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Usually, origami-based morphing structures are
designed on the premise of ‘rigid folding’, i.e. the
facets and fold lines of origami can be replaced
with rigid panels and ideal hinges, respectively.
From a structural mechanics viewpoint, some rigid-
foldable origami models are overconstrained and
have negative degrees of freedom (d.f.). In these
cases, the singularity in crease patterns guarantees
their rigid foldability. This study presents a new
method for designing self-deploying origami using
the geometrically misaligned creases. In this method,
some facets are replaced by ‘holes’ such that the
systems become a 1-d.f. mechanism. These perforated
origami models can be folded and unfolded similar
to rigid-foldable (without misalignment) models
because of their d.f. focusing on the removed facets,
the holes will deform according to the motion of
the frame of the remaining parts. In the proposed
method, these holes are filled with elastic parts and
store elastic energy for self-deployment. First, a
new extended rigid-folding simulation technique is
proposed to estimate the deformation of the holes.
Next, the proposed method is applied on arbitrary-
size quadrilateral mesh origami. Finally, by using the
finite-element method, the authors conduct numerical
simulations and confirm the deployment capabilities
of the models.

1. Introduction
Represented by Miura-ori and the double corrugation
surface (DCS), origami offers creative solutions for
folding and deploying large structures and has inspired
the creation of various types of deployable structures
[1]. Scientific attention towards origami was directed by
geometricians and mathematicians. After the pioneering
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work of Lang’s ‘Treemaker’ [2], researchers proposed various computational methods [3,4] for
crease-pattern designing. Although some restrictions about foldable shapes remain, these works
are considered to have enabled the creation of crease patterns for arbitrarily shaped origami.
In parallel to the works on new crease-pattern designing, researchers have also addressed the
remaining problem of ‘How to fold’ from an engineering perspective. Hawkes et al. [5] reported
the development of a composite material sheet that can fold itself by electrical heating of a shape
memory alloy (SMA) hinge. Liu et al. [6] proposed a self-folding origami made of sheets of
optically transparent, prestrained polystyrene that shrinks in-plane when heated uniformly. A
similar concept is found in the self-folding shape memory composites proposed by Tolley et al. [7],
which are activated with uniform heating in an oven. These actuation mechanisms are designed to
fold from a flat sheet to a three-dimensional shape, but it is also possible to use them for deploying
from a fully stowed to a fully deployed state. The mechanisms in these previous studies were
realized by morphing hinge parts. This is reasonable because the materials mostly deform along
the fold lines. However, controlling the angle between two facets requires a complex mechanical
system or special materials such as plate-shaped SMAs or shape memory polymers, which leads
to increased manufacturing cost and reliability degradation.

As an alternative solution for self-folding/unfolding origami, the authors propose the
application of elastic behaviour found in some origami models [8]. Usually, origami-based
structures are designed on the premise of ‘rigid foldability’, i.e. the facets and fold lines of
origami can be replaced with rigid panels and ideal hinges, respectively. Wu & You [9] proposed
a new crease pattern that allows a tall box-shaped bag with a rectangular base to be rigidly
folded flat. Yasuda et al. [10] examine the folding behaviour of Tachi–Miura polyhedron (TMP)
bellows, which is known as a rigid-foldable structure by theoretical and experimental methods.
From an engineering standpoint, rigid origami is useful because it provides a solution to folding
rigid thin-walled structures. However, ideal rigid folding is hard to achieve in real structures;
therefore, almost every act of folding and unfolding is accompanied by elastic deformations.
These deformations emerge as stretching and shrinkage of fold lines, fold line drifts and out-of-
plane deformation of facets [11–13]. Guest & Pellegrino [14–16] examined the folding properties
of triangulated cylinders by using a computational approach and experiments. Schenk & Guest
[17] proposed the folded textures sheets model with egg-box and Miura-ori patterns and
performed a stiffness analysis by using a pin-jointed truss framework without the expense of
a full finite-element analysis. If the elastic behaviours of these origami models can be used
as the actuator for deployment, the requirement for complex mechanical systems or special
materials for the origami-based deployable structures will be overcome. Excellent examples of
this concept are found in the wings of insects. Entomologists have pointed out that certain species
of Coleoptera and Dermaptera use the intrinsic elasticity of their wings for folding and unfolding
them [18–20].

