [14,23]. These trees contain far more vessels than is feasible to generate with techniques
such as CCO, as the topology of the tree is taken from experimental data. However, as detailed
morphological databases do not exist for the vast majority of organs, the use of these techniques is
impossible in the general case. Morphologically generated models provide trees suitable for large scale
fluid dynamical studies and organ phantoms [24]. They achieve this by reproducing experimental data
in a computationally accessible form. As such they have no predictive powers that can contribute to the
understanding of the origins of arterial tree structure.

A separate class of models exist for use in modelling the growth of tumourous vasculature and the
process of vascular remodelling, which involve the direct simulation of sprouting angiogenesis [25–28].
These models seek to reproduce the rapid and dynamic process of tumour vascularization, or the growth
of vasculature in normal tissue as it grows. Using in silico simulation of sprouting angiogenesis to
obtain the vascular structure in a fully grown organ would be extremely difficult, as full details of the
distribution of tissue and oxygen demands would be needed for all stages of embryonic and childhood
development. As organs such as the heart have very small levels of variation in vascular structure over
the population, the structure itself is likely to be caused by a process different from that of tumour
vascularization. We suggest that this process is an optimum seeking one, and that as such an optimization
procedure is required to accurately model it. We examine if, regardless of the complex processes that
guide angiogenesis during growth, the final structure of the coronary vasculature in adult mammals is
near optimal.

Development of a method which reaches a morphologically accurate solution based solely upon
optimization criteria would be useful in vascular research, allowing for the modelling of realistic vascular
trees in organs lacking extensive morphological databases. The inability of CCO and extensions to find
the global energy minimum, and the subsequent lack of consistent structure (particularly of the larger
arteries), is problematic if organ specific vasculature is required. An approach capable of producing
an arterial tree, which minimizes pumping power and blood volume, while providing adequate blood
flow to critical regions would be invaluable in this regard. This paper goes beyond previous work by
introducing a far more flexible and universal method for generation of ‘whole organ’ arterial trees, in
any arbitrarily shaped tissue substrate, that obeys both local and global optimization criteria. To identify
globally optimized arterial trees, we use a powerful computational technique known as simulated
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annealing (SA) [29]. Although SA is computationally expensive, correctly applied SA techniques have
a key advantage of being mathematically and computationally proved to converge to a global energy
minimum. To achieve this, our SA-based approach has the potential to sample all possible arterial tree
configurations, ranging from perfectly symmetric, intricately bifurcating structures, to asymmetric trees
characterized by a single trunk vessel. This is achieved by allowing: (i) repositioning of bifurcations and
(ii) swapping the parent vessels of bifurcations between different parts of the tree. By introducing these
forms of plasticity to our models, the entire parameter space of the tree can be explored, allowing the
method to identify the best possible arterial configuration for supplying a particular organ. Full details
of this novel method can be found at the end of the article. As an example application we determine
the near optimal configuration of arteries for supplying the heart and compare our computer generated
coronary vasculature with morphological data from real coronary arteries. Specifically, we determine that
the observed anatomy of the coronary arteries is similar to that expected from near global minimization
of total energy expenditure, and validate the approach against porcine data, finding a very high level of
agreement with morphological data.

2. Methods
The main purpose of any arterial tree is to maintain adequate blood perfusion with minimal total
metabolic expense. The suitability of an arterial tree for this purpose is governed by two considerations:
(i) as blood is viscous, the power required to pump blood through the vasculature should be minimized
and (ii) as energy is required to generate and maintain blood, the volume of blood required should be
minimized. Murray’s law achieves this for individual bifurcations, but the optimal organization of large
numbers of connected bifurcations is far from obvious. The interplay between these competing concerns
for thousands of arterial segments leads to a complex optimization problem. Note that in the following,
bifurcations will be referred to as nodes, arteries will be referred to as ‘segments between nodes’, and
terminal arterioles are referred to as ‘end nodes’.

