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Abstract

Background—Tumor control probability (TCP) to radiotherapy is determined by complex 

interactions between tumor biology, tumor microenvironment, radiation dosimetry, and patient-

related variables. The complexity of these heterogeneous variable interactions constitutes a 

challenge for building predictive models for routine clinical practice. We describe a datamining 

framework that can unravel the higher order relationships among dosimetric dose-volume 

prognostic variables, interrogate various radiobiological processes, and generalize to unseen data 

before when applied prospectively.

Material and methods—Several datamining approaches are discussed that include dose-

volume metrics, equivalent uniform dose, mechanistic Poisson model, and model building 

methods using statistical regression and machine learning techniques. Institutional datasets of non-

small cell lung cancer (NSCLC) patients are used to demonstrate these methods. The performance 

of the different methods was evaluated using bivariate Spearman rank correlations (rs). Over-

fitting was controlled via resampling methods.

Results—Using a dataset of 56 patients with primary NCSLC tumors and 23 candidate variables, 

we estimated GTV volume and V75 to be the best model parameters for predicting TCP using 

statistical resampling and a logistic model. Using these variables, the support vector machine 

(SVM) kernel method provided superior performance for TCP prediction with an rs = 0.68 on 

leave-one-out testing compared to logistic regression (rs = 0.4), Poisson-based TCP (rs = 0.33), 

and cell kill equivalent uniform dose model (rs = 0.17).

Conclusions—The prediction of treatment response can be improved by utilizing datamining 

approaches, which are able to unravel important non-linear complex interactions among model 

variables and have the capacity to predict on unseen data for prospective clinical applications.

Recent advances in 3D treatment planning could potentially pave the way for personalized 

and patient-specific treatment planning decisions based on estimates of local TCP and/or 

complication risk to surrounding normal tissues [1]. Accurate prediction of treatment 

outcomes would provide clinicians with better tools for informed decision making about 
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expected benefits versus anticipated risk. Recently, there has been a burgeoning interest in 

using radiobiological models to rank patients’ treatment plans in order to identify the 

‘optimal’ or at least personalize the patient’s plan [2,3]. For instance, these models could be 

used as an aid to guide physician-patient treatment choices [4,5]. Alternatively, once a 

decision has been reached these models could be included in an objective function, and the 

optimization problem driving the actual patient’s treatment plan can be formulated in terms 

more relevant to complication risk and tumor eradication [2,6].

Measurement of TCP is a challenging task because it depends on complex physical and 

biological processes. Classic radiobiology has been defined by the four R’s (repair, 

redistribution, reoxygenation, and repopulation) [7]. In this context, it is believed that 

radiation-induced lethality is primarily caused by DNA damage in targeted cells. Two types 

of cell death have been linked to radiation: apoptosis and mitotic cell death. However, tumor 

cells radiosensitivity (sometimes referred to as the 5th R) is controlled via several factors 

related to tumor DNA repair efficiency (e.g., homologous recombination), cell cycle 

distribution (cells are least sensitive during S-phase), oxygen concentration (hypoxia), the 

dose rate, and a host of unknown factors that could affect the tumor microenvironment [8].

There have been extensive efforts over the last two decades to develop mathematical models 

to provide quantitative estimates of TCP using analytical expressions and statistical 

considerations of cell kill based on the linear-quadratic (LQ) model [9]. The LQ model 

provides a simple formalism that embodies repairable and non-repairable radiation damage 

and ability to distinguish between early and late tissue responses [10]. Mechanistic TCP 

models using Poisson statistics [11,12] or birth-death models [13] were developed based on 

this formalism. Several modifications have introduced to these TCP models to account for 

growth kinetics and inter-patient heterogeneity. The historical development of these 

mechanistic TCP models has been recently traced by O’Rourke et al. [14].

Despite the fact that TCP models based on the LQ model are useful tools for analyzing the 

effects of fractionation and dose in conventional radiotherapy, Kirkpatrick and coworkers 

have recently cautioned against the belief that radiotherapy response simply reflects single- 

and double-strand DNA breaks [15,16]. For instance, Sachs et al. reviewed the limitations of 

LQ in cases where high doses are delivered over a short period of time [17]. The problem of 

overestimation by the LQ of the potency and toxicity of high-dose ablative radiotherapy 

techniques such as stereotactic body radiotherapy (SBRT) has misled some clinicians to 

avoid this therapeutic option for years, which is currently being re-considered with 

promising results [18]. Many technical and biological factors (e.g., cold spots, tumor stem 

cells, vascular stroma, threshold doses for damage, and epigenetic changes) can complicate 

cells radio responsiveness that need to be carefully investigated. In addition, acceptance of 

general model formalism may not always guarantee consistent results on clinical data 

because model’s parameter selection is typically based on in vitro cell culture experiments. 