This paper illustrates a new strategy for designing self-deploying origami actuated by the
elastic energy stored in its own facets or simple formed actuators such as springs. In some
origami models, rigid foldability is guaranteed by a singularity of crease patterns regardless
of their mechanical degree of freedom (d.f.). This special rigid foldability is investigated in
quadrilateral mesh origami by Tachi [21]. Because of singularity, for some rigid-origami models
that have redundant constraints, the omission of facets can be tolerated. These ‘hollow facets’
will maintain their shape during the folding process in rigid-foldable crease patterns. However, if
misalignments are introduced in the creases, they should deform because of the loss of structural
singularity. The proposed method uses these hollow facets as actuators or as storage for elastic
energy for deployment. The basic concept of this self-deploying origami was validated in a
simple nine-hinged plate model [8]. However, the previous work has had limitations in the size
and geometry of its base origami models. In this paper, the proposed method is extended to a
generalized quadrilateral mesh origami with arbitrary size and geometry.

The outline of the paper is as follows. First, the concept of the proposed self-deploying origami
is explained using quadrilateral mesh origami. The second part illustrates extended rigid-origami
simulation techniques that can treat the rigid-origami model with holes and ball joints. This
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part also describes the problem of the mountain–valley assignment in numerical calculations.
In the third part, the techniques are used to find a proper misalignment to provide an ideal
relationship between facet deformation and folding/unfolding of whole structures, and crease-
pattern designing methods are revealed. The last section details the numerical simulations using
the finite-element method and confirms the deploying capabilities of the models.

2. Self-deploying origami with misaligned crease patterns
This study considers quadrilateral mesh origami, such as Miura-ori and DCS, as shown
in figure 1a,b. Some quadrilateral mesh origami possesses rigid foldability even in the
overconstrained condition, which implies that the number of constraints exceeds the total
d.f. of the mechanism. Tachi investigated the geometric condition for enabling rigid motion
in quadrilateral mesh origami and created the various crease patterns (figure 2) [21]. This
mechanically paradoxical rigid foldability is caused by a singularity of crease patterns. From an
engineering standpoint, this overconstrained condition benefits deployable structures. Because of
the redundant construction, the structure tolerates omission or destruction of facets; it maintains
the inextensional mechanisms until its d.f. exceeds one and can be deployed according to the
initially determined movement.

The proposed method uses these structurally overconstrained origami models. First, some
facets are intentionally removed from the model to achieve 1-d.f. The space-frame truss model
is used to calculate the d.f. Under the assumption of rigid folding, the origami model shown
in figure 3a is equivalent to the space-frame truss model shown in figure 3b. In the truss
model, all fold lines and vertices are replaced with truss members and ball joints, respectively,
and two additional trusses are added to the diagonal lines of each quadrilateral facet. The
stability of the space-frame trusses can be determined by the d.f. expressed by the following
equation:

d.f. = 3j − (t + r), (2.1)

where j is the total number of joints, t is the total number of truss members and r is the number of
reactions (generally equal to six in a three-dimensional structure). Using this equation, the truss of
figure 3b is determined as overconstrained: t = 72, j = 25, r = 6, then d.f. = −3). In order to provide
a 1-d.f. mechanism, four redundant trusses should be removed. There are various pattern options
for selecting the trusses to be removed. This study treats the restrictions with omission of facets,
so truss members are always removed by the set of two diagonal lines as shown in figure 3c.
In addition, two adjacent facets may not be removed at the same time. This is necessary for the
simple expression of deformations of hollow facets, which can be achieved by simple actuators.

