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Abstract: Parameter estimation for high dimension complex dynamic system is a hot topic. However, the current statistical

model and inference approach is known as a large p small n problem. How to reduce the dimension of the dynamic model

and improve the accuracy of estimation is more important. To address this question, the authors take some known

parameters and structure of system as priori knowledge and incorporate it into dynamic model. At the same time, they

decompose the whole dynamic model into subset network modules, based on different modules, and then they apply

different estimation approaches. This technique is called Rao-Blackwellised particle filters decomposition methods. To

evaluate the performance of this method, the authors apply it to synthetic data generated from repressilator model and

experimental data of the JAK-STAT pathway, but this method can be easily extended to large-scale cases.

1 Introduction

Biochemical reaction process is a complex and high-dimension
dynamics system, which includes a variety of feedback loop [1, 2]
and possesses strongly non-linear kinetic characteristics such as
chaos, bifurcation, complex disturbance wave and so on [3–7].
The non-linear complex and high-dimension biochemical reaction
can be decomposed into several sets of chemical substances, and
then combined to consider the whole mechanism. On the basis of
biochemical reaction, dynamic modelling is accordingly divided
into many subset network modules. Both subset network modules
and the whole dynamic characteristics should be analysed [8, 9].
This is defined as model reduction techniques. Model reduction
techniques decompose a critical biochemical reactions and
variables according to core dynamical characteristics of the
system. There are two kinds of techniques mostly used to partition
the state variables. One is fast and slow decompositions, another is
linear and non-linear decompositions. The former detailed model
reduction approaches have singular perturbation techniques in
papers [10, 11], hierarchical approach in paper [12],
quasi-steady-states approximations in papers [13, 14],
partial-equilibriums in paper [15] and kernel-based manifold
learning techniques in paper [16]. The latter includes quasi-steady
and quasi-equilibrium in paper [9], hierarchy of coarse grained
model in paper [17], distribution state estimation in paper [18] and
Rao-Blackwellised particle filters (RBPFs) in paper [19]. In our
work, we focus on linear and non-linear decompositions by using
RBPFs.

In the past, the dynamic model of the non-linear biochemical
reaction is generally based on black-box framework to estimate the
parameters and identify the structures of system. Since there exists
large p small n problem (number of unknown parameters p is of
much larger than sample size n, p≫ n) in parameter estimation
fields, we take some known parameters and structure of system as
priori knowledge and incorporate it into dynamic model. In other
words, we estimate the parameters and states in non-linear
biochemical reaction network based on grey-box framework [20].
As we know, most of biochemical reaction networks are non-linear
and non-Gaussian, however, in which, linear subsystem are still
available. Pseudo-monomolecular or monomolecular reaction is
the simplest reaction described by a set of first-order reactions. In
papers [17, 21, 22], pseudo-monomolecular or monomolecular

reaction subsystems are considered as linear subset network
modules, based on which, linear and non-linear decompositions
are easy to be realised. For linear kinetic models, appearing as
pseudo-monomolecular or monomolecular reaction subsystems, we
propose to estimate the parameters using conventional Kalman
filter algorithm. However, for the remaining non-linear kinetic
models, we develop an algorithm to estimate both states and
parameters using the particle filter algorithm. It is known as
RBPFs [19, 23–27]. Extended Kalman filter (EKF) [28] and
unscented Kalman filter (UKF) [29] are the most widely used joint
state and parameter estimation algorithm for the non-linear
state-space model of biochemical network. In this paper, we will
compare the three estimation methods that are RBPF, UKF and
EKF in synthetic data generated from repressilator model and
experimental data from the JAK-STAT pathway. The results show
that RBPF provides a way to handle high-dimensional problems
and bears very good accuracy with quite reasonable complexity.

2 Non-linear state-space models

Consider a general non-linear dynamic system

xek+1 = fk (x
e
k , uk , u

e
k )+ wk

y
e
k = hk (x

e
k , uk , u

e
k )+ vk , e = 1, . . . , E; k = 1, . . . , Te

(1)

where e is the individual and k is the time; xek is the state vector of the
e individual at a k time; uek is the input vector of the e individual at a k
time; yek is the observation vector of the e individual at a k time; f and
h are non-linear functions, θ is the vector of parameters; The initial

state x0 is a Gaussian vector with mean E x0
[ ]
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Parameters in a non-linear dynamic system (1) can be treated as
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additional states in the system. Thus, the state vector xek in (1) is
augmented as

jek =
x
e
k

u

[ ]

