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Abstract

Introduction—Surveillance endoscopy detects dysplasia within Barrett's esophagus (BE) and 

dictates treatment. Current biopsy regimens recommend uniformly-spaced random biopsies. We 

assessed the distribution of dysplasia in BE to develop evidence-based biopsy regimens.

Methods—We performed analysis of the distribution of dysplasia within BE, using pre-treatment 

biopsy data from two randomized controlled trials (RCT) of radiofrequency ablation (RFA) for 

dysplastic BE: the SURF Trial and the AIM Dysplasia Trial. We used generalized linear models 

with generalized estimating equations to estimate prevalence differences for dysplasia depending 

on the standardized location of biopsies. We performed Monte Carlo simulation of biopsy 

regimens to estimate their yield for any dysplasia within segments.

Results—Dysplasia preferentially resides in the proximal-most half of the BE segment, which is 

almost twice as likely to demonstrate dysplasia as the distal-most quartile. In pooled analysis, 

compared to the distal-most quarter, the prevalence difference in the proximal-most quarter was 

22.6%, in the second proximal-most quarter 23.1%, and in the second distal-most quarter 15.3%. 
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The best performing biopsy regimen in simulation studies acquired 8 biopsies in the most 

proximal centimeter of BE, 8 biopsies in the second cm, and 2 biopsies in each cm thereafter q1cm 

- (8, 8, 2, 2…). A slightly simpler q2cm regimen q2cm - (12, 12, 4…) was nearly as effective.

Conclusion—Post-hoc analysis of two RCTs reveals a substantially increased prevalence of 

dysplasia proximally in BE segments. Our simulations suggest an altered biopsy regimen could 

increase sensitivity of biopsies in short-segment BE by >30%.

Introduction

Barrett's esophagus (BE) is a common, premalignant change of the normal squamous 

epithelium of the esophagus to a salmon-colored columnar mucosa with goblet cells.1-3 The 

risk of malignant transformation to esophageal adenocarcinoma varies greatly, with the most 

important determinant being histologic grade.4, 5 The diagnosis of dysplasia within a 

Barrett's segment greatly increases the rate of progression to cancer.6, 7 Because severity of 

dysplasia decides subsequent treatment, detection of dysplasia within a BE segment is the 

most important aspect of chronic care in BE, and is the purpose of surveillance endoscopy 

programs.8

While currently recommended biopsy regimens, such as the Seattle protocol of four 

quadrant biopsies every 1-2 cm,1 have the virtue of simplicity, no data regarding the 

distribution of dysplasia drive these recommendations. Instead, this protocol is designed to 

get a representative random sample of mucosa. Better characterization of the spatial 

distribution of dysplasia might produce biopsy regimens with decreased total numbers of 

biopsies and increased yield of dysplasia per biopsy. Such regimens might also decrease 

false negative results and, if they imply fewer overall biopsies, also decrease costs 

associated with histology, post-procedure pain, and any biopsy complications. The 

development of a regimen the sampling density of which approximates the observed 

distribution of dysplasia across a wide range of segment lengths would improve current 

practices.by drawing biopsies from the areas most likely to yield dysplasia.

Using biopsy data from two recent, methodologically rigorous randomized controlled 

treatment trials of BE, we sought to describe the proximal to distal distribution of dysplasia 

in treatment-naïve BE, and to simulate the yield of dysplasia of various hypothetical biopsy 

regimens for BE surveillance.

Methods

Data Sources

We performed an analysis of the distribution of dysplasia longitudinally within the BE 

segment, using pre-treatment biopsy data from two randomized controlled trials of 

radiofrequency ablation (RFA) for dysplastic Barrett's esophagus. Each trial was examined 

in isolation and in pooled analyses. These trials were:

1) The Surveillance vs. Radiofrequency Ablation (SURF) Trial9—The SURF Trial 

was conducted at nine European BE treatment centers. Eligible patients underwent 

endoscopy demonstrating BE with low-grade dysplasia (LGD) within 18 months prior to 
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enrollment. An expert central pathology panel confirmed community-based diagnoses of 

LGD. Patients were excluded for prior endoscopic treatment for BE, history of high grade 

dysplasia (HGD) or adenocarcinoma, active secondary malignancy, estimated life 

expectancy less than 2 years (according to the enrolling physician), and age of 18 years or 

younger or 85 years and older.