Figure 4 shows the 1-d.f. origami model with two hollow facets A and B. If the crease pattern
has the aforementioned peculiar rigid foldability, the hollow facets will not deform during
folding/unfolding of the whole structure (figure 4a). Next small misalignments are introduced
in the crease lines. The sizes of these misalignments should be small enough to not cause
interferences with facets during the deployment. Obviously, these misalignments break crease-
pattern-dependent rigid foldability. However, because of its 1-d.f. mechanism, achieved by the
existence of hollow facets, the structure can be folded/unfolded the same way as with the
correct (without misalignment) crease model. The important difference is that hollow facets
with a misaligned crease pattern will deform during folding/unfolding of the whole structure
(figure 4b), unlike with the correct crease model. In the proposed method, deployment of the
structures is controlled by the deformation of the hollow facets. This study employed the lengths
of two diagonal lines of the square frame as the simple expressions for the deformations. If the
lengths correspond one-to-one with the progression of deployment of the whole structure, the
folding and unfolding of the structure can be controlled only by changing the diagonal lines. The
design process for this self-deploying origami comprised searching for the proper misalignment
that provided an ideal history of diagonal lines. In the properly misaligned crease patterns,
the total strain energy in the actuating elements must be monotonically decreasing to ensure
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(a)

(b)

Figure 1. Examples of quadrilateral mesh origami models. (a) Miura-ori and (b) DCS.

Figure 2. Rigid-foldable generalized quadrilateral mesh origami (courtesy of Tomohiro Tachi) [19]. (Online version in colour.)

(a) (b) (c)

Figure 3. Structural stabilities of 4 × 4 Miura-ori model. (a) Origami model. (b) Space-frame truss model in overconstrained
condition (d.f.= −3). (c) Space flame truss model with 1-d.f.

deployment. This paper discusses the simplest case where all these diagonal lines monotonically
increased or decreased during the folding/unfolding process, thus indicating that only simply
extending or shrinking actuators were sufficient to provide the necessary deformation on the
hollow facets to achieve self-deployment.
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Figure 4. Deformations of hollow facets. (a) In correct crease patterns. (b) Misaligned crease patterns.

3. Extended rigid-origami simulation techniques

(a) Equations of origami kinematics with holes
To find the suitably misaligned crease patterns, a method to calculate the movements of the frames
of hollow facets (determined by the edges of remained facets) is necessary. In the kinematic
analysis of complex mechanisms, the matrix method using the Denavit–Hartenberg notation is
classically used [22]. Belcastro & Hull [23] proposed the modelling method of the kinematics
in paper folding by using affine transformations, which is a strip-down version of the matrix
method. Based on this modelling, Tachi proposed a system for simulating the folding motion of
origami by calculating the trajectory by a projection to the constrained space on the basis of a
rigid-origami model [24,25]. The rigid-origami simulation technique is the specialized kinematic
analysis method for origami and enables us to directly calculate the folding motion from given
crease patterns defined on a plane. However, because of the hollow facets and ball-joint parts, it
is impossible to apply these techniques on the perforated origami models discussed in this paper.
This section illustrates the extension of rigid-origami simulation techniques that can consider such
unusual origami models.

In a rigid-foldable origami model, the position and attitude of facets at a certain moment of the
folding process can be represented by the folding angles between two connected facets. In fact,
in the case of 1-d.f. origami, the number of independent folding angles is always one. So if one
folding angle is fixed, the others can be determined subsequently by the geometrical restrictions.
The rigid-origami simulation techniques provide the generalized method for calculating all
folding angles during the folding process in the given crease patterns, and they consist of the
equation derivations for geometrical restrictions and the method for solving them. In a normal
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Figure 5. Restriction emerged around a vertex. A folding angle is defined as the right figure: complete unfolding is represented
asρi = 0. Positive direction (Valley folding) is defined the right-handed screw direction from considered vertex outwards.

origami model, all necessary equations are obtained from the restrictions around the vertices.
Figure 5 shows a vertex defined by n number of sector angles θ1–θn. The equations that the folding
angles ρ1, . . . , ρn should meet are expressed as follows, according to [25].

