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Abstract

Diarrhoeal disease remains a major health burden worldwide. Secretory diarrhoeas are caused by 

certain bacterial and viral infections, inflammatory processes, drugs and genetic disorders. Fluid 

secretion across the intestinal epithelium in secretory diarrhoeas involves multiple ion and solute 

transporters, as well as activation of cyclic nucleotide and Ca2+ signalling pathways. In many 

secretory diarrhoeas, activation of Cl− channels in the apical membrane of enterocytes, including 

the cystic fibrosis transmembrane conductance regulator and Ca2+-activated Cl− channels, 

increases fluid secretion, while inhibition of Na+ transport reduces fluid absorption. Current 

treatment of diarrhoea includes replacement of fluid and electrolyte losses using oral rehydration 

solutions, and drugs targeting intestinal motility or fluid secretion. Therapeutics in the 

development pipeline target intestinal ion channels and transporters, regulatory proteins and cell 

surface receptors. This Review describes pathogenic mechanisms of secretory diarrhoea, current 

and emerging therapeutics, and the challenges in developing antidiarrhoeal therapeutics.

Introduction

Diarrhoeal diseases have been a major health problem throughout history.1 In the past, 

diarrhoeal diseases were often fatal and disease outbreaks spread quickly, affecting large 

populations. Today, despite the success of interventions such as oral and intravenous 

rehydration therapy, secretory diarrhoea remains a substantial cause of mortality and 

morbidity worldwide, particularly in children and the elderly. In 2015, it is estimated that 

worldwide 577,000 children aged <5 years and 502,000 adults aged >70 years will die from 

diarrhoeal diseases.2 For these vulnerable populations, the mortality risk due to diarrhoeal 

disease is often further increased by associated risk factors such as malnutrition and pre-

existing enteric infections.3 In addition to the mortality risk, repeated diarrhoeal episodes are 
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associated with long-term impairment of physical and mental development, with an 

estimated global loss of ~1,400 years of healthy life due to disability per 100,000 

population.2,4

The prevalence of diarrhoeal disease, as for other important global causes of childhood 

mortality such as pneumonia and malaria, is correlated closely with climate and economic 

development. The most severely affected regions include developing countries in sub-

Saharan Africa and South Asia.2 The major causes of diarrhoeal diseases in developing 

countries are infectious, including enterotoxin-producing bacteria, such as Vibrio cholerae 

and enterotoxigenic Escherichia coli; viruses, such as rotavirus; enteroinvasive bacteria, 

such as Shigella and Salmonella; and parasites, such as Entamoeba histolytica and 

Cryptosporidium parvum.5 The most common cause of severe diarrhoea worldwide is 

rotavirus (28% of diarrhoeal episodes), with V. cholerae producing at least 1–2% of cases.6 

Severe diarrhoea outbreaks that rapidly affect large populations are often associated with 

complex humanitarian emergencies such as the displacement of people into refugee camps, 

natural disasters such as earthquakes, and armed conflict, leading to the loss of health and 

sanitation infrastructure. Examples include the refugee crisis in Rwanda in 1994, the conflict 

in Zimbabwe in 2008, and the earthquake in Haiti in 2010.

Many noninfectious causes of diarrhoea are prominent in developed countries. Diarrhoea is 

associated with adverse effects of drugs, particularly certain cancer and HIV therapeutics.7,8 

Up to 28% of patients with HIV treated with protease inhibitors report more than four loose 

or watery stools per day.7 Intestinal inflammatory and autoimmune conditions, such as 

ulcerative colitis, Crohn’s disease and coeliac disease, can have a substantial diarrhoeal 

component.9,10 IBS is prevalent in developed countries; 10–20% of the adult population in 

the US are estimated to have IBS, of which around one-third suffer from chronic 

diarrhoea.11 Severe secretory diarrhoea is also caused by rare congenital disorders, such as 

microvillus inclusion disease, familial diarrhoea syndrome and tufting enteropathy, as well 

as by peptide-secreting neuroendocrine tumours.12–15 However, infectious causes of 

diarrhoea still represent a large proportion of the disease burden in developed countries. The 

incidence of diarrhoea caused by rota-viruses has fallen dramatically over the past 5 years 

with the widespread administration of the rotavirus vaccine, although the incidence of 

diarrhoea caused by noroviruses has increased and become the leading cause of disease 

outbreaks from contaminated food in the US.16 The main bacterial causes of food-related 

diarrhoeal disease in the US are Salmonella enterica (19,000 hospitalizations per year) and 

Campylobacter jejuni (8,000 hospitalizations per year),16 and there have been annual 

enterohaemorrhagic E. coli outbreaks since the early 1990s.

In this Review, we describe the major pathogenic mechanisms of secretory diarrhoea, 

discuss currently available pharmacological therapies and therapies that are being 

developed, and examine the major challenges in the development of diarrhoeal therapeutics.

