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Abstract

Purpose—We hypothesized that a treatment planning technique that incorporates predicted lung 

tumor regression into optimization, predictive treatment planning (PTP), could allow dose 

escalation to the residual tumor while maintaining coverage of the initial target without increasing 

dose to surrounding organs at risk (OARs).

Methods and Materials—We created a model to estimate the geometric presence of residual 

tumors after radiation therapy using planning computed tomography (CT) and weekly cone beam 

CT scans of 5 lung cancer patients. For planning purposes, we modeled the dynamic process of 

tumor shrinkage by morphing the original planning target volume (PTVorig) in 3 equispaced steps 

to the predicted residue (PTVpred). Patients were treated with a uniform prescription dose to 

PTVorig. By contrast, PTP optimization started with the same prescription dose to PTVorig but 

linearly increased the dose at each step, until reaching the highest dose achievable to PTVpred 

consistent with OAR limits. This method is compared with midcourse adaptive replanning.

Results—Initial parenchymal gross tumor volume (GTV) ranged from 3.6 to 186.5 cm3. On 

average, the primary GTV and PTV decreased by 39% and 27%, respectively, at the end of 

treatment. The PTP approach gave PTVorig at least the prescription dose, and it increased the mean 

dose of the true residual tumor by an average of 6.0 Gy above the adaptive approach.

Conclusions—PTP, incorporating a tumor regression model from the start, represents a new 

approach to increase tumor dose without increasing toxicities, and reduce clinical workload 

compared with the adaptive approach, although model verification using per-patient midcourse 

imaging would be prudent.
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Introduction

Delivering a tumoricidal dose in the radiation treatment of locally advanced non-small cell 

lung cancer (NSCLC) is challenging because coverage of large target volumes conflicts with 

normal tissue dose tolerance, especially of the spinal cord and normal lung. Tumor 

shrinkage is often observed during radiation therapy of NSCLC (1–6). The most commonly 

proposed planning paradigm to handle tumor shrinkage is adaptive radiation therapy (ART) 

(7–10). Replanning can be scheduled once or twice based on updated target contours 

obtained from scheduled resimulations or periodic cone beam computed tomography 

(CBCT) scans. The resulting adapted plan can either escalate dose to the residual tumor or 

spare the surrounding healthy lung tissue and adjacent organs at risk (OARs) or both. 

However, the gain of ART is limited by the increased clinical workload associated with 

frequent replanning. Furthermore, the turnaround planning time directly affects the 

performance of ART; the maximal impact is achieved only if there are no additional 

planning-related delays because a treatment course interruption caused by replanning would 

allow for repopulation. Any effort to safely reduce or eliminate turnaround time will benefit 

patients, and removing the need to replan promotes a more efficient workflow. A fresh look 

at the design of ART is necessary to maximize clinical impact and improve its efficiency.

The current ART process lacks attempts to use prior knowledge of how a tumor is likely to 

shrink during radiation therapy. Seibert et al (11) reported the use of a nonparametric, 

memory-based locally weighted regression model to accurately predict the final tumor 

volume. However, for treatment plan optimization, the location and volume of the residual 

tumor are equally important. If the geometric location of the residual tumor can be estimated 

by a predictive model, a robust optimization algorithm can dose-paint to the regression 

pattern and achieve the best therapeutic ratio with improved efficiency. In this article we 

investigate the likely clinical properties of such an algorithm and propose a novel predictive 

treatment planning (PTP) management paradigm to address the challenges faced by ART.

Methods and Materials

Imaging study

A credible prediction model for tumor shrinkage needs support from patient imaging data. 

For this proof-of-principle study, we used the planning CT and consecutive weekly 

kilovoltage CBCT scans of 5 patients with locally advanced NSCLC who were enrolled in a 

prospective imaging protocol approved by our Institutional Review Board (12). Six other 

patients were in the protocol; for these, either no shrinkage was observed or tumors were not 

completely visualized on the CBCTs. The gross tumor volume (GTV) was contoured on the 

CBCTs acquired at the middle and end of the treatment, and then transferred to the planning 

CT by means of manual rigid registrations to the spine. For each patient, the tumor included 

mediastinal and primary (lung parenchymal) components. Shrinkage of the primary 

component was seen for all 5 patients. Figure 1 shows the primary GTV originally seen on 

the planning CT (GTVorig, yellow), on the midcourse CBCT (GTVmid, blue), and on last-

treatment CBCT (GTVresid, red). GTVmid and GTVresid are slightly outside GTVorig because 

of the uncertainties of bony registration, contour delineation, and lung tissue morphologic 

changes. The mediastinal GTVmedia is shown in cyan, where little change was seen.
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Tumor shrinkage model