2.1. Metabolic cost to maintain blood volume
The first component of the approach involves calculating the power needed to maintain the entire tree,
which will be used as a value in the cost function. The power consumption of the tree can be split into two
separate parts: the first is the metabolic cost of maintaining the blood volume and tissue associated with
the tree, and the second is the power required to pump blood through the tree. The length and radius of
each segment (vessel) i of the tree must be known to calculate the volume. By assuming a fixed bifurcation
exponent, the radii are determined by the topology and only vessel lengths rely on the geometrical
arrangement. To calculate the cost, volume must be multiplied by a constant, mb, corresponding to a
physiologically reasonable metabolic demand of the same quantity of blood and vascular tissue [30].
Thus, the metabolic cost due to the volume of the tree will be given by

Cv = mbVtree, (2.1)

where mb is taken to be 641.3 J s−1 m−3 and Vtree is the volume of the entire tree.

2.2. Power cost to pump blood through vessels
To calculate the power needed to pump blood through the entire tree, we must know the pressure and
volumetric flows inside each segment (vessel) of the tree, which can be found by first assuming that
Poiseuille’s law, �p = QR, is followed inside the segments, where �p is the pressure drop over the vessel,
and Q is the flow. The assumption that flow is laminar inside the vessels is justified provided that the
typical length of a vessel is much larger than the radius, and that pulsatile flow effects are negligible.
Vessels within the simulated trees have a typical length radius ratio of 10, and while in the largest arteries
of the tree pulsatile effects may still be present, these rapidly decay so that the vast majority lie within
a non-pulsatile regime. We assume both Murray’s law and that terminal node flows are constant to
simplify calculation of the relevant fluid dynamical quantities: the only quantity which relies on the
structure of the tree is the pressure. In a sense, the segments can be considered as connected set of
resistors, with the resistance given by

R = 8μL
πr4 , (2.2)
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where r is the radius of the vessel, L its length and μ = 3.6 × 10−3 Pa s the viscosity of blood. The pressures
(and hence flows) for every node in the tree can then be found recursively. Wi, the power consumed by
each segment i, is then calculated using

Wi = Q2
i Ri. (2.3)

Summing over all segments in the tree, the total power required to maintain the proper flow through the
tree is

Cw =
Ntot∑

i

Wi. (2.4)

2.3. Ensuring tissue supply
The primary purpose of the vascular tree is to supply blood; thus it is important that terminal nodes
are correctly dispersed inside the tissue. Initially, terminal nodes are randomly distributed inside the
tissue, with each node having associated with it a sphere of influence for blood supply. The radius of
this sphere is calculated using physiological values for the blood demand of the tissue. The density of
myocardium is ρ = 1.06 × 103 kg m−3 [31], and the flow demand is 1.13 ml min−1 g−1 [32] leading to
a flow demand per cubic metre of heart tissue of qrequired = 2 × 10−2 s−1. The total flow into the heart
is Q0 = 4.16 × 10−6 m3 s−1 [33], which can be converted to total flow per node as QN = Q0/N, where
N is the total number of arterioles (end nodes). The radius of the supply sphere is then calculated via
4πR3

supply/3 = QN/qrequired. The sphere can be thought of as a microcirculatory ‘black box’ [15], where the
exact fluid dynamical details of the blood flow have been ignored. Spheres of blood supply associated
with end nodes are stored in a voxel map (a voxel is a three-dimensional generalization of a pixel) of the
tissue, where each terminal node adds exactly one to each voxel inside its sphere of supply (figure 1b).
While blood demand is not constant within the myocardium at any single instance of time, the majority
of fluctuations are high frequency oscillations which are assumed to be averaged out in the present
model [34]. The terminal nodes are then allowed to move inside the tissue, where after each move a new
voxel supply map is calculated, and the overlap (each voxel supplied by more than one sphere, or the
dark red voxels in figure 1b) is used as a value in the cost function of the SA algorithm. In addition,
all voxels not being supplied are given a cost, so that the overall penalty associated with having both
unsupplied and oversupplied voxels is chosen to be

Cs =
∑

voxels

s; s =
{

10 if b = 0

(b − 1)2 otherwise,
(2.5)

where b is the value of the supply at the voxel and the sum is performed over all the voxels comprising
the tissue. In practice, this cost is set to be much larger than all other costs, as any unsupplied tissue
would die. Therefore, the terminal nodes spread evenly through the tissue early in the optimization.
Other functions may be used, provided that the minimum in the function for each voxel occurs at b = 1.
The value Cs then defines the fitness of the tree to supply blood, and the penalty for over supplying
voxels forms a sort of self-avoidance algorithm, where terminal nodes are encouraged to pack the tissue
as densely as possible without overlapping. A benefit of this method is that it allows easy integration
of medical imaging into the model, as well as providing an easy method for differentiating tissue with
different blood supply demands.