Mechanisms of diarrhoeal disease

Diarrhoea results from excessive secretion and/or impaired absorption of fluid and 

electrolytes across the intestinal epithelium (Figure 1). The movement of fluid between the 
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intestinal lumen and blood is driven by the active transport of ions, mainly Na+, Cl−, 

HCO3
−, and K+, and solutes, mainly glucose. Fluid absorption or secretion involves the 

coordinated activity of membrane transporters located on the apical (lumen-facing) and 

basolateral (circulation-facing) epithelial membranes.17 The intestinal epithelium is 

structurally configured into long, finger-like projections (villi) and glandular, tube-like 

structures (crypts), with the relative villus-to-crypt ratio differing along the intestine. 

Functionally, both absorption and secretion can occur in the same epithelial cells, although 

secretory processes predominate in crypts and absorptive processes in villi.

Fluid absorption is driven by the active transport of Na+ across the epithelium with parallel 

Cl− or HCO3
− absorption. The electrochemical driving force for this process is the 

basolateral Na+/K+-ATPase. In the small intestine, fluid absorption is facilitated by the 

sodium/hydrogen exchanger 3 (NHE3, also known as SLC9A3), sodium/glucose 

cotransporter 1 (SLC5A1), and Cl−/HCO3
− exchanger (DRA [SLC26A3] and PAT1 

[SLC26A6]).18–20 Electroneutral fluid absorption is carried out by the coordinated activity 

of NHE3 with Cl−/HCO3
− exchangers (PAT1 for HCO3

− absorption and DRA for Cl− 

absorption in the jejunum and colon).21,22 Substrate-specific transporters such as SLC5A1 

facilitate cotransport of Na+ across the apical membrane together with D-glucose (or D-

galactose), with the electroneutral glucose transporter SLC2A2 facilitating glucose exit 

across the basolateral membrane.23,24 In the colon, in addition to electroneutral Na+ 

transport by Na+/H+ exchange (proximal colon), absorption is facilitated by the epithelial 

Na+ channel and short-chain fatty acid transporters.25,26 Intracellular messengers, including 

Ca2+ and cyclic nucleotides such as cAMP and cGMP, inhibit the activity of apical Na+ 

transporters.27–30 There is considerable cross-activation of the intestinal epithelial second 

messengers cAMP and Ca2+.31,32

Intestinal fluid secretion is driven by transepithelial Cl− secretion through basolateral and 

apical Cl− channels and transporters. Cl− is transported into the cell at the basolateral 

membrane by a Na/K/Cl symporter (NKCC1, also known as SLC12A2), which is driven by 

the Na+ concentration gradient produced by the Na+/K+-ATPase.33 Basolateral K+ channels 

(KCNQ1/KNE3 and KCNN4) provide the electrochemical driving force for apical Cl− exit 

across Cl− channels,34 primarily the cyclic-nucleotide-activated cystic fibrosis 

transmembrane conductance regulator (CFTR) and Ca2+-activated Cl− channels (CaCCs).33 

Enteric nerves and cell surface receptors such as the calcium-sensing receptor (CaSR) are 

thought to modulate intracellular signalling pathways and hence electrolyte absorption and 

secretion.35,36

Bacterial diarrhoeas

Bacteria such as V. cholerae and enterotoxigenic E. coli secrete specific enterotoxins (for 

example cholera toxin and heat-stable enterotoxin, respectively) that increase levels of 

intracellular cyclic nucleotides, resulting in activation of apical CFTR Cl− channels and 

hence Cl− secretion (Figure 1b).37,38 Data from immortalized and primary human intestinal 

cells show that elevation of cAMP, cGMP and Ca2+ concentrations by bacterial enterotoxins 

also inhibits NHE3.39,40 Bacteria can also increase various humoral agonists, 

neurotransmitters or neuropeptide receptors such as 5-hydroxytryptamine, VIP peptides and 
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the galanin receptor type 1,41 thus activating Cl− secretion and inhibiting Na+ absorption.42 

Invasive bacteria such as Salmonella and Shigella cause a tissue inflammatory response 

involving recruitment of immune cells and release of cytokines, resulting in intra-cellular 

Ca2+ signalling.43 Enteropathogenic and invasive bacteria also result in alterations in 

transport protein expression, with several studies showing evidence of impaired Na+ and Cl− 

absorption.40,44,45

Viral diarrhoeas

Enteric rotavirus infection causes fluid secretion as well as structural changes in the 

intestinal epithelium,46 producing an age-related secretory diarrhoea.47,48 An elaborated 

rotaviral protein (NSP4) is thought to act as an enterotoxin causing elevation of cytoplasmic 