Hence, different parameter choices in heterogeneous populations would frequently lead to 

different interpretation of outcomes based on these models [19,20].

A different approach based on datamining of patient information libraries (clinical, physical, 

and biological records) has been proposed to ameliorate these challenges and bridge the gap 
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between mechanistic radiological predictions and observed treatment outcomes. The main 

idea of data-driven models is to utilize datamining approaches and statistical model building 

methods to integrate disparate predictive factors that are likely related to tumor control 

within the same model. Such models may improve predictive power, but they must be 

simultaneously guarded for over-fitting pitfalls. This approach is motivated by the 

extraordinary increase in patient-specific biological and clinical information from progress 

in genetics and imaging technology [21]. In this data-driven approach, dosimetric metrics 

are mixed with other patient or disease-based prognostic factors [22]. It has been recognized 

that the TCP may also be affected by multiple clinical and biological factors, such as stage, 

volume, tumor hypoxia, etc [23,24]. For instance, De Crevoisier et al. reported that rectal 

distension on the planning computed tomography (CT) scan is associated with an increased 

risk of biochemical and local failure in patients of prostate cancer when treated without daily 

image-guided localization of the prostate [25]. Similarly, we found that as tumor distance to 

the spinal cord decreased, the rate of local tumor failure increased in patients receiving 

definitive radiotherapy for lung cancer [26]. Moreover, biological markers were found to be 

predictive of biochemical failure in prostate cancer or radiation-induced lung injury post-

radiotherapy treatment [27,28].

We therefore hypothesize that datamining methods can help the tumor control analyst gain a 

more insightful understanding of complex variable interactions that affect outcome, wider 

model applicability to clinical data, and better design of prospective clinical trials. In this 

paper, we describe modeling methods that can effectively probe the interactions of clinical 

and physical data, and potentially biological data to build predictive models of tumor local 

control. This will be done initially using our previously developed multi-variable logistic-

regression model building techniques [29,30]. However, to further explore the effects of 

variable interactions on patients’ risk; we will introduce concepts based on non-linear 

machine-learning methods. For both methods, we show how to validate the model estimates 

and its prediction ability using information theory and statistical resampling methods. These 

methods will be demonstrated on a cohort of non-small cell lung cancer (NSCLC) patients 

with clinical endpoint of local control post-radiotherapy treatment.

Methods and materials

Multi-metric modeling

The approach we adopted for modeling outcomes follows an exploratory datamining based 

approach. In this context of data-driven outcomes modeling, the observed treatment outcome 

is considered as the result of functional mapping of multiple dosimetric, clinical, or 

biological input variables. Mathematically, this could be expressed as: f (x; w*) : X → Y 

where xi∈ ℝd are the input explanatory variables (dose-volume metrics, patient disease 

specific prognostic factors, or biological markers) of length d and yi∈ Y are the 

corresponding observed treatment outcome (TCP or NTCP), and w* includes the optimal 

parameters of outcome model f (·) obtained by optimizing a certain objective criteria [22]. 

There are several choices for characterizing the mapping functional form, which could 

include linear, logistic, or non-linear kernels. Nevertheless, the typical S-shape of a dose-

response curve lends it self to logistic or non-linear kernels forms.
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Logistic regression

In this approach, a logit transformation is used [29]:

(1)

where n is the number of cases (patients), xi is a vector of the input variable values used to 

predict f(xi) for outcome yi of the ith patient. The ‘x-axis’ summation g(xi) is given by:

(2)

where d is the number of model variables and the β’s are the set of model coefficients 

determined by maximizing the probability that the data gave rise to the observations. The 

modeling exercise in this case is decomposed into two steps: (1) model order determination 

and (2) estimation of the most relevant model parameters. The role of the model order is to 

create a balance between complexity (increased model order), and the model’s ability to 

generalize to unseen data. Methods based on information theory (e.g., Akaike information 

criteria, Bayesian information criteria) or resampling techniques (e.g., cross-validation or 

bootstrapping could be used). Resampling methods will be adopted here and are discussed 

below. These methods are implemented in our open source in-house software tool DREES 

[30] shown in Figure 1 and their detailed description could be found in Deasy and El Naqa 

[22].