2.4. Exclusion of large vessels from tissue
In order to create a realistic vascular tree, it must be possible to exclude some segments from penetrating
the tissue. For instance, in the case of the heart, it would be unlikely to find a very large artery within the
myocardium, and vessels may not penetrate the ventricles; rather, the larger arteries and arterioles lie on
the surface of the heart, with only the smaller arterioles and capillaries being found inside the tissue. To
mimic this structure, the approach makes use of a cut-off radius Rcutoff, whereby segments with radius
larger than Rcutoff may not penetrate the tissue. In the calculations performed in this article, Rcutoff =
0.01 mm. To determine which segments with radius greater than Rcutoff have penetrated the tissue we
first take a distance transform of the tissue surface for each tissue voxel (figure 1a). This provides a second
voxel map of the tissue, distinct from the blood supply map, giving a measure of the distance of a point
from the surface when it is inside the tissue (outside of the surface, the value is zero). For each segment
satisfying the radius criteria, a list of voxels that its centre-line penetrates is generated [35], along with
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Figure 1. (a) The distancemap for a spherical surface. Voxels outside the surface have value 0, with those inside the surface contributing
a value relating to their distance from the surface. (b) Each arteriole supplies a spherical region shown by the lightly shaded squares.
Where there is significant overlap between two spheres, there is a penalty. Unsupplied voxels also incur a penalty in the cost function.

a value for the length element of the segment present inside that voxel. A cost is then calculated based
upon the value of the distance transform at each of the voxels according to

Co = πr2(DijkL̃ijk)6, (2.6)

where i, j and k are the Cartesian voxel coordinates taken from the centre-line of the segment. Dijk is the
value of the distance transform at that voxel coordinate. L̃ijk is the length of the segment spent inside
the voxel. The sum is performed over all the voxels contained in the list calculated from the centre-line.
This cost can then be used in the SA algorithm as a penalty that favours moving large segments out of
the tissue.

2.5. Pressure constraints
In physiologically realistic trees, capillary networks should receive a constant pressure Pterm to function
correctly. A new cost can be devised to ensure this. A suitable candidate is

Cp =
Nterm∑

i

(Pi − Pterm)2, (2.7)

where the sum is performed over all terminal nodes, and Pi is the actual terminal node pressure. In
practice, for trees which can be optimized on feasible time scales (i.e. of a few thousand nodes), the
pressure drop from root to end node is less than 1% of the total pressure drop of a real arterial tree,
with most of the pressure drop occurring over smaller arterioles than those considered here, so it is
unnecessary to perform this calculation. When it becomes possible to grow larger trees, the pressure at
the capillaries will need to be taken into consideration. This will add a significant computational cost.

2.6. Total cost function
We have now determined a form for all the relevant costs associated with an arbitrary tree configuration
supplying arbitrary tissue shapes. We can therefore define a total cost which gives a numeric measure of
the fitness of a given tree,

CT = Aw,v(Cw + Cv) + AoCo + ApCp + AsCs, (2.8)

where Ai indicates a weighting value which scales each relevant cost. There is no way to analytically
determine what weights to use, and the selection of appropriate weights must be found experimentally;
however, a few basic principles such as having a very high weight for the blood supply cost and a low
weight for the end node pressure cost can guide the process. In principle, As should be infinite, as tissue
without supply dies. In this work, we use Aw,v = 1 × 104, Ap = 0, As = 1 × 1030 and Ao = 100. In this way,
As and Ao force the exclusion of vessels and uniform supply of tissue to act like constraints. While the



6

rsos.royalsocietypublishing.org
R.Soc.opensci.3:150431

................................................
exclusion cost should technically be infinite, as no arteries are found in the ventricles of living humans,
it is advantageous to give it a large but finite value. This allows the optimization procedure to identify
gradients, giving it extra information and speeding up convergence. This size of the constant for Ao may
seem small in this regard; however, its value Co is already raised to the power 6 in equation (2.6). As any
scaling of the cost function does not effect the location of minima, we can absorb one of the weightings
by scaling everything else. This allows a new cost function C̃T = CT/Aw,v to be defined.