We built a tumor shrinkage model based on imaging data to estimate the spatial relationship 

between GTVorig and GTVresid. Each structure is handled by use of a points cloud:

Eq:1

where n is the number of points, and x,y,z is a point’s position. For each individual patient, 

the prediction algorithm starts with analyzing the spatial occupancy of both GTVorig and 

GTVresid by principal component analysis (13) by using their points clouds as input to the 

Matlab (MathWorks, Natick, MA) function princomp():

Eq:2

which performs principal component analysis and returns principal component coefficients 

(coeff3×3) and principal component scores (scoren×3). The first principal component 

represents the largest possible variance of the points cloud, and each successive component 

has the highest variance possible orthogonal to the preceding components. Together, 3 

components represent 3 orthogonal axes where the points cloud has the largest separation. 

The score of a point is its projection onto the new orthogonal axes. The boundary of the 

points cloud can be modeled using an ellipsoid:

Eq:3

where each row corresponds to a point with the maximal score along 1 principal direction.

If the GTV shape is reasonably consistent between the original tumor and residual tumor, 

the principal axes of the tumor at the 2 different time points would approximately align with 

each other. Under this assumption, an affine transformation matrix T maps the ellipsoid 

modeling the original points cloud to the residual one:

Eq:4

T can be solved as:

Eq:5

This affine transformation accounts for shrinkage, rotation, shearing, and translation 

between GTVorig and GTVresid. The 5 transformation matrices obtained from 5 clinical 

cases serve as prior modes of the shrinkage model.
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Given the ith patient’s GTVorig, its predicted residual position using the shrinkage model of 

the jth patient, denoted  is estimated by:

Eq:6

Note that for each individual patient, the transformations are performed 4 separate times 

using the 4 transformation matrices other than its own to ensure an unbiased estimation. The 

final GTVpred is determined as the volume that overlaps at least 3 (majority) transformed 

points clouds. The resultant points cloud for GTVpred is converted to a set of contours and 

transferred to the optimization module for visualization and planning. Figure 1 shows an 

example illustrating the spatial relationship between GTVorig, GTVresid, and GTVpred. To 

evaluate the accuracy of each prediction, we tabulated the Dice coefficients, the overlap 

between GTVresid and GTVpred, and the interslice mean Hausdorff distances (14) between 

the surfaces of the 2 volumes.

In addition to uncertainties associated with general tumor shrinkage patterns, the prediction 

model is also affected by observation uncertainties, such as timing and changes in anatomic 

pose. A study by Sonke and Belderbos (6) reported an average tumor shrinkage of 1% per 

day. Therefore, the average change along 1 direction would be less than 1% of the length. 

Because the maximal tumor length was 10 cm in our study, the average uncertainty in any 

direction associated with timing was 1 mm/day. To simulate the impact of pose 

uncertainties, we moved (translation and rotation) the GTV contour on the patient’s final 

CBCT according to the rigid registration of the spine between it and the CBCTs acquired at 

earlier weeks. The new contours representing different poses were then used in the 

prediction model. Five new sets of predictions were obtained by using the poses from the 

prior 5 weeks of CBCTs. We quantified the impact of anatomic pose by calculating the 

Hausdorff distances among different predictions.

The dynamic process of tumor shrinkage was then modeled by morphing GTVorig to 

GTVpred in 3 equispaced steps along the 3 spatial dimensions in the imaging coordinate 

system. Each morphed GTV was expanded to a planning target volume (PTV) with a 

uniform 1.2-cm margin to account for uncertainties. A series of shell structures was created 

to account for PTV shrinkage along the treatment course toward its residual value (Fig. 2).