R(ρ1, . . . , ρn) = χ1χ2 · · · χn
∏n

k=1
= I (3.1)

and

χi =

⎛
⎜⎝

1 0 0
0 cos ρi − sin ρi
0 sin ρi cos ρi

⎞
⎟⎠

⎛
⎜⎝

cos θi − sin θi 0
sin θi cos θi 0

0 0 1

⎞
⎟⎠ . (3.2)

Because χ1, . . ., χn represents rotation by each folding line, equation (3.1) can be translated as the
condition in which one coordinate system returns to the initial attitude after being sequentially
rotated about each folding line. As R is a rotational matrix, this fundamentally reduces to three
scalar equations by using elements as follows:

R(2, 3) = 0, R(3, 1) = 0, R(1, 2) = 0. (3.3)

Tachi [25] also addresses the case of the origami model with isolated holes. This configuration
is expressed by sector angles θ1–θn and edge vectors d1 ∼ dn, as shown in figure 6. Note that
the sector angles are defined between the adjoining two folding lines. Then, the folding angles
ρ1, . . ., ρn should satisfy following equations:

R(ρ1, . . . , ρn) = χ1χ2 . . . χn = I (3.4)

and

n∑
i=1

⎛
⎝

i∏
k=1

χk

⎞
⎠ di = 0. (3.5)

Here, di represents an edge line vector around a hole on each facet axis.
The unusual origami models discussed in this paper include connected holes and ball-joint

facets, so the above conditions are insufficient to express all restrictions. Therefore, an extended
rigid-origami simulation technique is presented that provides a universal method to simulate the
mechanisms for origami with hollow facets.

The restrictions around an isolated hole (equations (3.4) and (3.5)) can be interpreted as
equivalent to a robot arm manipulation problem. Considering facets and folding lines as arms
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Figure 7. Equivalent problem on robot armmanipulation with pin joints (d2, d4, d6 and d8 are considered as zero in this case).

and pin joints, figure 7a can be translated as the robot arm model shown in figure 7b. To close a
loop around the hole, the arm tip of facet-1′ should be matched with original facet-1. Equations
(3.4) and (3.5) represent the conditions about the attitude and the position of facet-1′, respectively.
Similarly, a hole with ball-joint facets is represented as the robot arm problem shown in figure 8.
In order to treat this problem, the extended technique employs new unknowns on the ball-joint
parts. The relative attitude between two facets connected with ball joints is expressed by Euler
angles (ri, pi, hi) as shown in figure 8a. Including these unknowns, the rotation matrixes on a
folding line and a ball joint are represented as follows:

(folding line)

χi =

⎛
⎜⎝

1 0 0
0 cos ρi − sin ρi
0 sin ρi cos ρi

⎞
⎟⎠

⎛
⎜⎝

cos θi − sin θi 0
sin θi cos θi 0

0 0 1

⎞
⎟⎠ (3.6)

and

(ball joint)

χi =

⎛
⎜⎝

coshi 0 sinhi
0 1 0

− sinhi 0 coshi

⎞
⎟⎠

⎛
⎜⎝

1 0 0
0 cos pi − sin pi
0 sin pi cos pi

⎞
⎟⎠

⎛
⎜⎝

cos ri − sin ri 0
sin ri cos ri 0

0 0 1

⎞
⎟⎠. (3.7)
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Figure 9. The unknowns and restrictions in 4 × 4 Miura-ori model with two hollow facets.

By using these rotational matrixes, the restriction around holes with ball joints can be represented
by the same forms of equations (3.4) and (3.5). The folding lines and ball joints should be
numbered serially around a hole like figure 8c, and applied equations (3.6) and (3.7), respectively.