2.7. Simulated annealing
To select the fittest, most optimized trees, we use a powerful technique for optimization problems known
as SA [36,37]. The primary difference between SA and a conventional downhill search is that SA also
spends some time exploring solutions with higher cost function, and in this way can climb out of shallow
valleys in the fitness function to explore other deeper regions.

The total cost CT will play the role of energy in the SA algorithm, so that the probability of accepting

a change to a tree of cost Ci
T, resulting in a tree of cost Cf

T is given as

Pf
i =

⎧⎪⎨
⎪⎩

exp
(

−�CT

T

)
if �CT > 0

1 otherwise,
(2.9)

where Pf
i is the probability of going from state i to state f , �CT = Cf

T − Ci
T is the change in the cost function

associated with going from state i to f , and T is the SA temperature parameter (not be confused with
ambient temperature). The small probability to accept a higher cost tree during update allows the tree
to climb out of local valleys in the cost function. The algorithm proceeds by making changes to the
tree structure, calculating the change in cost function, and then either accepting or rejecting the change

by comparing Pf
i with a random number between 0 and 1. T starts large and is reduced slowly. If T

has been reduced sufficiently slowly, then the global minimum of the cost function is guaranteed to
be reached. In practice, the problem space is too large to achieve this in reasonable time, and slightly
different trees with very similar cost are found if the algorithm is run with several random number
seeds. The most important consideration is the lowest achieved cost. As such, if the structure of trees
generated varies between different runs, we always display data from the run with the lowest cost
function. As computational power increases, longer runs will be achievable leading to progressively
better optimizations. The highest T used here is 1 × 1010, dropping during the algorithm to 10−5.
Typically, a tree containing 1000 nodes will need 109 updates, with a doubling of nodes taking roughly
quadruple the number of updates (up to approx. 6000 nodes with one month of CPU time). The large
value of As means that the supply of tissue is determined by downhill search, while all other costs are
minimized by SA.

2.8. Exploring the tree structure: translations and node swaps
The SA algorithm must have access to set of updates which allow it to alter the configuration of the tree.
It is necessary to find changes that can be made to the topological and geometrical structure of the tree
such that all possible solutions between perfectly symmetric structures and a single trunk vessel can be
explored (i.e. the algorithm is ergodic). This is achieved by allowing: (i) repositioning of bifurcations,
which is achieved by translating a node in space (figure 2a) and (ii) swapping the parent vessels of
bifurcations between different parts of the tree (figure 2b). For all nodes but the root node, this move is
valid, and performed consecutively it allows all possible tree topologies to be explored. If one of the two
nodes is a direct parent of the other (i.e. while traversing up the tree from one of the chosen nodes, the
other node is encountered) the move is rejected to avoid forming a closed loop. With these two updates,
the entire parameter space of the tree can be explored, allowing the algorithm the opportunity to reach a
globally optimal solution.

2.9. Strahler order
The Strahler (or stream) ordering method was first introduced to classify river systems, but can be
applied to any bifurcating system. In standard Strahler ordering, nodes at the end of a tree (in this case
the arterioles) are assigned a number 1. At a bifurcation, if two vessels (segments) of the same order
meet, then the order of the parent vessel is 1 higher. However, if two vessels of different orders meet,
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Figure 2. Tree modification updates.
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Figure 3. Schematic of the Strahler ordering process.

the artery supplying these vessels has the largest order of the two. For example, if two arteries of order
1 meet, then the vessel supplying these arteries has order 2. If an artery of order 3 meets an artery of
order 2, then the vessel supplying these arteries has order 3 (an example is shown in figure 3). Therefore,
within this scheme, vessels with the lowest order are arterioles. The major vessels have the largest order.
The Strahler order used here is then diameter adjusted following the approach in [38].