Ca2+ concentration by binding to a membrane receptor (integrin α1β2), the neuropeptide 

galanin and/or by activation of enteric nerves (Figure 1c).49–51 Rotaviral NSP4 also inhibits 

NHE3 and SLC5A1.52 The molecular mechanisms by which other enteric viruses such as 

norovirus cause diarrhoea is not known at present.53 Multiple pathogenic mechanisms for 

drug-induced diarrhoeas are likely to exist, but there is evidence that certain drugs such as 

HIV protease inhibitors and chemotherapy agents induce diarrhoea through intra-cellular 

Ca2+-dependent mechanisms similar to those in rotaviral diarrhoea.54,55

Congenital diarrhoeas

Congenital diarrhoeas can result from rare inherited genetic mutations in several intestinal 

proteins (Figure 1d). The target genes in many of these familial enteropathies have been 

discovered with the advent of low-cost gene sequencing. Mutations in the Na+ transporter 

SLC5A1 underlie glucose and galactose mal-absorption, and mutations in the Cl−/HCO3
− 

exchanger DRA result in congenital Cl− diarrhoea.56,57 A mutation in the guanylin receptor 

GUCY2C, which causes familial diarrhoea syndrome, results in constitutive cGMP 

activation with consequent CFTR-mediated Cl− secretion and NHE3 inhibition.14 

Alterations in the integrity of intestinal structure caused by mutations in proteins such as 

MYO5B and the epithelial cell adhesion molecule also result in altered signalling with 

putative activation of electrolyte secretion.58,59 Additional details about congenital 

diarrhoeas can be found elsewhere.60,61

Inflammatory diarrhoea

Intestinal inflammation is seen in autoimmune diseases such as IBD and coeliac disease. 

Although the predominant feature of these diseases is chronic tissue damage secondary to 

inappropriate immune cell activation, several overlapping signalling pathways affect 

intestinal fluid transport homeostasis.62 Activation of epithelial inflammatory signalling 

pathways such as NF-κB result in Ca2+ or cyclic nucleotide signalling and stimulation of 

Cl− secretion or inhibition of Na+ absorption (Figure 1e). The release of inflammatory 

mediators such as TNF and IL-6 by activated T cells and neutrophils, which causes 

degranulation of mucosal mast cells and release of histamine and prostaglandins, can also 

stimulate Cl− secretion.63,64 Epithelial Na+ absorption is also probably affected by 

inflammation, with studies showing down-regulation of NHE1 (also known as SLC9A1) and 

NHE3 in IBD, and defective NHE3 function and regulation by adaptor proteins in an IL-10-
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deficient mouse model of colitis.65–67 Predominantly inflammatory diarrhoea is seen in 

response to some bacterial pathogens, such as Clostridium difficile, which is the most 

common cause of nosocomial antibiotic-associated diarrhoea. C. difficile-associated 

diarrhoea and colitis occurs secondary to elaborated toxins that activate epithelial 

inflammatory signalling pathways and recruit immune cells.68

Current management and treatment

The acute treatment of infectious diarrhoeal diseases centres around prompt and complete 

amelioration of dehydration. In hospitals, particularly in developed countries, this treatment 

is often achieved through intravenous fluid replacement.69 In developing countries and non-

hospital settings oral rehydration solution (ORS) is the mainstay of treatment.70 Although 

ORS effectively treats dehydration when administered appropriately, it does not change 

fluid losses, diarrhoeal output or duration of illness. Most of the current and historical 

therapeutics used for symptomatic treatment are classed as antimotility agents or 

antisecretory agents based on their mechanism of action (Table 1). For diarrhoeas caused by 

enteric infections, various antibiotics are also used depending on the pathogenic organism.71 

Antibiotics shorten illness duration and are used particularly for dysentery (bloody 

diarrhoea), but selection of appropriate antibiotics requires laboratory diagnosis of the 

pathogenic organism, which often is not available. Although antibiotics are effective in 

reducing symptoms and the duration of infectious diarrhoeas, their delayed onset of action 

means they do not prevent immediate dehydration. Also, concerns about antibiotic resistance 

and the fact that they are contra-indicated in specific enteric infections have prevented their 

recommendation for widespread use.72,73

ORS

ORS is an orally ingested solution that stimulates intestinal Na+ absorption by SLC5A1 and 

Na+-coupled amino acid transporters. The current WHO-recommended ORS is hypo-

osmolar (245 mOsm/l) to increase water absorption.74 The widespread use of ORS over the 

past four decades has remarkably reduced the mortality associated with diarrhoeal disease 

by ~70%.75 However, ORS administration in developing countries has stagnated since 1995, 

with ORS only used in 30–35% of children with diarrhoea aged <5 years.76,77 In the past 

decade, alternative forms of ORS have been developed. In one form, the substrate linked to 