All patients required a baseline qualifying endoscopy within six months prior to 

randomization to exclude visible abnormalities, HGD, or adenocarcinoma. Baseline 

qualifying endoscopies were performed using high-resolution endoscopy with biopsies 

obtained according to the modified Seattle protocol (4-quadrant biopsies/2-cm intervals) 

with additional biopsy and documentation of any visible abnormalities or raised lesions. 

Patients were subsequently randomized to either treatment or surveillance.9 Data from the 

baseline-qualifying exam were used in the present study.

2) The Ablation of Intestinal Metaplasia (AIM) Containing Dysplasia Trial7—The 

AIM Dysplasia Trial was conducted at 19 U.S. sites. Eligible patients were between 18 and 

80 years of age and had endoscopically evident, non-nodular, dysplastic BE of no more than 

8 cm in length. Patients with prior endoscopic mucosal resection and complete clearance of 

nodularity at least 8 weeks prior to enrollment were allowed. Exclusion criteria were 

pregnancy, active esophagitis or stricture precluding passage of the endoscope, a history of 

esophageal cancer, esophageal varices, uncontrolled coagulopathy, or a life expectancy of 

less than 2 years, as judged by the site investigator.

A central pathology lab confirmed diagnoses of dysplasia. Baseline visits were performed by 

either the referring gastroenterologist or at participating study sites. Endoscopic biopsies 

were performed with maximum-capacity or jumbo forceps in four quadrants every 1-2 cm 

throughout the original length of Barrett's esophagus; in addition, directed biopsies were 

performed at sites with any visible abnormalities.7

Statistical Methods

For the purposes of analyses in this manuscript, only pathology samples from baseline 

endoscopies were included. Patients with less than two biopsy levels were excluded, because 

such instances provided no information regarding proximal-to-distal distribution. The 

proximal-to-distal location of biopsy levels was standardized to the maximum distance of 

the BE segment from the top of gastric folds (TGF). For example, a biopsy level at TGF 

would be assigned a location of 0, a biopsy level 8 cm proximal to TGF within an 8 cm 

segment of BE would be assigned a location of 1, and a biopsy level 2 cm proximal to TGF 

in an 8 cm segment would be assigned a location of 0.25. In this way, spatial distributions of 

dysplasia within BE segments of varying lengths could be standardized to allow assessment 

of proximal-to-distal distribution, regardless of length of BE.

We examined the probability of any biopsy within a given biopsy level containing dysplasia 

using generalized estimating equations (GEE) with an auto-regressive correlation matrix, 

examining random effects of the two trials and controlling for repeated measures within a 

patient. GEE can be used to estimate correct confidence intervals and p values in the setting 

of multiple observations for each person. With an auto-regressive correlation matrix, this 
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approach also allowed us to account for the possibility that areas of dysplasia are “lumped 

together,” i.e., that having one biopsy at a given level positive for dysplasia increased the 

probability that a subsequent biopsy from that or nearby levels would also be positive.

We used generalized linear models to estimate prevalence and prevalence differences for 

dysplasia depending on the standardized location of biopsy levels. We queried for a 

nonlinear relationship between the yield for dysplastic biopsies and location by fitting and 

statistically comparing nested models with an ordinary linear specification of the effect of 

location, with quadratic and cubic parameterizations, and with natural log and exponential 

transformations. To examine whether the prevalence difference between standardized biopsy 

location and the yield for dysplasia was modified by clinical or endoscopic features, we 

compared nested models with and without hierarchically specified interaction terms using 

the quasi-likelihood under the independence model criterion (QIC), a model-fit statistic to 

compare the fit of models estimated with GEE.10 To estimate the potential for bias due to 

any missing location data, we performed multiple imputation sensitivity analysis among 

patients with missing location data with prevalence ratios for dysplasia of 1 to 4 in the 

opposite direction of the observed association. In order to examine the possibility that distal 

biopsies in segments shorter than 4 cm may have inadvertently sampled the gastric cardia, 

we performed sensitivity analysis limited to patients with greater than 4 cm Prague M 

length. Additionally, we examined the effect of excluding the distal-most observation in 

each patient. To examine the possibility that prior endoscopic mucosal resection (EMR) 

perturbed the natural distribution of dysplasia at baseline in these trials, we also performed 

analysis excluding patients with prior EMR.