Dose painting to the shrinking pattern

Instead of prescribing uniform dose to PTVorig as in the conventional approach, the score-

function objective dose in PTP linearly follows the predicted evolving pattern of tumor 

shrinkage. It starts with the same prescription dose to PTVorig, but linearly increases dose at 

each evolving shell, until reaching the highest dose achievable to the innermost PTVpred 

consistent with OAR limits. For simplification, all plans used the initial planning CT for 

OAR localization. Note that although the majority of the outermost part of primary PTVorig 

disappeared at the end of treatment, the objective dose to this region was maintained as the 

clinical prescription dose. The objective dose to the mediastinal PTV was also kept at the 

clinical prescription dose because little mediastinal shrinkage was observed. This 
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prescription scheme is conservative yet robust to errors introduced by the shrinkage 

prediction because the optimization is not asked to reduce dose to PTVorig below 

prescription. Siker et al (15) suggested that tumor shrinkages are not significant for a good 

portion of the patient population, but for these patients, PTP does not adversely affect the 

treatment plan because no OAR limits are violated and the dose to PTVorig is not reduced 

relative to what it would receive in a uniform-dose planning paradigm. If there is no 

shrinkage, the prescribed heterogeneous dose distribution introduces a dose boost to portions 

of the tumor that may still increase local control. This heterogeneous dose prescription is 

optimized, and the resulting plans served as the PTP arm in the planning study.

Treatment planning studies

Comparison was made with the clinical treatment plans with which patients were treated. 

These plans prescribed a uniform dose (Dpre), ranging from 56 Gy to 70 Gy (2-Gy fractions) 

to PTVorig, subject to in-house OAR dosimetric constraints. The major constraints include 

Lyman-Kutcher-Burman Model normal tissue complication probability (NTCP) for lung less 

than 25% (16), which in practice is satisfied when mean normal lung dose is less than 20 

Gy; and a maximal dose to the spinal cord below 50 Gy. Not all plans were pushed to the 

departmental standard OAR limits because the physician may request lower lung doses 

because of a patient’s comorbidities.

In addition to comparison with the clinical treated plans, another relevant comparison is 

between PTP plans and plans prescribed with similar inhomogeneous dose boost (eg, same 

maximal dose to PTV) (17–21) but without the guidance provided by the shrinkage 

prediction model. For this control set of plans referred to as GTV-boost, we created 4 

equispaced shells that progressed from PTVorig toward GTVorig, and increased objective 

doses accordingly under OAR limits. This GTV-boost approach is equivalent to using 

GTVorig as PTVpred in PTP and superior to applying a random inhomogeneous dose boost 

because the residual tumor is very likely to lie within the original tumor at the end of 

treatment.

To simulate midcourse replanning ART, the tumor was delineated on a midcourse CBCT 

acquired 3 to 4 weeks into the treatment course (after delivery of 30–40 Gy) and registered 

to the planning scan. An adaptive treatment plan was optimized accounting for the existing 

dose contributed by the original treated plan such that the updated primary PTV (PTVmid) 

received the highest dose achievable, the mediastinal PTV received the original prescription 

dose, and OAR constraints were respected. The benefit of this implementation of ART 

comes mainly from the escalated dose to the residual tumor, rather than attempting to lower 

the dose to the surrounding lung tissue and reduce toxicity. The evenly weighted 

combination of revised and original plans represents the ART scenario with midcourse 

replanning.

All treatment plans were designed using sliding window intensity-modulated radiation 

therapy with 6-MV photons. Five to 7 beams were used with angles selected according to 

the planners’ judgment. Although treatment plans are optimized based on different targeting 

schemes, evaluation is based on dosimetric end points of PTVresid (GTVresid margined with 

1.2 cm). The end points include PTVresid minimum dose (Dmin), mean dose (Dmean), and the 
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dose received by 95% of the volume (D95). Because PTP emphasis is on robustness to 

prediction model uncertainty, D95 of the volume inside PTVorig excluding PTVresid, 

denoted as PTVgone, is also evaluated. For OARs, lung (lung-GTVorig) mean dose, lung 

NTCP, and spinal cord maximum dose are optimized to match the clinical treated plans.

Results

Tumor shrinkage characteristics

The primary GTVorig ranged from 3.6 cm3 to 186.5 cm3 (median, 49.4 cm3). The median 

volumes of the mediastinal GTV and PTV were 170 cm3 and 490 cm3, respectively. For 

these 5 patients, primary GTVorig regressed by the middle to late phase of the treatment 

course: they decreased by an average of 12% of the initial volume (range, 0%–26%) by the 

middle of the treatment, and eventually decreased an average of 39% (range, 34%–50%) by 

the end of the treatment (6–7 weeks). The corresponding residual PTV decreased by an 

average of 27% (range, 23%–51%) at the end. The prediction model estimated more GTV 

shrinkage: average 47% (range, 28%–62%). The fourth column of Table 1 shows the 

overlap between GTVpred and GTVresid normalized to GTVresid; the average overlap was 