However, a drawback of the logistic regression formulation is that the model’s capacity to 

learn is limited. In addition, Equation 2 requires the user’s feedback to determine whether 

interaction terms or higher order terms should be added. A solution to ameliorate this 

problem is offered by applying machine-learning methods as discussed in the next section.

Kernel-based methods

Kernel-based methods and its most prominent member, support vector machines (SVMs), 

are universal constructive learning procedures based on the statistical learning theory [31]. 

In which, learning is defined as the process of estimating dependencies from data [32]. For 

discrimination between patients who are at low risk (class ‘−1’) versus patients who are at 

high risk (class ‘+1’) of radiation therapy, the main idea of the kernel-based technique would 

be to separate these two classes with ‘hyper-planes’ that maximizes the margin between 

them in the nonlinear feature space defined by implicit kernel mapping as illustrated in 

Figure 2. The optimization problem is formulated as:

(3)

subject to the constraint:
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where w is a weighting vector and Φ(·) is a nonlinear mapping function. The ξi represents 

the tolerance error allowed for each sample being on the wrong side of the margin. Note that 

minimization of the first term in Equation 3 increases the separation between the two classes 

(improves generalizabilty), whereas, minimization of the second term improves fitting 

accuracy. The trade-off between complexity and fitting error is controlled by the 

regularization parameter C. Higher values of C indicate more complexity and more 

penalization of fitting error.

It stands to reason that such non-linear formulation would suffer from the ‘curse of 

dimensionality’ (i.e., the dimension of the problem becomes too large to solve) [32]. 

However, computational efficiency is achieved from solving the dual optimization problem 

instead of Equation 3, which is convex with a complexity that is dependent only on the 

number of samples [31]. Moreover, because of its rigorous mathematical foundations, it 

overcomes the ‘black box’ stigma of other learning methods such as neural networks. The 

prediction function in this case is characterized only by a subset of the training data known 

as support vectors si:

(4)

where ns is the number of support vectors, αi are the dual coefficients determined by 

quadratic programming, and K(·,·) is a kernel function. An admissible kernel should satisfy 

Mercer’s positivity conditions since by definition they represent inner product functions 

[33]:

(5)

where the mapping Φ is implicit and need not to be defined. Typically used non-linear 

kernels include [34,35]:

(6)

where c is a constant, q is the order of the polynomial, and σ is the width of the radial basis 

functions. Note that the kernel in these cases acts as a similarity function between sample 

points in the feature space. Moreover, kernels enjoy closure properties, i.e., one can create 

admissible composite kernels by weighted addition and multiplication of elementary kernels. 

This flexibility allows for constructing a neural network by using combination of sigmoidal 

kernels or one could choose a logistic regression equivalent kernel by replacing the hinge 

loss in Equation 3 with the binomial deviance [32].
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Model variable selection

Any multivariate analysis often involves a large number of variables or features [36]. The 

main features that characterize the observations are usually unknown. Therefore, 

dimensionality reduction or subset selection aims to find the ‘significant’ set of features. 

Although an ideal method should marginalize redundant variables, but such variables 

usually complicate data exploration without significance. Finding the best subset of features 

is definitely challenging, especially in the case of linear or non-linear models. The objective 

is to reduce the model complexity, decrease the computational burden, and improve the 

model’s performance on unseen data, i.e., its generalizabilty when applied prospectively. In 

any given pattern recognition problem, there is a large number, K, of features that could be 

extracted from the patients data to be modeled. Therefore, it is necessary to select a finite set 

of features d that has the most discriminating power for the problem. An optimal subset 

could be determined by exhaustive search, which would yield:

However, there are other alternatives [37]. The straightforward method is to make an 

educated guess based on experience and domain knowledge, then, apply feature 

transformation (e.g., principle component analysis (PCA)) [37,38], or sensitivity analysis by 

using organized search such as sequential forward selection (SFS), or sequential backward 

selection (SBS) or combination of both [37]. In our previous work [29], we used an SFS 

search for model order determination based on information theory and resampling 

techniques to select the significant variables.

Visualization of higher dimensional data

Prior to applying a datamining method, it is important to visualize the data distribution, as a 

screening test. This requires projecting the high-dimensional dataset into a lower 

dimensional space. Techniques such as principal component analysis (PCA) and 

multidimensional scaling (MDS) allow visualization of complex data in two-dimensional 

spaces [33]. In this work, we chose the PCA approach due to its simplicity. In PCA analysis, 

the principal components (PCs) of a data matrix X (with zero mean) are given by:

(7)

where U∑VT is the singular value decomposition of X. This is equivalent to transformation 

into a new coordinate system such that the greatest variance by any projection of the data 

would lie on the first coordinate (first PC), the second greatest variance on the second 

coordinate (second PC), and so on.