Na+ absorption is nonabsorbable starch, which is relatively resistant to digestion by 

pancreatic amylase and is metabolized by bacteria to short-chain fatty acids in the colon 

where it stimulates Na+ absorption by NHE2 (also known as SLC9A2).74,78 In clinical trials, 

patients with cholera who receive nonabsorbable starch ORS have a shorter duration of 

diarrhoea and require less parenteral fluid support than patients who receive conventional 

ORS.79 Zinc has been shown to shorten the duration of acute diarrhoea and is part of the 

WHO-recommended ORS.80 The mechanism of this effect of zinc is unclear, and whether 

zinc deficiency plays a role has not been established. In vitro, zinc blocks Cl− secretion by 

inhibiting K+ channels in the basolateral membrane and stimulating NHE3.81,82
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Antimotility agents

Drugs that inhibit intestinal motility have been used extensively to treat diarrhoea. The 

putative mechanism of action for antimotility drugs is increased Na+ and fluid absorption as 

a result of slow intestinal transit. Loperamide and diphenoxylate are μ-opioid agonists that 

are widely used for mild, nonspecific diarrhoea. They are not recommended in bacterial 

diarrhoeas primarily owing to the risk of paralytic ileus, and diphenoxylate also has 

substantial central opioid effects.83 5-hydroxytryptamine3 antagonists such as alosetron have 

shown efficacy in chronic diarrhoea related to IBS;84 however, their use has been limited by 

concerns of ileus and ischaemic colitis. Although loperamide is widely used and effective in 

mild acute diarrhoea,85 the potential serious adverse effects of antimotility drugs together 

with a narrow therapeutic index has limited their recommendation and use, particularly for 

infectious diarrhoeas.

Antisecretory agents

Reducing intestinal fluid secretion has been a relatively underexploited area for 

antidiarrhoeal therapeutics. Historically, bismuth subsalicylate was shown to have 

antidiarrhoeal efficacy and early mechanistic studies indicated that salicylates such as 

aspirin inhibit enterotoxin-induced Cl− secretion and promote Na+ absorption.86 

Racecadotril, an encephalinase inhibitor, or its active metabolite thiorphan, initially showed 

promise as an antidiarrhoeal. Inhibition of the breakdown of endogenous encephalins could 

exert anti-secretory effects through encephalin-stimulated activation of epithelial μ-opioid 

receptors. Small clinical studies initially showed efficacy in cholera-toxin-mediated fluid 

secretion; however, a large double-blind, placebo-controlled trial showed no improvement in 

diarrhoeal output or duration.87,88 More recently, a natural-product antisecretory agent, 

crofelemer, has been approved for use in HIV-related diarrhoeas based on a clinical trial 

showing efficacy in improving chronic diarrhoea in patients with HIV.89 Crofelemer is a 

heterogeneous proanthocyanidin oligomer extracted from the bark latex of the South 

American tree Croton lechleri. The putative mechanism of action for crofelemer is 

inhibition of Cl− channels in the apical membrane. However, in vitro studies showed 

crofelemer to be a weak and partial antagonist of CFTR, although a relatively strong 

inhibitor of CaCCs.90 It is unclear whether this inhibition of CaCCs underlies the efficacy of 

crofelemer in HIV-related diarrhoea.

Probiotics

Several meta-analyses and clinical studies in developed countries suggest that probiotics 

prevent or reduce the duration of diarrhoea.91–93 However, these effects seem to be highly 

strain-dependent and dose-dependent. Studies using specific bacterial strains have shown 

effects on expression and/or function of DRA, CFTR and NKCC transporters, suggesting 

that probiotics affect mechanisms of Cl− secretion and electroneutral absorption.94–96 A 

double-blind, placebo-controlled study in children aged 1–6 years showed that a specific 

probiotic (Lactobacillus reuteri) significantly reduced the incidence of acute diarrhoea, 

particularly in children with poor nutritional status.97 Currently, probiotics are not routinely 

recommended in community settings in developing countries, although increasing evidence 

shows that they might be beneficial as adjunctive antidiarrhoeal therapies.
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New antidiarrhoeal therapies

Most of the currently used antidiarrhoeal therapies are decades old and only in the last 5 

years has there been renewed interest in development of antidiarrhoeal therapeutics,98 with 

several novel drug candidates targeting intestinal fluid transport (Table 2). Some of these 

new therapeutic candidates have emerged from greater understanding of the mechanisms of 

intestinal fluid secretion and the use of high-throughput screening technology. Figure 2 

depicts the molecular targets for antidiarrhoeal therapeutics at various stages of 

development.