65% (range, 55%–75%). The corresponding overlap between PTVpred and PTVresid 

normalized to PTVresid was higher, with an average of 79% because the uniform expansion 

from GTV to PTV smoothed part of the variations. The Dice coefficient that correlated 

GTVpred with GTVresid, and PTVpred with PTVresid averaged 0.68 and 0.82, respectively, 

which agreed with the overlap measure. Meanwhile, for the GTV-boost approach, the Dice 

coefficient correlating GTVorig with PTVresid was lower, average 0.43, given that GTVorig 

tended to be smaller than PTVpred, especially for small tumors. The interslice mean 

Hausdorff distance between the surfaces of the predicted and observed volumes was 2.5 mm 

and 3.0 mm, for GTV and PTV, respectively. The 3D relationships between the original 

(yellow), residual (magenta), and predicted (green) GTV embedded in the lung mesh of the 

5 patients are illustrated in the volume rendering Figure 3. The principal axes of the tumor 

remained anatomically consistent between the residual and original tumors for the 5 cases 

shown in Figure 3, hence supporting the assumption that is the basis for Eq. 4.

The Hausdorff distance variation among GTVs with different simulated anatomic poses was 

6.5±2.9 mm, which subsequently caused variations in the prediction results: the Hausdorff 

distance among different sets of predictions was 1.8±2.6 mm. The overlap function in the 

prediction model smoothed some of the variations.

Table 2 shows that treatment plans from 4 sets of studies (ie, clinical, GTV-boost, ART, and 

PTP) had similar OAR-sparing characteristics. The differences in lung NTCP, lung mean 

dose, and cord maximum dose were not clinically significant. Furthermore, in the PTP arm, 

D95 of PTVgone (the disappearing shell that was occupied by PTVorig but not included in 

PTVresid) met the clinical objective and received on average the same prescription dose as 

the other plans. Although PTP plans unsurprisingly improved dose to PTVresid compared 

with conventional clinical plans, they also had better PTVresid D95 and Dmean, averaging 

3.4 Gy (5.4%) and 3.9 Gy (6.2%) higher, respectively, compared with GTV-boost plans, 

because of the better aid from the prediction model. The improvement of the PTP plan 

relative to the midcourse adaptive strategy was more moderate: although the averages of 
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D95 for PTVresid were comparable, Dmean of PTVresid was on average 5.7 Gy (9.1%) higher 

for the PTP approach than the midtreatment replanning ART approach. The residual PTV 

was smaller than the midcourse PTV, making it easier for PTP to create an inhomogeneous 

distribution where the hotspot coincides with the residual PTV while protecting the 

surrounding normal tissue. In some patients, another disadvantage for ART in terms of dose 

escalation is that OAR dose limits were already significantly consumed by the midtreatment 

stage, leaving little room for replanning maneuvering. The dose distribution and DVH of 

patient 2 are illustrated in Figures 4a and 4b, respectively. The requested linear dose 

increase was well maintained.

Discussion

Although we are at an initial stage in developing a quantitative tumor shrinkage model, and 

the predictions are based on a limited number of patients, the prototype of PTP is 

demonstrated to be a promising way to take advantage of tumor regression to selectively 

increase tumor dose. The advantages of PTP over midcourse replanning come not only from 

the higher mean dose delivered to the residual tumor but also from the more efficient clinical 

workflow resulting from the elimination of 1 round of labor-intensive planning and 

subsequent quality assurance. Even if the tumor does not shrink, PTP is preferable to the 

conventional approach because PTP can escalate dose to portions of the tumor (on average 

17% higher in those examples) without underdosing PTV or overdosing OARs.

However, like all new technologies, PTP requires that new processes be developed and 

validated. It is necessary to optimize the imaging protocol and acquire imaging data from 

more patients to improve the sensitivity and specificity of the prediction model. Weekly 