These equations can represent all restrictions on unusual origami models with hollow facets.
In the case of figure 4, the crease pattern has 16 folding lines and one ball joint, so the number
of unknowns is determined to be 19. Geometrical restrictions are obtained from two vertices and
two holes, which results in 18 nonlinear equations (figure 9).

(b) Numerical calculations
In the proposed models, the nonlinear simultaneous equations obtained from the aforementioned
restrictions always have an additional unknown because of their 1-d.f. mechanism. Further,
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Figure 10. Possible mountain–valley assignments of connected two 4-degree vertexes.

when one folding angle is specified, the simultaneous equation can be solved using a numerical
solution. First, one folding angle is selected as a pilot for folding. Starting from 0 [degree],
indicating completely unfolded, the pilot angle is increased gradually and the other folding angles
are calculated using a numerical solution. Repeating this process provides the folding movement
for all facets during the folding process.

Using an iterative algorithm such as the Newton–Raphson method used in this study, it is
not difficult to solve the aforementioned nonlinear simultaneous equations. However, a problem
peculiar to origami simulation is found in the generation of objective folding modes. Generally,
a rigid-foldable origami has multiple mountain–valley assignment patterns which can cause
inextensional mechanisms. These mountain–valley assignments are satisfied in the nonlinear
simultaneous equations derived in the last subsection. However, in incorrect folding modes,
the structure cannot be completely folded because of the conflict of facets. Figure 10 shows
the four different possible mountain–valley assignments in two connected 4-degree vertices.
Which mountain–valley assignment occurs as the solution is determined by the initial values
of iterative calculations. The problem is that all possible mountain–valley assignments exist
in close proximity in the solution space at the starting point of the rigid-folding simulation.
This is because a valley crease easily changes to a mountain crease (or vice a versa) in the
neighbourhood of a completely unfolded state. In order to converge a solution to a proper
mountain–valley assignment, iterative calculations should be started using proper initial values
close to the solution of the correct mountain–valley assignment. However, the increasing number
of unknowns and the existence of crease pattern misalignment make this problem more difficult;
therefore, it is very hard to seek proper initial values by using a simple trial-and-error method.

The authors propose the following methods for solving this problem. In the case of usual
rigid-foldable origami models without misalignments, folding angles can be calculated by other
easy methods. For example, if a crease pattern consists of only 4-degree vertices, such as with
quadrilateral mesh origami, all folding angles can be calculated from a given pilot angle using
symbolic methodology. This technique is known as the sequential method [8]. In the proposed
methods, the initial values for first step are calculated from the base model, i.e. the correct crease
pattern before it is misaligned and facets removed. The discussed misalignments are so small that
the solutions in the correct models and in the misaligned one are thought to be similar. Then,
using the solutions from the correct model as the initial values can make the solutions converge
for the desired mountain–valley assignment.

4. Crease-pattern design
The extended rigid-origami simulation technique can demonstrate the folding process of the
unusual origami model with holes and ball joints and subsequently reveal the deformation of
the hollow facets. This section explains the process of designing misaligned crease patterns that
can be used as self-deploying origami. In a quadrilateral mesh origami with m × n panels, the
d.f. is calculated as −(m − 2)(n − 2) + 1 using the space-frame truss model (figure 11). This means
that additional (m − 2)(n − 2) restrictions have to be removed to achieve a 1-d.f. mechanism. For
simplicity, this paper considers the case in which at least one of m and n is an even number.
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m

n

Figure 11. Generalizedquadrilateralmeshorigamiwithm × npanels. The total numberof joints j and the total numberof truss
members t are calculated as mn + m + n + 1 and 4mn + m + n. Then, the d.f. is calculated as −(m − 2)(n − 2) + 1
from equation (2.1).