Simulation Methods

A simulation study was performed to examine the hypothetical yield of biopsy regimens 

reflecting the observed spatial distribution of dysplasia. Pooled subjects' baseline qualifying 

endoscopies from both trials with dysplasia in at least one biopsy fragment were included. In 

contrast to the model for the prior outcome, which estimated the probability of finding any 

dysplasia within any sample at a given level, the model for simulation predicted the 

likelihood of finding dysplasia in a single fragment in the entirety of the biopsy run. This 

best reflects current management of these patients, since the worst dysplasia finding in any 

single fragment dictates the patient's care. In addition to the best fitting quadratic 

parameterization, this model included a hierarchically specified interaction term with 

segment length. GEE were specified similarly to the primary analysis.

Monte Carlo sampling of simulated biopsy fragments was stratified by segment length and 1 

or 2 cm increments of location, depending on the regimen being simulated. Samples for 2 

cm regimens were evenly split between the top and bottom 1cm halves. Each sample was 

taken from a Bernoulli distribution (which is used for “yes or no” probabilities) of the 

absolute prevalence risk of dysplasia, informed by the location and segment length of the 

model for simulation. If one or more samples from a simulated patient yielded dysplasia, the 

sampling regimen was considered to be sensitive for detecting dysplasia. For segments of 1 

cm in length, it was assumed that one half of the recommended biopsies from the q2 cm 

regimen would be taken. We reported the mean for sensitivity as a function of segment 
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length, increasing the number of Monte Carlo samples until simulation standard error was 

negligible. In analyses of distribution of dysplasia, dysplasia found in targeted biopsies was 

included in addition to that found in random biopsies, while in simulations of hypothetical 

random biopsy protocols, only dysplasia found on random biopsy was included.

Results

Of 140 patients in the SURF study and 127 patients in the AIM Dysplasia trial, 115 and 77 

respectively had fragment-level information regarding the location and histologic grade of 

all biopsy fragments at the baseline endoscopy complete and detailed enough to allow the 

analyses described above (figure 1). Of these 93 and 64, respectively, had at least two 

biopsy levels, yielding 157 patients for the pooled spatial analysis. Patients in both trials 

were predominantly male, Caucasian, and older. The mean Prague M length in the SURF 

study was 5.6 cm, and the mean in the AIM Dysplasia trial, which was limited to patients 

with no more than 8 cm of BE, was 4.4 cm (table 1). In the AIM Dysplasia trial 50 of 127 

(39%) patients had incomplete data for histology locations at baseline; in the SURF study 25 

of 140 (18%) patients had incomplete data; in pooled analysis 75 of 267 (28%) patients had 

incomplete data.

Independent analysis of each trial yielded a statistically significant, positive linear 

association between more proximal location of biopsy level within the BE segment and the 

finding of dysplasia among any of the fragments at that level (table 2). Overall, biopsies 

from the proximal-most quarter of the BE segment were almost twice as likely to 

demonstrate dysplasia as those from the most distal quarter (46.6% vs. 24.0%). Considering 

the trials individually, in the AIM Dysplasia trial, compared to biopsy levels in the distal-

most quarter segment, biopsy levels in the proximal-most quarter segment had a 38.1% 

(95% CL: [22.7%, 53.5%]) higher prevalence of dysplasia. The second-most proximal 

segment had a prevalence difference of 34.6% (95% CL: [17.6%, 50.7%]) and the second-

most distal segment had a prevalence difference of 23.2% (95% CL: [7.2%, 39.3%]). In the 

SURF trial, compared to biopsy levels in the distal-most quarter segment, biopsy levels in 

the proximal-most quarter segment had an absolute 12.9% (95% CL: [1.0%, 24.8%]) higher 

prevalence of dysplasia. The second-most proximal segment had a prevalence difference of 

16.8% (95% CL: [2.5%, 31.0%]) and the second-most distal segment had a prevalence 

difference of 11.6% (95% CL: [0.0%, 24.5%]). These findings were insensitive to exclusion 

of targeted biopsies. The absolute prevalence of dysplasia was higher in the AIM Dysplasia 

trial but followed a similar pattern to the SURF trial.