CFTR inhibitors

Activation of CFTR Cl− channels in the small intestine and colon occurs in secretory 

diarrhoeas caused by bacterial enterotoxins secreted in cholera and Traveller’s diarrhoea.99 

Intestinal Cl− and fluid secretion are absent in CFTR-knockout mice and in patients with 

cystic fibrosis,100,101 and the use of CFTR inhibitors blocks colonic Cl− transport in human 

tissue.99 High-throughput screening has revealed three chemical classes of small-molecule 

CFTR inhibitors. The thiazolidinone CFTRinh-172 (Figure 3) inhibits CFTR by binding at or 

near Arg347 and stabilizes the channel in its closed state.102 Studies in mouse models of 

cholera and intestinal fluid secretion induced by heat-stable toxin have demonstrated 

efficacy of CFTRinh-172.99,103 Another class of CFTR inhibitors, which probably interfere 

with ATP gating, are the PPQ/BPO compounds;104,105 the most potent of these compounds, 

(R)-BPO-27, inhibits CFTR Cl− conductance with IC50~4 nM and has shown efficacy in 

models of polycystic kidney disease,104 but has not yet been tested in models of diarrhoea.

Glycine hydrazides such as GlyH-101 are another class of CFTR inhibitors that bind to the 

CFTR pore on its extracellular surface as demonstrated by patch clamp, molecular 

modelling and efficacy of a membrane-impermeant polyethylene glycol-hydrazide 

conjugate.106 The GlyH-101 analogue iOWH032 has completed a safety clinical trial,107 

although a planned phase II trial (NCT02111304) has been terminated before patient 

enrolment. iOWH032 is unlikely to be effective because it is a weak CFTR inhibitor and can 

undergo rapid convective washout in the intestine.108 To address the potency and washout 

limitations, non-absorbable macromolecular conjugates have been synthesized containing a 

malonic acid hydrazide (MalH) moiety that inhibits CFTR. One such conjugate, MalH- 

lectin, inhibited CFTR with an IC50 down to 50 nM, remained bound to CFTR for >6 h, and 

reduced mortality in a neonatal mouse model of cholera.109 The high potency of the MalH-

lectin conjugate and its resistance to washout is possibly due to trapping in the glycocalyx 

on enterocytes. Multivalent MalH-polyethylene glycol conjugates have also been 

synthesized and shown to be CFTR inhibitiors with nanomolar potency,110 greater chemical 

stability and lower cost than lectin-containing CFTR inhibitor conjugates.

CaCC inhibitors

CaCCs provide a second route for Cl− secretion by enterocytes and might also be involved 

in enterotoxin-mediated secretory diarrhoeas by cross-talk in signalling mechanisms. CaCCs 

probably represent the primary pathway for apical membrane Cl− secretion in rotaviral and 

perhaps other viral diarrhoeas,48 as well as in secretory diarrhoeas induced by some HIV 
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protease inhibitors54 and chemotherapeutics.55 The molecular identity of the major CaCC(s) 

in enterocytes remains unclear. The CaCC anoctamin-1 is expressed in interstitial cells of 

Cajal and has an important role in intestinal motility,111 but its role in Cl− conductance in 

enterocytes remains uncertain.112

Small-molecule and natural-product CaCC inhibitors have been identified. A phenotype-

based screen in HT-29 cells identified several small-molecule CaCC inhibitors, the most 

potent being the 3-acyl-2-aminothiophene CaCCinh-A01.113 CaCCinh-A01 prevented watery 

diarrhoea in a neonatal mouse model of rotavirus.114 Screening of natural products to find 

potential CaCC inhibitors identified tannic acid, which motivated the discovery that 

polyphenolic gallotannins strongly inhibit CaCCs. Remarkably, oral administration of an 

alcohol-free red wine extract prevented rotaviral diarrhoea in neonatal mice, without effect 

on the rotaviral infection.114 The red wine extract did not inhibit CFTR or prevent cholera-

toxin-induced intestinal fluid secretion. In another natural-product study, diarrhoea remedies 

from sources around the world were screened for inhibition of Cl− channels. A commonly 

used Thai herbal remedy fully inhibited both CFTR and CaCC Cl− conductance in vitro, and 

was efficacious in mouse models of cholera and rotaviral diarrhoea.115 Natural products 

represent inexpensive and readily available potential therapies for serious secretory 

diarrhoeas.