Within the Strahler ordering scheme it is possible to identify continuous sections of vessels with the
same order number. These are referred to as elements, so a single arterial element may pass through
multiple bifurcations. Throughout this article, it is the properties of elements which will be calculated for
direct comparison with [9]. We note that due to the early termination of the simulated trees, calculated
order numbers are modified so that the root nodes have an order number equivalent to that of the largest
arteries of real coronary arterial trees. For example, in the work of Kassab, the largest diameter defined
Strahler order number is 11, corresponding to the input artery. For a computer generated tree of only
6000 nodes spanning order numbers 1–6, 5 must be added to each order number so that the orders of the
root nodes (largest vessels) match and a direct comparison can be made. This is consistent with assuming
that the smallest vessels in the computer generated tree correspond to vessels of order 6. Which is due to
the absence of smaller vessels downstream of the smallest arteries in the in silico model.

3. Results
In this paper, globally optimized vessels are grown using an SA-based approach to supply a myocardial
substrate, and validated through comparison with morphological data from the porcine arterial tree. We
choose to examine the heart vasculature, as the structure of the large coronary arteries has been found
to be similar between individuals [39] and the full arterial tree has been well characterized in porcine
models [9]. For modelling the coronary arteries, we used the following parameters. (i) A tissue substrate
representing an ellipsoidal human heart muscle of mass 218 g, constructed based on physiological
parameters [40]. The right ventricle was assumed to take the form of a super ellipsoid of exponent 2.5 and
the left ventricle was represented by a simple ellipsoid. Truncation of the ellipsoidal substrate was chosen
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Figure 4. Images showing arterial trees grownwith the approach detailed here. The number of terminal arterioles is increased from 500
to 6000 (the total number of arterial segments is roughly twice this). There is consistency in the positioning of the larger arteries between
the numerical method and the typical arrangement of the major arteries, suggesting that the coronary arteries may be the result of a
biological process seeking the global minimum in metabolic demand.

so that the mass of the tissue corresponded to a reasonable physiological value given morphological
data for ventricle thickness. (ii) Blood flow through each of the terminal segments of the tree was
assumed to be constant, with each arteriole supplying an equal volume of tissue and homogeneous
perfusion throughout the tissue parenchyma [41]. These assumptions greatly simplify fluid dynamical
calculations for estimating the total power needed to pump blood through the tree. (iii) The metabolic
cost of maintaining a given volume of blood was assumed to be 641.3 J s−1 per metre cubed of blood [30].
For convenience, each arteriole supplies a sphere of tissue with a size calculated by assuming a mean
blood flow per unit mass for cardiac muscle of 0.8 ml min−1 g−1 [42]. The value taken from the literature
was chosen such that it not only lay within the given error, but also conformed reasonably with both the
ellipsoidal heart model, input flow and radii. (iv) The larger arteries with diameters greater than 0.01 mm
were constrained to avoid penetration of the outer layer of heart tissue. This simplification differs slightly
from real coronary vasculature, where progressive intrusion of arteries into the myocardium can be
observed [43]. However, as the major arteries modelled by our method are far larger than the intra-
myocardial vessels, a sharp cut-off is thought to provide a reasonable approximation. (v) The starting
positions of the two root arteries were fixed with a total input flow of 4.16−6 m3 s−1 [44]. Relative radii of
the two inputs to the tree were constrained via r2.1

1 + r2.1
2 = [2.1 mm]2.1; however, the relative sizes of root

arteries and division of perfusion territories are determined by the method alone. (vi) The branching
exponent varies throughout the coronary arterial tree, but for the larger arteries its value remains in
the range 1.8–2.3. A variable branching exponent would greatly increase the computational cost of the
approach, so a compromise value of 2.1 was chosen for the entire tree [45].

Coronary arterial trees containing increasing total numbers of vessels grown using the SA-based
method are presented in figure 4. In real human coronary trees, there are three identifiable main coronary
arteries (e.g. the schematic from [46]): left anterior descending, right cardiac artery (RCA) and left
circumflex artery. The positions and relative dimensions of these are similar in most humans, with major
variations observed in less than 1% of healthy individuals [47]. Trees grown using SA (figure 4) adhere
well to this structure. There is a consistency in the placement of the larger arteries, although the RCA
appears slightly lower, and the right marginal artery appears slightly shorter, in our models. Overall,
visual inspection of the arterial structure appears extremely promising.