In the pooled trials, compared to biopsy levels in the distal-most quarter segment, biopsy 

levels in the proximal-most quarter segment had an absolute 22.6% (95% CL: [12.8%, 

32.5%]) higher prevalence of dysplasia. The second-most proximal segment had a 

prevalence difference of 23.1% (95% CL: [12.1%, 34.1%]) and the second-most distal 

segment had a prevalence difference of 15.3% (95% CL: [5.1%, 24.5%]).

The best-fitting nonlinear parameterization based on QIC was the quadratic fit (figure 2), 

which was a significantly better fit than the simple linear parameterization (quasi-likelihood 

ratio statistic = 5.56, p = 0.018). The prevalence of dysplasia in individual biopsy fragments, 
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rather than biopsy levels, followed a similar distribution (figure 3). Multiple imputation 

analysis for missing data found that a risk ratio of greater than two in the opposite direction 

of that observed among patients with missing samples would be required to reverse the 

direction of effect. The effect remained statistically significant in 99% of random normal 

imputations of missing biopsy levels.

The relationship between proximal-to-distal location and the prevalence of dysplasia was 

largely insensitive to baseline clinical and endoscopic characteristics. However, there was 

statistically significant modification of the prevalence difference at an alpha threshold of 

0.05 by age, where younger patients had a greater proximal predisposition of dysplasia and 

older patients had a weaker predisposition. There were insignificant modifications of the 

prevalence difference for BMI (p = 0.098), where patients with higher BMI had a stronger 

proximal predisposition, and for Prague C length (p = 0.105), where patients with longer 

Prague C length had a weaker proximal predisposition. No other potential modifiers of the 

risk difference approached statistical significance.

Sensitivity analyses suggest that the spatial distribution of dysplasia was insensitive to 

segment length or the inclusion of patients with prior EMR. Limitation of the analysis to BE 

segments over four cm had no significant effect on the risk difference from TGF to TIM 

from 24.9% (95% CL: [14.0%, 35.8%]) to 24.3% (95% CL: [7.4%, 41.3%]). Excluding the 

distal-most sample from each patient attenuated the effect, but it remained statistically 

significant at 20.0% (95% CL: [0.6%, 40.0%]). Excluding the 11 patients with prior EMR 

also had no significant effect, yielding a risk difference of 26.1% (95% CL: [14.8%, 

37.4%]).

Monte Carlo simulation of biopsy fragments among patients with dysplasia at the baseline 

endoscopy suggested that the sensitivity of biopsy regimens varied widely depending on 

segment length. Among patients with shorter segments, random draws of biopsy fragments 

often failed to identity any dysplasia (figure 4). Sensitivity decreases of >30% were 

observed at segment lengths ≤3 cm by random error in biopsy fragment selection. 

Simulations of biopsy regimens with increased proximal samples suggested that such 

regimens would perform better than a uniform regimen. The best overall regimen was a 

“q1cm - 8, 8, 2, 2…” regimen in which 8 biopsies were taken at the proximal-most 1 cm 

level, 8 biopsies at the next 1 cm level, and 2 biopsies in each subsequent, more distal 1 cm 

level. This regimen decreased the number of biopsies in longer segments of BE, but 

increased the number of biopsies in shorter segments. Interestingly, the worst performing 

regimen we modeled was 4 quadrant biopsies every 2 cm, which was projected to miss at 

least one in five patients with dysplasia who had a segment length of the BE of <4 cm. In 

contrast, a highly accurate q2 cm regimen could be constructed, but only with marked over-

sampling of the proximal BE (12 biopsies over 2 cm, figure 4). Figure 5 demonstrates the 

total number of biopsies necessary to complete each modeled regimen as a function of BE 

segment length. While short segments of BE require higher numbers of biopsies in the 

proposed weighted regimens, longer segments of disease actually result in fewer biopsies, 

despite achieving sensitivities equal to or better than standard regimens.
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Discussion

In a post-hoc analysis of two randomized controlled trials we found a significantly increased 

prevalence of dysplasia proximally within a field of BE. This relationship was stable over 

most baseline clinical and endoscopic characteristics, but was significantly increased among 

younger patients. We also present simulation studies that suggest that proximal 

oversampling could allow better sensitivity in those with shorter segments of BE, and for 

fewer biopsies in patients with longer segment BE. Simulations suggest such regimens could 

increase the sensitivity for dysplasia among patients with short-segment BE by >30% and 

decrease the number of biopsies among patients with long-segment BE of greater than 6 to 9 

cm without compromising sensitivity.