NKCC1 inhibitors

The electroneutral NKCC1 transporter is the major pathway for Cl− entry into enterocytes 

from the blood side and is therefore an attractive target for development of inhibitors that are 

predicted to block both CFTR-mediated and CaCC-mediated secretory diarrhoeas. NKCC 

inhibitors such as bumetanide are approved for use as diuretics, as the kidney expresses the 

NKCC2 isoform. Although novel NKCC1 inhibitors are emerging from screening efforts, 

challenges in their development for diarrhoeal therapy include obtaining high selectivity 

over NKCC2 (to prevent diuretic action) or confining their action to the intestine, and 

preventing potential off-target effects such as hearing impairment seen in NKCC1-knockout 

mice.116

CaSR agonists

The CaSR is a G-protein-coupled receptor expressed throughout the small intestine and 

colon.117 In the small intestine the CaSR is expressed on the basolateral membranes of crypt 

and villus epithelial cells and on the apical surface of villus cells,117 while in the colon it is 

present on the apical and basolateral membrane of crypt cells and on cells of the enteric 

nervous system and some entero-endocrine cells. Extracellular signals that activate the 

CaSR include divalent (Ca2+, Mg2+ and Cd2+) and trivalent (gadolinium3+ and La3+) 

cations, and some L-amino acids. Activation of the CaSR seems to have multiple actions on 

electrolyte transport, including decreasing enterotoxin-induced Cl− secretion and reversing 

inhibition of Na+ absorption.35 This effect may in part involve breakdown of cyclic 

nucleotides by phosphodiesterase activation35 and regulation of tight junction assembly.118 

CaSR activation by calcimimetic drugs such as R-568 reduces fluid losses stimulated by 

bacterial enterotoxins and has been proposed as a potential antidiarrhoeal, although to date 

no clinical studies have investigated CaSR activation by calcimimetics or Ca2+ itself.
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K+ channel inhibitors

Several studies have shown that inhibition of basolateral K+ channels reduces enterotoxin-

mediated fluid secretion.119 The antifungal clotrimazole blocks both cAMP and Ca2+-

sensitive K+ channels in enterocytes with IC50 ~5 μM and has emerged as a potential 

antidiarrhoeal drug candidate.120 Clotrimazole is approved by the FDA for other indications, 

with its primary adverse effects related to dose-dependent inhibition of cytochrome P450 

enzymes. Other K+ channel inhibitors, including clotrimazole analogues121 and more potent 

new chemical entities, could be potential antisecretory development candidates.

NHE3 agonists

Studies in cell culture and rodent models suggest that NHE3 is inhibited in secretory 

diarrhoeas, which seems to be an exaggeration of the NHE3 inhibition that occurs 

physiologically early in the postprandial state.122 NHE3 activity in enterocytes is inhibited 

following acute elevations in cAMP, cGMP or Ca2+ concentrations, as produced by bacterial 

enterotoxins, ionophores or humoral agonists including 5-hydroxytryptamine and carba-

chol.28,123,124 These mechanisms probably apply in human secretory diarrhoeas. NHE3 

activity is reduced in congenital Na+ diarrhoea as seen in intestinal biopsies,125 with 

mutations in the transport domain of NHE3 accounting for this autosomal recessive 

condition (A. Janecke et al., unpublished data). Human enteroids generated from proximal 

small intestine of healthy individuals show NHE3 activity under basal conditions, which is 

acutely stimulated by dexamethasone and inhibited by cAMP, cGMP, Ca2+, bacterial 

enterotoxins and rotaviral infection.126 A peptide that mimics part of the NHE3 C-terminal 

domain and prevents NHE3 inhibition by cAMP, Ca2+ and cholera toxin has potential utility 

as a proabsorptive therapeutic.

Antisecretory factor

A secreted, 41 kilodalton protein named antisecretory factor released mainly from the 

pituitary gland 127 has been shown in rodent models to prevent intestinal fluid secretion 

induced by cholera toxin, heat-stable toxin, C. difficile toxin A, Campylobacter toxin and 

prosta-glandins.128 The active component of antisecretory factor consists of seven amino 

acids in its N-terminus. The antisecretory factor-16 peptide, consisting of the active N-

terminal domain of the antisecretory factor, also blocks intestinal fluid secretion. The exact 

mechanism of action for antisecretory factor is unclear, but the antisecretory effect of 

antisecretory factor-16 was abolished by vagotomy, suggesting its action is on nerves and 

perhaps on capillary permeability. A modified egg-yolk product enriched with antisecretory 

factor (Salovum®, AS-Faktor AB, Sweden) reduced the duration of acute and prolonged (>7 

days) diarrhoea in a randomized, placebo-controlled trial in children aged 7–60 months.129 

Further clinical and mechanistic studies are needed for this promising drug.