The term ‘Variance Explained,’ used in PCA plots (cf. Figure 4), refers to the variance of 

the ‘data model’ about the mean prognostic input factor values. The ‘data model’ is formed 

as a linear combination of its principal components. Thus, if the PC representation of the 

data ‘explains’ the spread (variance) of the data about the full data mean, it would be 

expected that the PC representation captures enough information for modeling.
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Evaluation and validation methods

Evaluation metrics—To evaluate the performance of our models, we used Spearman’s 

rank correlation (rs), which provides a robust estimator of trend [39]. This is a desirable 

property, particularly when ranking the quality of treatment plans for different patients. 

Other metrics could be used as well such as Matthew’s correlation coefficient (MCC) [40], 

which measures classification rate or the area under the receiver-operating characteristics 

(ROC) curve (Az) [41].

Statistical validation—We used resampling methods (leave-one-out cross-validation 

(LOO-CV) and bootstrap) for model selection and performance comparison purposes. These 

methods provide statistically sound results when the available data set is limited [42]. In 

LOO-CV, all the data are used for training except for one left out for testing; the sample is 

permuted in a round-robin fashion, whereas in bootstrap, the data is divided randomly into 

training and testing samples. A parameter is tuned during LOO-CV, which effectively 

suppresses contributions from variables that do not clearly contribute to improved model 

performance. Application of these methods for radiotherapy outcome modeling is reviewed 

in our previous work [29].

Data set

The set consisted originally of 57 patients with discrete primary lesions, complete dosimetric 

archives, and follow-up information for the endpoint of local control (22 locally failed 

cases). One patient with local control was excluded from the analysis using Cook’s distance 

for detecting outliers as discussed elsewhere [43]. The patients were treated with 3D 

conformal radiation therapy with a median prescription dose of 70 Gy (60–84 Gy) according 

to institutional guidelines. The dose distributions were corrected using Monte Carlo 

simulations [44].

The results presented here are only for demonstrating the use of our techniques and are not 

intended as formal clinical findings, which are presented elsewhere [26,43]. The clinical 

data included age, gender, performance status, weight loss, smoking, histology, neoadjuvant 

and concurrent chemotherapy, stage, number of fractions, tumor elapsed time, tumor 

volume, and prescription dose. Treatment planning data were de-archived and potential 

dose-volume prognostic metrics were extracted using CERR [45]. These metrics included 

Vx (percentage volume receiving at least x Gy), where x was varied from 60 to 80 Gy in 

steps of 5 Gy, mean dose, minimum and maximum doses, center of mass location in the 

craniocaudal (COMSI) and lateral (COMLAT) directions. The anterior-posterior center of 

mass and minimum distance to the spinal cord were excluded from the analysis as being 

surrogates to tumor volume effects [26,43]. This resulted in a set of 56 patients and 23 

candidate variables to model TCP.

Experimental results

The modeling process using non-linear statistical learning starts by applying PCA to 

visualize the data in two-dimensional space and assess the separability of low-risk from 

high-risk patients. Non-separable cases are modeled by non-linear kernels. This step is 
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preceded by a variable selection process and the generalizability of the model is evaluated 

using resampling techniques as explained earlier and analyzed below.

Data exploration

In Figure 3, we show a correlation matrix representation of these variables with clinical TCP 

and cross-correlations among themselves using bivariate Spearman’s coefficient (rs). Note 

that many DVH-based dosimetric variables are highly cross-correlated, which complicate 

the analysis of such data. In Figure 4a and b, we summarize the PCA analysis of this data by 

projecting it into 2-D space for visualization purposes. Figure 4a shows that two principle 

components are able to explain 70% of the data. Figure 4b shows a relatively highly overlap 

between patients with and without local control; indicating potential benefit from using non-

linear kernel methods.