BE management depends on accurate risk stratification. Surveillance endoscopy taking both 

random and targeted biopsies of any mucosal abnormalities throughout the BE segment is 

the standard of care.11-13 Most patients with BE have non-dysplastic disease.14, 15 Both the 

AIM Dysplasia and SURF trials demonstrated a benefit of ablative therapy in patients with 

low-grade dysplasia and high-grade dysplasia.7, 9 As such, the identification of dysplasia in 

a patient with BE is vital, as it is the deciding factor in treatment decisions for BE. 

Optimization of sampling techniques has the potential to benefit a large population of 

patients.

Given that the distribution of dysplasia at baseline endoscopies in these two trials is not 

linear or uniform, biopsy regimens that would perfectly reflect this distribution would be 

complicated. Much of the burden of surveillance of non-dysplastic BE falls to community 

gastroenterologists or surgeons who may not specialize in esophageal disease. As such, 

widespread adoption of novel biopsy regimens will be facilitated if they are memorable and 

simple to implement. The best performing simple regimen in simulation studies was the 

q1cm - “8, 8, 2, 2…” regimen, which requires 8 biopsies in the proximal-most 1 cm level 

and 8 biopsies at the second most proximal 1 cm level, with 2 biopsies at each more distal 1 

cm level. This regimen has the advantages of ease of recall for the endoscopist, increase in 

the sensitivity in shorter segment BE, and decrease the number of biopsies in long segment 

BE. A q2cm regimen, q2cm - “12, 12, 2…” had a similar distribution of biopsies and 

performed almost as well.

Our findings are novel, but are generally consistent with prior studies regarding the yield of 

biopsies in BE surveillance. Previous work suggests that when utilizing the Seattle protocol, 

q1cm four quadrant biopsies detect more dysplasia than q2cm regimens, a finding replicated 

in our simulation.16 A subsequent study countered this finding, but had a small sample size 

and could only detect a very large difference in yield between the q1cm and q2cm regimens 

tested.17 A larger study found a very large increase in detection with systematic rather than 

random biopsies.18 Early studies of dysplasia in esophagectomy specimens and a study of 

early neoplasia did not find a spatial predisposition, but given their sample sizes, had limited 

power to detect effects of the magnitude we report.19-23 These studies suggested that areas 

of high-grade dysplasia were generally contiguous but could vary greatly in location and 

extent.
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In distinction to our findings, a study set in Germany found a strong predisposition of 

esophageal and junctional adenocarcinoma (T1-T3) to the distal third of Barrett's segments, 

but this was after neoadjuvant chemotherapy and esophagectomy.24 These findings may 

reflect a substantively different population, a more advanced stage of disease, or a setting in 

an era before ablative therapies were the standard of care for dysplastic BE. Esophageal 

adenocarcinoma is generally more common in the distal third of the esophagus.25, 26 

Because Barrett's carcinogenesis is a multi-step process over time, the exposures and events 

that cause progression from non-dysplastic to dysplastic BE may, on average, have a 

different spatial distribution in the esophagus than the exposures and events that cause 

progression of dysplasia to early cancer.

The proximal predisposition of dysplasia seems counterintuitive. Most other manifestations 

of reflux disease worsen with increasing acid exposure. For instance, while the degree of 

proximal extension of the refluxate is associated with severity of erosive disease, it is clear 

the distal esophagus is exposed to refluxate more often, and for longer periods of time, than 

more proximal areas.27-29 Therefore, it would seem most logical for the distal BE to 

preferentially harbor dysplasia – the exact opposite of what we actually observed. What 

might explain our findings? Several possibilities exist. Since the acidity of the refluxate 

decreases as it extends proximally, the observed pattern would make sense if weakly acidic/

neutral refluxate promoted dysplasia within BE more so than strongly acidic refluxate, or if 

there was a protective effect of strongly acidic refluxate in BE.30 This pattern might also be 

consistent with a selection process that favors increased proliferation of a dysplastic clone 

into more proximal areas.31, 32 Perhaps the multilayered epithelium at the new 

squamocolumnar junction is especially prone to transformation and is a fertile area for the 

development of dysplasia.33, 34 While these or other mechanisms could underlie the 

observed distribution of dysplasia in this study, inference as to the pathogenesis explaining 

these findings is not possible from the present data.