Lysophosphatidic acid

Lysophosphatidic acid is a naturally occurring phospho-lipid present in many foods. Several 

studies have suggested that interaction of lysophosphatidic acid with its intestinal receptor 

(lysophosphatidic acid receptor 2) results in the formation of a macromolecular complex that 

modulates CFTR activity. Lysophosphatidic acid receptor agonists prevent enterotoxin-
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mediated fluid secretion in rodents, suggesting that LPA-based nutritional supplements 

could be used as adjunct therapy in diarrhoea.130 Lysophosphatidic acid also stimulates 

NHE3 in the small intestine through lysophosphatidic acid receptor 5 on Na+-absorptive 

cells.131

Other potential therapies

Several other potential antidiarrhoeal therapeutics with specific indications are currently in 

phase II or phase III clinical trials (Figure 2). Eluxadoline is a mixed μ-opioid and δ-opioid 

inhibitor with antimotility and analgesic properties developed primarily for diarrhoea-

predominant IBS. Results from phase II trials showed some clinical improvement in stool 

consistency and abdominal pain, and little rebound constipation.132 Another compound 

aimed at diarrhoea-predominant IBS showing efficacy in phase II trials is LX1033, an 

inhibitor of tryptophan hydroxylase that affects intestinal motility by inhibition of 5-

hydroxytryptamine synthesis.133 A semi-synthetic bile acid analogue, obeti-cholic acid, 

which activates the nuclear bile acid receptor (farnesoid X receptor), relieves symptoms in 

patients with bile acid diarrhoea, which has been suggested to contribute to diarrhoea in 

some patients with IBS.134 The action of obeticholic acid is thought to involve a feedback 

mechanism with an increase in the bile acid receptor, which results in increased intestinal 

production of fibroblast growth factor 19 and uptake into the portal system, thus reducing 

hepatic bile acid synthesis and intraluminal bile salt concentration.

Conclusions and future challenges

Although diarrhoeal diseases remain a major global health challenge, there has been a 

remarkable lack of effective new therapeutics. Part of the reason for the lack of progress is 

that global and regional health policy has rightly focused on approaches targeted at 

prevention, such as vaccines, improved sanitation, and better health delivery including the 

use of ORS. As described herein, there is now an emerging pipeline of potential 

antidiarrhoeal agents. In developing countries where diarrhoeas are primarily caused by 

infection, these new agents might be useful as adjuncts or additives to ORS, reducing 

diarrhoeal output and hence protecting against severe dehydration particularly in the early 

stages of disease, and secondarily promoting ORS usage. In complex medical emergencies, 

where availability of rehydration fluids might be limited, such therapeutics could provide 

life-saving alleviation of fluid loss. To be beneficial in developing countries the ideal 

therapeutic should have a wide therapeutic index, be stable in harsh environments and be 

extremely low-cost. Major challenges in moving forward include funding, logistics and 

design of informative clinical trials. The development of drugs that can be used safely in 

children and the elderly, where the disease burden is greatest, poses additional challenges in 

terms of drug adverse effects and patient recruitment for clinical trials. For indications such 

as diarrhoeas related to chronic inflammatory diseases, IBD or drug-induced diarrhoeas, the 

development pathway for antisecretory or proabsorptive compounds is clearer, as in the case 

of crofelemer. Progress towards new antisecretory agents has been accelerated with the 

elucidation of new regulatory pathways in intestinal fluid transport, raised awareness of 

natural-product remedies, and emergence of new tools such as ion-sensitive fluorescent 

proteins and human enteroid models for drug screening. The next and more challenging 
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process will be translating these discoveries into safe, low-cost therapies to reduce the global 

health and economic burden of diarrhoeal diseases.
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Key points

• Diarrhoeal disease remains a major global health burden

• Secretory diarrhoea results from abnormal fluid and electrolyte absorption 

and/or secretion

• Ion channels and transporters such as the cystic fibrosis transmembrane 

conductance regulator and sodium/hydrogen exchanger 3 are targets for 

antisecretory antidiarrhoeal drugs

• New compounds targeting intestinal transporters are in development for 

antidiarrhoeal therapy, including small molecules, natural compounds and 

existing drugs

• Antidiarrhoeal therapies might be useful as stand-alone therapy or together with 

oral rehydration solutions
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Figure 1. 
Mechanisms of intestinal fluid absorption and secretion in secretory diarrhoeas. a | Luminal 

and basolateral membrane transporters and intracellular signalling mechanisms are involved 

in intestinal fluid absorption and secretion by enterocytes. b | Some bacteria secrete 

enterotoxins that increase intracellular cyclic nucleotides, resulting in Cl− secretion and 

inhibition of NHE3 and Na+ absorption. Invasive bacteria cause a tissue inflammatory 

response involving recruitment of immune cells and release of cytokines, resulting in 

intracellular Ca2+ signalling. c | The rotaviral protein NSP4 causes elevation of cytoplasmic 

Ca2+ concentration by binding to integrin-α1β2, galanin and/or by activation of enteric 