As mentioned in the previous section, removing one facet reduces two restrictions. Then, the
number of hollow facets that confer a 1-d.f. mechanism can be calculated as (m − 2)(n − 2)/2.
This removal pattern has numerous variations. To achieve a smooth deployment, it is desired
that deployment forces are widely dispersed on the whole structure. Therefore, we propose the
methods as shown in figure 12a. As an example, 6 × 6 Miura-ori crease patterns are considered.
Except for the perimeter panels, the inner panels are removed with a checkerboard pattern. This
removal pattern can always confer a 1-d.f. mechanism. In the example of figure 12a, the d.f. is
calculated as −15, so eight hollow facets are introduced to achieve a 1-d.f. mechanism.

To cause deformation on the hollow facets in the folding process, misalignments are introduced
in the crease patterns. The extended rigid-origami simulation techniques are conducted on these
misaligned and perforated origami models. The model shown in figure 12 consists of 28 folding
lines and nine ball joints, and hence has 55 unknowns. The necessary equations are obtained from
two vertices and eight holes. Each vertex and hole provides three and six equations, respectively,
so 54 nonlinear equations are developed from equations (3.1)–(3.7). First, in 55 unknowns ρ1–ρ55,
only ρ1 is selected as a pilot angle and set at 1.0◦. This example uses the angle of A9A2 as the
pilot angle ρ1(figure 13). The remaining 54 unknowns are calculated from the above-mentioned
54 nonlinear equations using the Newton–Raphson method. The initial values of ρ2–ρ55 are given
by the results of the rigid-origami simulation of the correct model using sequential methods.
Solutions obtained at ρ1 = 1.0 are used as the next initial values of the calculation at ρ1 = 2.0◦.
Repeating this process, the histories of diagonal line lengths are recorded until ρ1 = 180◦. The
calculations are conducted by Matlab�.

This study uses a randomized approach to search for a proper misalignment. All vertices
except for the ones on the perimeters are given randomized misalignment. In each case, the
programme determines whether the misalignment is proper for simple self-deployment, i.e. all
deformation histories of the hollow facets (diagonal lines L1–L16) are monotonic increase or
decrease. The misalignments are selected from +0.4, 0.0 and −0.4 at random and given to x- and
y-coordinates of each vertex. This amplitude corresponds to 0.5% of the width of parallel creases
in the Miura-ori pattern.

Using this method, we can find several crease patterns with proper misalignments, one
example of which is shown in table 1, in the form of vertices data. Vertices A10–A13, A20,
A23, A27 and A37–A41 are slightly shifted from correct pattern. These misaligned vertices are
followed by an asterisk in table 1. Small allows in figure 12b also express the shift directions of
misaligned vertices. In the resulting extended rigid-origami simulation, it is confirmed that valley
and mountain creases are assigned correctly according to a Miura-ori pattern as shown in top left
of figure 13. The deformation histories of each diagonal line are shown in figure 13, which are of
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Figure 12. Designing process for self-deploying origami. (a) 1-d.f. model with eight hollow facets. Their deformations are
represented by the lengths of their diagonal lines, L1–L16. (b) A Miura-ori base model with misaligned vertexes A10–A13, A20,
A23, A27 and A37−41. (Online version in colour.)

monotonic increase or decrease. This implies that self-deployment of this model is achieved by
simply extending or shrinking the spring set on these diagonal lines. According to figure 13, these
springs required approximately ±2–5% elongations in the deployment.