To provide a quantitative comparison of our trees with anatomical data, the topological characteristics
of the computer generated coronary artery trees were extracted and compared with morphological
data characterizing the pig coronary arteries published by Kassab et al. [9]. They used a combination
of corrosion casting and optical sectioning to obtain detailed morphometric data, tabulated using the
Strahler (or stream) ordering scheme to denote elements of the tree of varying scale. Within this scheme,
the lowest Strahler order numbers correspond to the smallest arterioles and the largest numbers refer
to major vessels (for details on Strahler ordering see Methods). To directly compare arterial diameters,
lengths, and branching properties of our computer-generated arterial tree with real data from pig
coronary arteries, averages were obtained over all elements of the same diameter defined Strahler order.

The mean vessel diameters are shown as a function of order number for a tree comprising 6000
arterioles (12000 vessel segments) in figure 5a. Excellent agreement is found between the trees generated
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Figure 5. (a) Vessel diameter as a function of order in a tree with 6000 arterioles. Excellent agreement is found for vessels on all length
scales. (b) Vessel length as a function of order number. Agreement is excellent for themajor vessels (large order). The large variation seen
for arterioles (lower order) is a result of early termination. Also shown are themorphological data reproduced from table 2 of [5] for easy
comparison. (c,d) Similar to (a,b), but for smaller trees to highlight the trend towards themorphological data as tree size increases. (Error
bars show standard errors, both axes are logarithmic.)

in silico and the morphological data. Only slight deviations from the morphological data can be seen
for the smallest vessels (lowest order arteries) in the generated tree. This is likely to be due to the
combination of integer order numbers and the condition that terminal sites are of constant radius. The
result of this constraint is that the terminal radii will only match the anatomical data for a correct choice
of the number of arterioles. Figure 5c shows the effects on diameter of increasing the number of arterioles
from 500 to 2000. Agreement is generally good, regardless of the number of terminal arteries, and there is
a clear trend towards matching the experimental data as simulated tree size increases. Figure 5b compares
average vessel length in the model and porcine morphological data as a function of order number. For
the largest arteries (high order numbers), the agreement is excellent. Although the lengths of the smaller
arteries (Strahler orders < 7) in the computer-generated tree tended to be overestimated, this can be
easily explained by the fact that the smallest vessels are required to bridge a gap that would normally
be filled by inclusion of lower order vessels in a larger simulation. As the number of generated vessels is
increased, the agreement with morphological data improves (figure 5d).

Previously, the best methods available for the computer generation of arterial trees struggled to
recreate realistic branching asymmetry. Figure 6 shows the ratio of daughter to mother vessel radii for
the largest and smallest daughter vessels as a function of order number. This provides a measure of
the branching asymmetry of the tree, where small ratios indicate that branching is symmetric, while
ratios approaching 1 suggest a large trunk vessel with small branches. For Strahler orders corresponding
to microvascular arterioles, both the computer generated and true morphology approach 0.7, which
is consistent with perfectly symmetric branching where both daughter vessels are of similar size.
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Figure6. The ratio of daughter vessel diameters (Ds andDl are the diameters of the smallest and largest daughter vessels, respectively) to
diameters of parent segments Dp as a function of order number, showing how the tree tends towardsmore symmetric branching at lower
orders. Agreement with morphological data reproduced from tables in the online supplement of [45] is good, if the early termination
of the generated trees is taken into account, with the trend towards the morphological data as the tree size increases. Both graphs
demonstrate that there are large trunks at high orders with the largest daughter vessel (b) of similar size to the parent vessel and another
side artery which is much smaller (a). At smaller orders, the ratio becomes similar showing that the branchings of the smaller arteries
are near symmetric. Realistic branching asymmetries are a clear advantage over other methods of generating arterial trees in silico.

Agreement with the morphological data from [45] improves as the size of the computer-generated
tree increases. This is not the result of any special input parameters or initial conditions. The trees are
topologically and spatially randomized before SA optimization begins, and are allowed to explore the
entire parameter space during optimization. The observed asymmetry is purely the result of a balance
between pumping power and metabolic maintenance cost, and is a major improvement in predicting the
trunk-like structure of major vessels.