Model building using logistic regression

The multi-metric model building using logistic regression is performed using a two-step 

procedure to estimate model order and parameters. In each step, a sequential forward 

selection (SFS) strategy is used to build the model by selecting the next candidate variable 

from the available pool (23 variables in our case) based on increased significance using 

Wald’s statistics [29]. In Figure 5a, we show the model order selection using the LOO-CV 

procedure. It is noticed that a model order of two parameters provides the best predictive 

power with rs = 0.4. In Figure 5b, we show the optimal model parameters’ selection 

frequency on bootstrap samples (280 samples were generated in this case). A model 

consisting of GTV volume (β = −0.029, p = 0.006) and GTV V75 (β = +2.24, p = 0.016) had 

the highest selection frequency (45% of the time). The model suggests that increase in tumor 

volume would lead to failure, as one would expect due to increase in the number of 

clonogens in larger tumor volumes and this is well documented in the literature [46–48]. The 

V75 metric is related to dose coverage of the tumor, where it is noticed that patients who 

had less than 20% of their tumor covered by 75 Gy were at higher risk of failure [49]. This 

result is consistent with the observation made by Zhao et al. that high radiation dose can 

reduce the negative effect of large GTV in NSCLC patients [50]. However, this approach 

does not account for possible interactions between these metrics nor accounts for higher 

order non-linearities.

Kernel-based modeling

To account for potential non-linear interactions, we will apply kernel-based methods. 

Moreover, we will use the same variables selected by the logistic regression approach. We 

have demonstrated recently that such selection is more robust than other competitive 

techniques such as the recursive feature elimination (RFE) method using in microarray 

analysis [51]. In this case, a vector of explored variables is generated by concatenation. The 

variables are normalized using a z-scoring approach to have a zero mean and unity variance 

[37]. We experimented with different kernel forms, best results are shown for the radial 

basis function (RBF) in Figure 6a. The figure shows that the optimal kernel parameters are 

obtained with an RBF width σ = 2 and regularization parameter C = 10000. This resulted in 

a predictive power on LOO-CV rs = 0.68, which represents 70% improvement over the 

Naqa et al. Page 8

Acta Oncol. Author manuscript; available in PMC 2016 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



logistic analysis results. This improvement could be further explained by examining Figure 

6b, which shows how the RBF kernel tessellated the variable space non-linearly into 

different regions of high and low risks of local failure. Four regions are shown in the figure 

representing high/low risks of local failure with high/low confidence levels, respectively. 

Note that cases falling within the classification margin have low confidence prediction 

power and represent intermediate risk patients, i.e., patients with ‘border-like’ characteristics 

that could belong to either risk group.

Comparison with mechanistic radiobiological models

For comparison purposes with mechanistic TCP models with chose the Poisson-based TCP 

model [11,52] and the cell kill equivalent uniform dose (cEUD) model [53]. The Poisson-

based TCP parameters for NSCLC were selected according to Willner et al. [48], in which 

the sensitivity to dose per fraction (α/β = 10 Gy), dose for 50% control rate (D50 = 74.5 

Gy), and the slope of the sigmoid-shaped dose-response at D50 (γ50 = 3.4). The resulting 

correlation of this model was rs = 0.33. Using D50 = 84.5 and γ50 = 1.5 [54,55] yielded an rs 

= 0.33 also. This no change could be explained in terms of interval estimates of D50 (41–

74.5 Gy) and γ50 (0.8–3.5) reported by Willner et al. [48]. For the cEUD model, we selected 

the survival fraction at 2 Gy (SF2 = 0.56) according to Brodin et al. [56]. The resulting 

correlation in this case was rs = 0.17. A summary plot of the different methods predictions 

as a function of binned patients into equal groups is shown in Figure 7. It is observed that 

the best performance was achieved by the non-linear (SVM-RBF). This is particularly 

observed for predicting patients who are at high risk of local failure.

Discussion

Tumors’ response to radiotherapy is a complex process due to the involvement of many 

intertwined microenvironmental, physical, and biological parameters that can change the 

treatment outcome from one case to another. For instance, we are still building our 

knowledge about the pathophysiological factors that contribute to the spatial and temporal 

heterogeneity of tumor hypoxia [57]. Better understanding of the dynamics of this complex 

process and other biological processes in the tumors microenvironment would provide new 

opportunities to improve outcomes. Nevertheless, the development of predictive models of 

tumor response remains an important objective with our best current knowledge in order to 

provide cancer patients with the best possible treatment. There is plethora in patient’s 

specific data that needs to be systematically collected and mined in relation to observed 

outcomes.