5. Deployment simulation using LS-DYNA
In the discussions in the above sections, the facets were assumed to be the rigid plates, and the
deploying motions were calculated only by geometrical considerations. However, a real plate has
a finite stiffness and, therefore, deforms during the deploying process. These facet deformations
may lead to undesirable motions and eventual locking up of the mechanism into some locally
stabilizing points. In this section, the proposed structure was modelled by the elastic plates
and ideal joints having no friction. A commercially available finite-element method package,
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Table 1. Vertices data of figure 12 model. Misaligned vertices are followed by an asterisk.

vertex x y vertex x y

A1 0 0 A25 280 240
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A2 80 0 A26 360 240
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A3 160 0 *A27 439.6 240.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A4 240 0 A28 520 240
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A5 320 0 A29 0 320
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A6 400 0 A30 80 320
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A7 520 0 A31 160 320
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A8 0 80 A32 240 320
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A9 120 80 A33 320 320
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

*A10 200.4 80 A34 400 320
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

*A11 279.6 80.4 A35 520 320
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

*A12 359.6 79.6 A36 0 400
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

*A13 440 80.4 *A37 120 399.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A14 520 80 *A38 199.6 399.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A15 0 160 *A39 280 399.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A16 80 160 *A40 360 400.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A17 160 160 *A41 440.4 400.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A18 240 160 *A42 520 400
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A19 320 160 A43 0 480
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

*A20 400.4 160 A44 80 480
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A21 520 160 A45 160 480
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A22 0 240 A46 240 480
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

*A23 119.6 239.6 A47 320 480
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A24 200 240 A48 400 480
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A49 520 480
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LS-DYNA�, was used to conduct a numerical simulation and to examine that the structure
could accomplish the complete deployment as expected. We have also investigated the strain
distribution in the facets during deployment.

The numerical model is a 1 mm aluminium alloy plate (E = 70 (GPa), ν = 0.33, ρ = 2.7 (g cm−3))
of size 520 × 480 mm in complete deployment. The crease pattern is based on the model shown
in figure 12 and table 1. According to figure 13b–d, elastic spring elements (k = 50 N mm−1) is
inserted on diagonal lines and the initial offsets are provided properly such that the desired forces
are caused. Each facet is made of 400 four-node elastic shell elements. At a fold line where the
edges of two facets meet, nodes on each edge line share the same translational motion in order
to model the hinges. Focusing on the deploying motion, the numerical model is started in a 20%
folded condition.

Figure 14 shows the result of a deployment simulation. As expected in the calculation by
the extended rigid-origami simulation, simple spring elements impart complete deployment.
Figure 14 uses colour contours to indicate von Mises stress. Representative aerospace aluminium
alloys such as 2024, 6061 and 7075 have the proof stresses of about 240–500 MPa (e.g. 269–276 MPa
in 2024-T3, 241 MPa in 6061-T6, 434–503 MPa in 7075-T6). Throughout the simulation, the
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t = 0 (s) t = 25 (s)

fringe levels

fringe levels

3.777 × 101

3.399 × 101

3.021 × 101

2.644 × 101

2.266 × 101

1.888 × 101

1.511 × 101

1.133 × 101

7.554 × 100

3.777 × 100

2.657 × 101

2.391 × 101

2.126 × 101

1.860 × 101

1.594 × 101

1.329 × 101

1.063 × 101

7.971 × 100

5.314 × 100

2.657 × 100

0

0

t = 50 (s)

Figure 14. Deployment simulation using LS-DYNA�. Colour indicates von Mises stress.

maximum stress is about 34 MPa, which corresponds to 7–14% of the proof stresses of commonly
used aerospace aluminium alloys. This figure shows that the strain was concentrated in the
perimeter panels during the deployment. The results indicated that these panels required higher
rigidity and strength than that required in the inner panels. This strain concentration could also
be observed in the end of the simulations. In theory, the elastic energy of the entire structure
becomes zero in the completely deployed condition, and, thus, the angles on the folding lines were
expected to have minor deviations from 180◦. However, based on these figures, these deviations
were negligibly small compared with the size of the structures.