Our final figures show the effect of altering the metabolic energy cost of blood per unit volume mb.
The largest morphological change is found in the lengths of the larger arteries (figure 7). As mb increases,
bifurcation symmetry is also increased in the larger arteries and as a result there is an increase in the
number of Strahler orders present in the tree (figure 7). The explanation for these scaling behaviours
is evident when considering the limiting cases. For mb = 0 the power involved in pumping the blood
dominates the optimization, which leads to a large, ‘snaking’ artery with small side branches that supply
the tissue. This large artery would cover the entire surface of the heart, and the configuration is equivalent
to a completely asymmetric binary tree. For a large mb value (or small power cost) there is a huge penalty
associated with larger arteries, and so their lengths are contracted. In order to accommodate the reduction
in length, the larger arteries must bifurcate more frequently and symmetrically. Additionally, the high
volume cost causes the trunk artery to minimize its total length, resulting in a much straighter path
across the tissue. Less extreme examples of this behaviour can been seen in figure 8, with meandering
arteries for small mb and straight arteries for large mb.

The change in mb can also be interpreted as a change in length scale as follows: once the large
vessels have been excluded from the tissue and all tissue is supplied, the remaining cost function that is
optimized has the form

C = mbπr2l + 8μlQ2

πr4 .

Now, make the transformations r → r′ = Ar, l → l′ = Al. Then the cost function becomes

C = A3mbπr2l + 8μAlQ2

A4πr4 .

As the optimum in the cost function is the same independent of a multiplicative factor that acts on all
terms, then we can absorb a factor of 1/A3 into the cost function to obtain

C′ = A6mbπr2l + 8μlQ2

πr4 .

Identifying a new m′
b = A6mb the cost function now has the same form. As changing mb is equivalent to

changing the length scale, these results suggest that there are likely to be structural differences between
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Figure 7. (a) Diameter as a function of order number for trees with 1000 vessels. Decreasingmb, which describes the relative energy cost
of an amount of blood and the power required to pump it, has little effect on the agreement of the diameters with morphological data.
(b) For lengths however there is an obvious effect in the larger arteries, with regimes of high pumping cost being more accurate. The
primary optimization for high pumping cost then is to increase the length of the largest arteries. (c,d) The main effect is a change in the
asymmetry of the branching of the largest arteries—for largemb, the branches are more symmetric than for smallmb. Asmb becomes
very small, the limiting behaviour is broad trunks that wind around all the tissue, with a large number of very small offshoots that supply
blood in the direct vicinity of the large vessel.

0.1 mb 10 mbmb

Figure 8. Example trees generated with different values of mb, which changes the relative weight of the pumping power to cost of
maintaining blood in the optimization. For smallmb (corresponding to small hearts), vessels in the trees wind around—this is because
there is little penalty to make a single wide vessel that curves to supply blood, rather than bifurcating. For large mb (corresponding to
large hearts) the vessels travel as straight as possible.

species of different sizes, as the power required to pump blood becomes relatively more important than
the metabolic demand to maintain blood volume in small vessels. In the absence of morphological data,
visual comparison of the coronary arteries tentatively indicates that vessels meander around in smaller
species [48] and that vessels are straighter in larger species [49].
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4. Discussion
We have developed a powerful and universal method for growing arterial trees in silico, which is
capable of identifying the near globally optimal configuration of arteries for arbitrarily shaped tissues
with heterogeneous blood supply demands. As input, the method only needs information about the
tissue structure and the entry point positions of the largest arteries. From this information, the approach
generates morphologically and structurally accurate coronary arterial trees at almost every length scale.
This is a significant improvement on previous optimization methods, which failed to reproduce the
consistent structure found in the coronary arteries. We have shown that the method improves with the
number of vessels modelled, so that, as computing power increases, there is a systematic improvement
in the accuracy of the generated trees. To our knowledge, no other method can generate realistic arterial
trees that closely match morphological data by taking only the shape of the tissue as input, and claim
systematic improvement in the generated trees with increased computational power.