A state-space equation treating parameters as states can be written as
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uk+1 ≏ p(uk+1|uk )

where hk = wT
k , e

T
k

[ ]T
is a white Gaussian noise with mean zero and

covariance matrix

E hkh
T
k

[ ]
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[ ]
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Supposing a system is divided into two parts: a linear and a
non-linear and the noise is additive, then (2) can be expressed as
follows
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(3)

where xenk and xelk denote the non-linear and linear states, respectively,

and xenk xelk
[ ]T

= x
e

k
, vk is the process noise given by

wk =
wn
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where N(0, σ2) denotes the normal distribution with 0 as the mean

value and σ
2 the variance. Moreover, xel0 ≏ N (x̂el0|−1, P

l
0|−1) and vk,

xen0 have arbitrary fixed probability density function (pdf).
Assume

p(uk+1|uk ) = N (auk + (1− a)∗�uk , h
2
V k )

where a = ((3δ− 1)/2δ), h2 = 1− a2, δ is a discount factor (0, 1],
typically around 0.95 ≏ 0.99.�uk is the Monte Carlo mean of the
parameters and Vk being the variance matrix of the parameters at
time instant k.

We determine the unknown parameter θ by estimating the
augmented state je

k
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) is approximated by particle filter, for each given parameter

sample, p(xe
k
|uk , Y

e

k
) is given by Kalman filter. This will result in

each parameter particle being associated with one Kalman filter
recursion.

3 RBPF algorithm for dual estimation

RBPF algorithms for dual estimation is summarised in Fig. 1.
The following two applications of the algorithm (see Fig. 1) are

from paper [28]; As the length of paper is limited, there is no
explanation about the system equation. For detailed explanation,
please see paper [28]. As far as signalling pathways, the
topological structure of signalling pathways is known. In such
case, the most important work is to estimate the parameters of
non-linear models based on Hill or mass action kinetics. The
topological structure of network is used as prior knowledge and
incorporated into the kinetic models and repressilator model.

4 Kinetic models for JAK2-STAT5 signalling
pathway

System equation [28, 30]

ẋ1(t) = −k1x1(t)u(t)+ 2k4x3(t)I(t ≥ t)+ w1(t)

ẋ2(t) = k1x1(t)u(t)− k2x
2
2(t)+ w2(t)

ẋ3(t) = −k3x3(t)+ 0.5k2x
2
2(t)+ w3(t)

ẋ4(t) = k3x3(t)− k4x3(t)I(t ≥ t)+ w4(t)

I(t ≥ t) = k 1 t ≥ t

0 t ≺ t

Measurement equation

y1(t) = x2(t)+ 2x3(t)+ e1(t)

y2(t) = x1(t)+ x2(t)+ 2x3(t)+ e2(t)

Model reduction
For decomposing the system and dividing the state variables into
linear state variable and non-linear state variable, let

xnt = x2(t) xlt =

x1(t)

x3(t)

x4(t)

⎡

⎣

⎤

⎦

where xlt denotes the state variable with conditional linear dynamics
and xnt denotes the non-linear state variable. The system equation can
be rewritten as the following (see equation at the bottom of the next
page)

where

f nt = (xnt (t)− k2(x
n
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⎤
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⎡
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The measurement equation can be rewritten as the following

y1(t)

y2(t)

[ ]

=
1

1

[ ]
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0 2 0

1 2 0

[ ]
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where

ht =
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1

[ ]
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0 2 0

1 2 0

[ ]

, e =
e1(t)

e2(t)

[ ]
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Fig. 1 RBPF algorithm for dual estimation
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Fig. 1 Continued
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5 Repressilator

System and measurement equation [31]

dR1

dt
=

V1maxK
n
12

Kn
12 + Pn

2

− k1mR1 + w1

dR2

dt
=

V2maxK
n
23
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3
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dt
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31
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1
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dt
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dP2

dt
= k2R2 − k2pP2 + w5

dP3

dt
= k3R3 − k3pP3 + w6

y1(t) = R1(t)+ e1

y2(t) = R2(t)+ e2

y3(t) = R3(t)+ e3

y4(t) = P1(t)+ e4

y5(t) = P2(t)+ e5

y6(t) = P3(t)+ e6

where Ri is the concentration of mRNA transcript from gene i and
Piis the concentration of proteins translated from Ri. Estimated
parameters: V1max, V2max, V3max, k12, k23, k31.
Model reduction
For decomposing the system and dividing the state variables into
linear state variable and non-linear state variable, let

xnt (t) =
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where xlt denotes the state variable with conditional linear dynamics
and xnt denotes the non-linear state variable. Then, the system
equation can be rewritten as the following
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The measurement equation can be rewritten as the following
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6 Results