This study has several limitations. Because the AIM Dysplasia protocol did not mandate 

sampling of the cardia, we have restricted our analyses and recommendations to the tubular 

esophagus. Also, a minority of patients had missing location data in each study, but multiple 

imputation analysis found the potential for bias to be small unless missing data were 

strongly biased in the opposite direction of our observed effect, which is unlikely. Next, 

while we examined effect measure modification, statistical power to detect modification of 

effects is generally much less than to detect the effect itself. It is relatively unlikely that we 

would detect subtle effect measure modifiers in a study of this size. Additionally, 

insufficient data prevented us from examining whether a differential effect existed for high-

grade compared with low-grade dysplasia. Simulation studies such as those performed here 

are limited in that random draws of biopsies or biopsy levels may fail to approximate the 

actual clinical process of biopsy selection, since each additional hypothetical biopsy is 

presumed to have the same yield as the actual biopsies taken at that level. Our study 

determined only the longitudinal, not circumferential, predisposition to dysplasia. Studies 

suggest that, at least in the case of early adenocarcinoma or high-grade dysplasia, there may 

additionally be a circumferential clustering of disease.35, 36 Furthermore, this is a single 
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analysis and, despite being performed on two, high quality, multicenter, randomized clinical 

trials, should be replicated in further observational or randomized studies.

These results are likely generalizable to populations that include patients with BE with 

dysplasia under similar conditions to the study population regardless of the underlying 

prevalence of dysplasia, given that the biological factors underlying dysplasia distribution 

would not be expected to be impacted by dysplasia prevalence. However, differences in the 

performance of EGD or the quality of the histological grading of dysplasia have the 

potential to change both the test characteristics of surveillance endoscopy, and, potentially, 

the findings we report here. Therefore, inference from this study is most reliable in cases of 

dysplasia as diagnosed by an endoscopist with expertise in managing BE in concert with a 

dedicated gastrointestinal pathologist. A further limitation of sampling from referral 

populations such as these is the possibility of selection bias. It is possible that the 

distribution of dysplasia in patients referred to such centers does not reflect that in general 

populations. However, community-based studies may also have serious threats to internal 

validity due to missing data for biopsy location and the possibility non-systematic sampling 

regimens.

The study also has several strengths. Because the same spatial predisposition of dysplasia is 

observed independently in these two multicenter, randomized controlled trials, our findings 

are likely robust to both random variation and idiosyncratic effects of individual centers. In 

contrast to many observational datasets, patients selected for these trials were known to be 

treatment-naïve, were subject to carefully recorded systematic biopsy, and had rigorous 

review of their histologic grade.

In summary, we report the results of pooled analysis of two multicenter, randomized 

controlled trials that independently support a proximal predisposition of dysplasia within 

Barrett's segments with dysplasia. We also propose a “q1cm - 8, 8, 2, 2…” biopsy regimen 

and an alternative “q2cm - 12, 12, 2…” regimen that both take advantage of the observed 

distribution of dysplasia and allow for a decreased number of biopsies in patients with 

longer segments of BE compared to a q1cm four quadrant regimen. These simulations also 

demonstrate that in shorter segments, even with weighted sampling regimens, dysplasia 

detection was very sensitive to sample number. Even small decrements in the number of 

samples taken were reflected in diminished sensitivity of the regimens. Given that poor 

adherence to rigorous sampling regimens has been described, this finding speaks to the need 

for novel mucosal sampling technologies.37 Such a regimen would complement, but not 

replace, careful examination of the Barrett's segment with targeted biopsy of mucosal 

abnormalities. If these results can be replicated in further studies, this change in practice has 

the potential to improve risk stratification of patients with BE without requiring additional 

time or expense. (3984/4000)
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BE Barrett's Esophagus

RFA radiofrequency ablation
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SURF Surveillance vs. Radiofrequency Ablation Trial

LGD low grade dysplasia

HGD high grade dysplasia

AIM Ablation of Intestinal Metaplasia (AIM) Containing Dysplasia Trial

TGF top of gastric folds

GEE generalized estimating equations

QIC quasi-likelihood under the independence model criterion, CL, confidence limits

q1cm every one centimeter

q2cm every two centimeters
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Summary Box

What is current knowledge?