We expect that our method could have several useful applications. Our first application is to use
cardiac and partial cerebral vasculature structures (e.g. MCA territory) computed using this method as
input to models of embolic stroke and other infarctions, as these models require detailed vasculature
structure over a range of length scales which are not available to imaging techniques [50–52]. This
will require further validation of the algorithm against cerebral arterial data. Such vasculature would
be downstream of the Circle of Willis, a source of major anatomical variation and probably not
a structure reproducible by the current algorithm. Computational models of stroke combined with
Doppler ultrasound have potential to provide further information regarding embolic burden during
major operations [53].

There are several other potential applications. Models of arterial trees generated by our method may
help to improve the interpretation of medical images though advanced image segmentation techniques.
Vessels identified through automatic segmentation techniques can be connected via algorithms such
as the one presented [54]. In addition, segmentation can be limited to the location of a reduced set of
bifurcation points, and the algorithm used to fill in any missing vessels which connected them [55].

We also speculate that the algorithm could be of use in designing the structures of vasculature for
artificial tissues. Once the very difficult and intricate process of making networks of vessels in artificial
tissue has been achieved [56–58], the opportunity to optimize or inform their design will be available.
A common problem during the growth of artificial tissue is that regions of cells can die due to lack of
nutrients and oxygen. For instance, an artificial skin graft may be optimized for increased healing, by
having its vasculature designed such that there is higher overall perfusion with minimal loss of useful
tissue. Even more speculatively, artificially grown organs may have a vasculature designed to minimize
their impact on the cardiovascular system.
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Appendix A. Convergence and consistency
The primary purpose of the algorithm is to produce arterial tree configurations which conform to those
found in living organisms. As the algorithm itself relies only upon optimization principles, the close
agreement with experimental results implies an evolutionary pressure towards a structure with minimal
power consumption. This is itself a far from new concept; however in this paper we have shown that
energetic constraints lead not only to a morphometrically realistic tree, but also to the production of
major arteries which closely follow the paths of major arteries in living systems.

Whilst it is clear that the algorithm produces both morphometrically and geometrically realistic
structures, what is not clear is how close the optimization procedure gets to the global energy minimum,
or indeed whether there is a non-degenerate energy minimum at all. For any given topological
configuration there is a single, non-degenerate energy minimum which it is possible to approach using
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Figure 10. Example of trees grown for various different numbers of SA step numbers.

Newton–Raphson (provided the solution space is convex, which would not be true for more complex
structures). By contrast, the topological space for any even modestly sized tree is huge, highly degenerate
and not easily searchable. Even if one excludes degenerate topological structures, which in the case of the
swap node procedure outlined earlier would imply never swapping two nodes with the same number
of distal terminal sites, the number of possible configurations is still massive. It is entirely possible that
two distinct topological configurations share a degenerate energy level, and proving that this is not the
case appears difficult.
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While it may be that the global energy minimum is highly degenerate, the algorithm itself can still be

characterized in terms of reliability and convergence. For reliability, we can perform visual inspections
on trees and assess their similarity. It must be noted here that the geometry in which the tree is grown will
have a large effect on the consistency of the results. For instance, in the case of a circular section of tissue
with an input in the centre, there is a high degree of rotational symmetry. In the case of convergence, we
can produce many trees and plot the frequency distribution of their resultant energies, or as in this case
the average and variance of the cost as a function of SA steps.

The convergence and consistency test trees were generated on a two-dimensional plane with the input
placed in one corner. The trees consisted of 127 nodes total (64 end nodes) and had a bifurcation exponent
of 3.0. The two-dimensional tissue plane was sized at 10 cm by 10 cm and the root radius at 2.4 mm. Each
tree was optimized for a given number of SA steps, with the minimum energy of the SA run being
recorded. The average energy reached for a given number of SA steps was then calculated (figure 9). The
results show a clear trend towards lower average energy and standard deviation as the number of SA
steps increases. The high variance at the lower numbers of SA steps is typical of a system which has been
quenched, i.e. high temperature disorder has been locked into the system, which had not had sufficient
time to reach equilibrium.

For the consistency test we have produced figure 10, which shows trees generated for three different
numbers of steps. As would be expected, at low numbers of SA steps the trees are very dissimilar;
however as the number of steps increases the similarity between the overall trees increases dramatically,
with a main diagonal artery dominating the structure.
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