In this work, we have presented methods based on datamining to effectively interrogate 

patient’s clinical, physical, and biological records to extract relevant information and build 

maximally predictive models of tumor response based on this data. The objective of this 

methodology is to provide the TCP analyst with further insight into the data and improve our 

prediction of treatment response. In addition, these methods could improve our current 

understanding of radiological processes and they could potentially be utilized to develop 

better mechanistic radiological models based on this new knowledge.
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We have presented multi-metric model building based on the classical logistic regression 

approach and demonstrated that this modeling process could be extended to a non-linear 

framework that would include higher-order variable interactions and local variable 

averaging to achieve higher prediction powers. The kernel approach presented here 

automates the search for higher-than-linear interactions between input variables that may be 

relevant to tumor local control. This is accomplished through an implicit non-linear mapping 

to higher dimensional feature space. The SVM kernel approach maximizes the separation 

between events and non-events in feature space. This approach has been recognized to yield 

better generalization with small datasets compared to standard maximum likelihood 

approaches [34,35].

The potential benefit from these methods can be predicted on the basis of principal 

components analysis as was shown in Figure 4, in which the overlap in the variable space 

could be resolved via mapping to the higher dimensional feature space according to Cover’s 

theorem of pattern recognition analysis [58].

The plot in Figure 6b could be used as guideline for better prediction of failure risk based on 

this model. A good feature of this framework, that it highlights areas where the confidence 

level of prediction power is weak (inside the margin) versus strong (outside the margin).

One of the main challenges of this datamining framework is the selection of the most 

relevant variables to include in the model. This is of course important clinically, because it 

supports increased focus on potentially causative factors. Our selection method based on 

resampling and information theory seems to produce good generalization results [29], 

however, this remains an open area for future research. Furthermore, validation on 

independent datasets such as multi-institutional clinical cooperative groups’ repositories 

would be required before clinical adoption of these models.

Conclusions

We have demonstrated datamining approaches for model building in radiotherapy based on 

linear and non-linear statistical learning. The non-linear kernel-based approach provided the 

best predictive results of TCP. These methods can efficiently and effectively handles high 

dimensional space of potentially critical features and are known to possess superior 

statistical power when learning from smaller sample sizes. For cases where non-linear 

effects are deemed important as tested by PCA, this technique can significantly improve on 

the best result achieved from the previous methods, by considering variable interactions and 

ability to generalize to unseen data, which is important for future clinical implementation. 

Future work will examine other aspects of nonlinear modeling for outcomes, such as 

incorporating prior information based on mechanistic TCP models, adapting the kernel 

specifically to the expected response structure, this, as well as addressing the variable 

selection problem more comprehensively.
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Figure 1. 
A snapshot of the dose-response explorer software (DREES) available from: http://

radium.wustl.edu/drees.
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Figure 2. 
Kernel-based mapping from a lower dimensional space (X) to a higher dimensional space 

(Z) called the feature space, where non-separable classes become linearly separable. Already 

established linear theory could be used to estimate the separating hyperplane. Samples on 

the margin are denoted as support vectors and they define the prediction function, which 

could be implemented efficiently using the kernel trick.
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Figure 3. 
Correlation matrix showing the candidate variables correlations with TCP and among the 

other candidate variables.
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Figure 4. 
Visualization of higher dimensional data by principle component analysis (PCA). (a) The 

variation explanation versus principle component (PC) index. (b) The data projection into 

the first two principal components space. Note the cases overlap.
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Figure 5. 
TCP model building using Logistic regression. (a) Model order selection using LOO-CV. 

(b) Model parameters estimation by frequency selection on bootstrap samples.
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Figure 6. 
Kernel-based modeling of TCP in lung cancer using the GTV volume and V75 with support 

vector machine (SVM) and a radial basis function (RBF) kernel. Scatter plot of patient data 

(black dots) being superimposed with failure cases represented with red circles. (a) Kernel 

parameter selection on LOO-CV with peak predictive power attained at σ = 2 and C = 

10000. (b) Plot of the kernel-based local failure (1-TCP) nonlinear prediction model with 

four different risk regions: (i) area of low risk patients with high confidence prediction level; 

(ii) area of low risk patients with lower confidence prediction level; (iii) area of high risk 
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patients with lower confidence prediction level; (iv) area of high risk patients with high 

confidence prediction level. Note that patients within the “margin” (cases ii and iii) 

represent intermediate risk patients, which have border characteristics that could belong to 

either risk group.
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Figure 7. 
A TCP comparison plot of different models as a function of patients’ being binned into 

equal groups using the model with highest predictive power (SVM-RBF). The SVM-RBF is 

compared to Poisson-based TCP, cEUD, and best 2-parameter logistic model. It is noted that 

prediction of low-risk (high control) patients is quite similar; however, the SVM-RBF 

provides a significant superior performance in predicting high-risk (low-control) patients.
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