• Diagnosis of dysplasia within a Barrett's esophagus (BE) segment is central to 

management decisions in BE.

• The addition of biopsies not targeted to visible lesions improves the sensitivity 

of biopsy regimens over targeted biopsies alone,, and systematic biopsy 

regimens outperform unstructured regimens.

What is new here?

• Dysplasia is more common in the proximal than distal regions of Barrett's 

segments. Biopsy regimens that oversample the proximal Barrett's segment 

perform better than uniform regimens in simulations. In short segment BE, 

prevalent dysplasia is frequently missed due to a small number of samples and 

random error.
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Figure 1. 
Inclusion and Exclusion of 127 AIM Dysplasia Subjects and 140 SURF Subjects 

Randomized in Each Trial for Post-hoc Analysis. Patients with complete biopsy location 

data and with at least two biopsies were included from each trial.
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Figure 2. 
Estimated Prevalence of Dysplasia in Biopsy Levels among 157 Patients by Sampling Level 

in Pooled Analysis of the AIM Dysplasia and SURF Trials. Dysplasia was nearly twice as 

common in the top halves of Dysplastic BE segments as at TGF.
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Figure 3. 
Prevalence of Dysplasia in Individual Biopsies among 157 Patients by Quartile of Sampling 

Level in Pooled Analysis of the AIM Dysplasia and SURF Trials. At all levels, individual 

biopsy fragments had a modest prevalence of positivity for dysplasia. Biopsy fragments in 

the proximal Barrett's segment were more likely to be positive for dysplasia.
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Figure 4. 
Simulated Yield for Dysplasia within Any Samples for a Given Patient under Selected 

Classical and Novel Biopsy Regimens by Segment Length. Biopsy regimens missed 

dysplasia in simulations of shorter segments because of less total biopsies introducing the 

possible of missing a single dysplastic biopsy fragment at random. All regimens performed 

well among longer segments. Note that q2cm regimens' sensitivity tended to drop slightly at 

even numbered segment lengths because the same number of biopsies was performed over a 

larger area compared to a segment one cm shorter.
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Figure 5. 
Simulated Number of Biopsies under Selected Classical and Novel Biopsy Regimens by 

Segment Length. In short segments the proposed biopsy regimens require more biopsies 

than uniform regimens, while at longer segment lengths they require more than uniform 

q2cm biopsies but less than q1cm.
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Table 1
Baseline Clinical and Endoscopic Characteristics of 93 Patients Included from the SURF 
Trial and 63 Patients included from the AIM Dysplasia Trial

Mean (SD) / N (%) AIM Dysplasia SURF Pooled

Age 66.5 (9.5) 64.1 (7.9) 65.1 (8.7)

Male sex 54 (84%) 78 (84%) 132 (84%)

BMI (mg/k2) 29.5 (5.7) 27.3 (4.1) 28.2 (5.0)

Low grade dysplasia 35 (55%) 93 (100%) 128 (82%)

High grade dysplasia 29 (45%) 0 (0%) 29 (18%)

Prague M Length (cm) 4.4 (3.0) 5.6 (3.2) 5.0 (3.1)

Prague C Length (cm) 3.1 (2.7) 3.7 (3.8) 3.5 (3.4)

Hiatal Hernia (cm) 3.4 (1.7) 2.8 (1.6) 3.2 (1.7)

Caucasian 61 (95%) 90 (97%) 151 (96%)

African American 2 (3%) 0 (0%) 2 (1%)

Hispanic 1 (2%) 0 (0%) 1 (1%)

Unknown 0 (0%) 3 (3%) 3 (2%)
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