6.1 JAK-STAT pathway

The initial values of the linear state variables of every particle are
assumed as: x01 = 0.5, x02 = 0, x03 = 0 and x04 = 0. The initial
values of the non-linear state variables of every particle are
random number between 0 and 1. The initial values of parameters
k1, k2, k3 and k4 are random number generated from the following
intervals k1∈ (−0.299, 0.421), k2∈ (2.16, 2.76), k3∈ (−0.2534,
0.3466) and k4∈ (−0.14342, 0.30658). The estimates by the
RBPF, the EKF and maximum likelihood (ML) method [32] are
close, but significantly different from the estimates by UKF [29]
as shown in Table 1. Under the given above initial values, using
the concentration of EpoRA as input, Fig. 2 plot the predicted and
observed concentrations of tyrosine phosphorylated STAT5 in
the cytoplasm and total STAT5 in the cytoplasm (y1 and y2)
by the RBPF method, the EKF method and the UKF method. The
observed data were from experiment data 1. The results of
experiment data 2–4 and the estimated parameters were listed in
additional files AFigures 1–3 and ATable 1.

6.2 Synthetic data generated from repressilator model

Let k1m = 1, k2m = 1, k3m = 1, k1p = 1, k2p = 1, k3p = 1, K1 = 1, K2 = 2,
K3 = 3, n = 3 and V1max = 150, V2max = 80, V3max = 100, K12 = 50,
K23 = 40, K31 = 60, the initial values of linear and non-linear state
variables are random numbers between 0 and 1. The initial values
of parameters are random number generated from the following
intervals: V1max∈ (140, 160), V2max ∈ (70, 90), V3max∈ (90, 110),
K12∈ (40, 60), K23∈ (20, 40), K31∈ (30, 50). The estimated
parameters as a function of time k are shown in Figs. 3 and 4.
From Figs. 3 and 4, we can see that at the beginning the estimated
parameters quickly converge to the true parameters. This example
demonstrates that although the parameters are treated as the states
of the systems and hence may change over time, they can reach
stable values. The estimated parameters over time k are
summarised in ATable 2 in additional files, which demonstrated

Table 1 Comparison of estimated parameters in the non-linear
state-space model for the JAK-STAT pathway using RBPF, EKF, ML
approach and UKF

Study k1 k2 k3 k4 t

RBPF (our study) 0.022916 2.343347 0.117178 0.102687 6.1
EKF 0.0211 2.2788 0.1064 0.1057 6 min
ML 0.0210 2.4600 0.1066 0.1066 6.4 min
UKF 0.0515 3.3900 0.3500
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that the estimates of the parameters were very close to set the value
of parameters. In this example, EKF does not converge, high
non-linearity of the repressilator model makes EKF a failure to
converge to an optimum. Therefore, we only compare the two
methods of RBPF and UKF.

7 Conclusions

To evaluate the performance of our new methods, we have applied it
to both synthetic data generated from repressilator model and

experimental data of the JAK-STAT pathway [31, 32]. The
structure of both the above examples is known in modelling
literature [29, 33]. Therefore, we use structure information and
partly known parameters as priori knowledge and then conduct
the identification of biochemical reaction networks based on grey
box [34–37]. We consider the pseudo-monomolecular or
monomolecular reaction subsystems as linear subset network
modules, then the whole dynamic model are decomposed into
linear and non-linear subset modules dynamic model. For linear
subset modules dynamic model, we use Kalman filter algorithm to
estimate both states and parameters, however, for non-linear subset

Fig. 2 Predicted and observed concentrations of tyrosine phosphorylated STAT5 and total STAT5 in the cytoplasm for experiment 1

Fig. 3 Estimated parameters of K12, K23 and K31 as a function of the time in the non-linear state-space model for the synthetic data generated from the

repressilator model

Fig. 4 Estimated parameters of V1max, V2max and V3max as a function of the time in the non-linear state-space model for the synthetic data generated from the

repressilator model
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modules dynamic model, we adopt the particle filter algorithm to
estimate both states and parameters. This model reduction
technique is called RBPF. The results show that RBPF method
perform well as a new model reduction techniques for high
dimension non-linear dynamic model. As future work, we will
apply our algorithms to a high-dimensional biochemical network
in order to improve and validate it.
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