6. Discussion and conclusion
This paper illustrates a new concept for self-deploying origami based on misaligned crease
patterns. The advantage of the proposed method is that it requires only a simple actuator that
can shrink or expand in length between two vertices. In this paper, simple spring elements on
diagonal lines are employed as actuators, but other actuators such as ball screws, wire with a
winder and SMA wires can also be used. These active actuators enable deployment at arbitrary
timing. In addition, the proposed method can coordinate the necessary displacements required
in actuators only by changing the amplitude of misalignments. With respect to the power of the
actuation force, we have to consider the small mechanical advantage of the proposed mechanism.
Compared with the displacements of the actuators (diagonal lines in the cut-out facets), the
deformation of the whole structure is very large. This means that a lot of force is required for the
actuators, even if the resistive forces to the deployment (e.g. the friction forces in the joints) are
small. Owing to these characteristics, high-power but small-displacement actuators represented
by an SMA actuator and piezo actuator were thought to be suitable for the proposed technique.
In the case of figure 13, the necessary displacements in the actuators were approximately ±2–5%
elongations of the lengths of the diagonal lines. Since the maximum recovery strain of the
generally used Ti–Ni SMA wires was approximately 8%, they could be used as a workable option
for the actuator.

To determine the concrete performances required for the actuators, a quantitative evaluation of
the resistive forces is required. For this purpose, the prototypes are currently under development
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for experimental analysis. The production difficulties are summarized in designing pin joints
and balls joints. The proposed method controls the movements of the structures by small
misalignments, so there is a possibility that backlashes in these joints interfere with the
deployments. To prevent this problem, the use of precisely made joints is required after clarifying
the allowable backlashes. Regarding the design of the joints, we must also consider the effect of
plate thickness. The folding of thick panels connected by mechanical hinges causes the collisions
of plates on the valley folding lines, and offsetting the rotation axis deviates the mechanism from
predefined rigid-origami kinematics. Researchers such as Tachi [26] and Chen et al. [27] have
investigated these problems and proposed some techniques for origami of thick panels. Applying
these techniques enables us to manufacture the prototype of the proposed deployable structures
from thick plates and commercially available mechanical joints. In any of these cases, actuation
forces should be properly controlled to prevent plastic deformation and buckling of the facets.
Considering the material properties of the plates, actuation systems and deploying speeds have
to be properly determined in the design of misalignments.

Another suggestion regarding the actuation mechanism is that more high-elastic plates can
be inserted in hollow facets. For example, two diagonal springs can be replaced with a rubber
plate in each hollow facet. When the stable shapes of these elastic facets are appropriately
selected, the facets serve as elastic energy storage and produce appropriate deployment force.
Investigations of wing unfolding of Coleoptera are expected to provide clues about this elastic
self-deployment. Conversely, this study could contribute greatly to the clarification of the species’
excellent folding/unfolding mechanism.

In order to apply this strategy for other origami crease geometries, further anecdotal studies
are necessary. However, this study has the potential to be generalized for all quadrilateral
mesh origami. This crease pattern is an acclaimed geometry for origami artists and researchers
and has been the subject of extensive research. Tachi [28] has already reported freeform
rigid origami: generalized design techniques to construct arbitrary surfaces from quadrilateral
mesh origami. This model uses the transition shape of the folding and unfolding of rigid-
origami movement. In such cases, folding/unfolding should be stopped at the proper time.
This is achieved by selecting the misalignment that causes stabilization points in the middle
of deploying. The currently proposed methodology requires many cut-out facets, which may
cause difficulties in the manufacturing process. It is expected that the freeform rigid origami can
reduce the number of cut-outs, because it can offer a method to achieve the 1-d.f. mechanism
in overconstrained quadrilateral meshed origami. This is beneficial for both manufacturing and
simplification of actuation systems. Although a trial-and-error method works to some extent,
systematic techniques to determine the arbitrary stabilization point should be positioned as
the next challenge. Combining the proposed self-deploying origami and freeform rigid-origami
techniques enables the self-folding/unfolding of arbitrarily shaped surfaces. Such technology will
have a large potential for various engineering fields, including microrobots, medical devices and
space structures.
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