CBCT is currently not optimal to evaluate tumor shrinkage, especially for the mediastinal 

component, because of its relatively poor imaging quality. Acquiring diagnostic-quality CT, 

or potentially magnetic resonance imaging (22), for imaging over the course of treatment is 

preferable. The prediction model also has intrinsic uncertainties caused by observation 

variations. We would like to further quantify this uncertainty with more patient data and 

eventually incorporate it into the clinical margin formula to mitigate its effect. The current 

prediction model used tumor shrinkage data from only 5 patients. As we accumulate more 

data, we would classify tumor shrinkage (and lack of shrinkage) patterns into subgroups 

based on metrics such as tumor location, size, relation to chest wall and mediastinum, and 

medical variables. Given a new case, we would match it to the most suitable subgroup for 

better prediction. On the basis of the pattern of tumor shrinkage observed in a larger group 

of patients, imaging timing and frequency could also be optimized. For example, it may be 

preferable to image more frequently toward the middle to end of radiation therapy, where we 

observed that the most shrinkage occurred in the 5 patients in this study. With additional 

improvement of the prediction model, PTP could follow the tumor shrinkage pattern more 

closely and achieve the best therapeutic ratio possible without the burden of repeated 

replanning.

Unlike the conventional adaptive therapy framework that uses patient-specific imaging 

feedback and creates 1 or more new plans to achieve improved outcome, PTP proposes a 

new concept of feed-forward control in radiation therapy. By integrating the prediction of 
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possible responses to radiation therapy from the initial phase of treatment, PTP is designed 

to pursue the best therapeutic ratio with an intelligent and aggressive nonuniform dose 

prescription. Ideally, PTP and feedback ART should be combined. With continuous imaging 

surveillance such as weekly CT or CBCT during the treatment course, we could verify that 

dose hotspots coincide with the shrinking residue and do not impinge on a critical serial-

response structure such as a major airway. We would also like to readily identify outliers 

whose tumor progresses during treatment, inasmuch as the shrinking-tumor PTP paradigm is 

not intended for such patients. Furthermore, the prediction model in PTP can be recalibrated 

by the new imaging findings, and the treatment plan can be updated accordingly if an ART 

infrastructure exists in the clinic.

Dose painting has been proposed for treatment of NSCLC by escalating dose to the hypoxic 

portion of the tumor seen in a pretreatment positron emission tomography (PET) scan (4, 23, 

24). Imaging studies suggest that the location of residual metabolically active areas within 

the primary tumor after therapy may correspond with the high fluorodeoxyglucose uptake 

volumes observed before radiation therapy (25). Therefore, pretreatment PET scans may 

allow identification of portions of the tumor that are at risk to harbor residual disease (26). 

Ideally, the prediction of residual metabolic activity and geometric shrinkage observed on 

CT could be combined with other factors such as tumor motion (27) to form an integrated 

probability distribution for dose painting. Incorporating a tumor control probability model in 

a future PTP version would furthermore facilitate a robust biological optimization to 

produce the most suitable heterogeneous dose distribution. Heterogeneous dose distribution 

(ie, prescribing dose to a lower isodose level than that in the interior of the PTV) has long 

been used in radiosurgery to improve the dose conformality of a treatment plan. Our study 

also confirms that, for advanced-stage NSCLC, dose to the predicted residual tumor can be 

escalated without deteriorating OAR sparing.

Conclusion

Predictive treatment planning, incorporating a tumor regression model from the start, is 

technically feasible. PTP represents a new approach to increase tumor dose without 

increasing toxicities, and to reduce clinical workload compared with ART, although model 

verification using per-patient midcourse imaging would be prudent. More imaging data are 

needed to validate and refine the tumor shrinkage model.
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Summary

We propose a novel treatment planning technique that incorporates predicted lung tumor 

regression into robust optimization to allow dose escalation to a significant portion of the 

residual tumor while maintaining coverage of the initial target without increasing dose to 

surrounding normal tissue. It also has the potential to reduce clinical workload compared 

with the adaptive approach. Predictive treatment management incorporates a predictive 

tumor response model into robust prospective treatment planning for non-small cell lung 

cancer.
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Fig. 1. 
The primary gross tumor volume (GTV) contoured on the midcourse (cyan) and final week 

(red) cone beam computed tomographic (CT) images are transferred back to the planning 

CT by manual rigid. The original, predicted, and mediastinal GTVs are shown in yellow, 

magenta, and green, respectively.
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Fig. 2. 
A series of shell structures is created to account for shrinkages from the original to predicted 

residual planning target volume (PTV).
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Fig. 3. 
Original (yellow), residual (magenta), predicted (green) gross tumor volume (GTV) and 

lung mesh of 5 patients are shown in 3-dimensional volume rendering.
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Fig. 4. 
(a) Predictive treatment planning dose distribution. (b) Comparisons of dose-volume 

histograms demonstrate predictive treatment planning increased dose to the residual tumor 

while keeping dose to organs at risk comparable.
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