Thiagarajah et al. Page 19

Nat Rev Gastroenterol Hepatol. Author manuscript; available in PMC 2016 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nerves. Rotaviral NSP4 also inhibits NHE3 and SLC5A1. d | Congenital diarrhoeas result 

from rare inherited genetic mutations in several intestinal proteins. e | Activation of 

inflammatory signalling pathways such as NF-κB result in Ca2+ or cyclic nucleotide 

signalling and stimulation of Cl− secretion or inhibition of Na+ absorption. The release of 

inflammatory mediators such as TNF and IL-6 by activated T cells and neutrophils can also 

stimulate Cl− secretion. Abbreviations: CaCC, calcium-activated chloride channel; CaSR, 

calcium-sensing receptor; CFTR, cystic fibrosis transmembrane conductance regulator; CT, 

cholera toxin; DRA, down regulated in adenoma Cl−/HCO3− exchanger; EC, 

enterochromaffin; ENaC, epithelial Na+ channel; ENS, enteric nervous system; EPCAM, 

epithelial cell adhesion molecule; Gal, galanin; GALR1, galanin receptor 1; GUCY2C, 

guanylate cyclase C (heat stable enterotoxin receptor); 5-HT, 5-hydroxytryptamine; 

MYO5B, unconventional myosin-5b; NHE, sodium/hydrogen exchanger; NKCC, Na/K/Cl 

symporter; NSP4, nonstructural protein 4; RABs, Ras-related proteins; SCFA, short-chain 

fatty acid; SLC5A1, sodium/glucose cotransporter; STa, heat-stable toxin; TLR, toll-like 

receptor; VIP, vasoactive intestinal peptide.
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Figure 2. 
Potential therapies for secretory diarrhoeas at various stages of development and their 

molecular targets. Various molecular targets including intestinal ion channels and 

transporters, regulatory proteins and cell surface receptors are found on epithelial cells lining 

the intestine, enteric nerves and enterocytes. Novel therapeutics targeting these molecules 

are in the development pipeline. Abbreviations: AF, antisecretory factor; BPO, 

benzopyrimido-pyrrolo-oxazinedione; CaCC, calcium-activated chloride channel; CaSR, 

calcium-sensing receptor; CFTR, cystic fibrosis transmembrane conductance regulator; EC, 

enterochromaffin; LPA, lysophosphatidic acid; LPAR2, LPA receptor 2; NHE, sodium/

hydrogen exchanger; NKCC, Na/K/Cl symporter; PPQ, pyrimido-pyrrolo-quinoxalinedione.
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Figure 3. 
Chemical structures of CFTR and CaCC inhibitors for secretory diarrhoeas. Abbreviations: 

CaCC, calcium-activated chloride channel; CFTR, cystic fibrosis transmembrane 

conductance regulator; PPQ, pyrimido-pyrrolo-quinoxalinedione.
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Table 1

Current antidiarrhoeal therapies

Therapy (dose, 
administration) 
[Brand name] Mechanism of action Indications

Notes and adverse 
effects References

Alosetron (1–2 mg 
daily, oral) 
[Lotronex®, 
Prometheus 
Laboratories, USA]

5-hydroxytryptamine3receptor 
antagonist; antimotility, antisecretory

Refractory diarrhoea- 
predominant IBS

Contraindicated for 
patients with 
constipation; intestinal 
ileus, obstruction, 
perforation, ischaemic 
colitis

Koch et al. 
(2004)135

Cholestyramine 
resin (4–12 g daily, 
oral) Questran®, 
Bristol–Myers 
Squibb, USA] 
Colesevelam (4–12 
g daily, oral) 
[Welchol®, 
Daiichi-Sankyo, 
USA; 
Cholestagel®, 
Genzyme, 
Netherlands]

Sequesters bile salts; antisecretory, 
proabsorption

Bile acid malabsorption 
diarrhoea;ileal resection

Unlabelled indication; 
impaired absorption of 
other drugs; 
malabsorption of fat-
soluble vitamins

Koch et al. 
(2004)135

Crofelemer (250 mg 
daily, oral) 
[Fulyzaq®, Salix 
Pharmaceuticals, 
USA]

CFTR and CaCC channel inhibitor; 
antisecretory

Diarrhoea associated with 
antiretroviral therapy for 
HIV/AIDS

Not approved for 
infectious or other 
diarrhoeas

Macarthur et al. 
(2013)89

Diphenoxylate and 
atropine (5–20 mg 
daily, oral) 
[Lomotil®, AMCo, 
UK]

μ-opioid receptor agonist; antimotility Acute nonspecic diarrhoea Contraindicated in 
diarrhoea associated 
with enterotoxigenic 
bacteria, 
pseudomembranous 
colitis and ulcerative 
colitis; CNS 
depression, dizziness, 
paralytic ileus

Karim et al. 
(1972)83

Loperamide (4–16 
mg daily, oral) 
[Imodium®, 
Johnson & Johnson, 
USA]

μ-opioid receptor agonist; antimotility Acute nonspeci c diarrhoea, 
chronic diarrhoea 
associated with IBD

Contraindicated in 
bacterial enterocolitis, 
pseudomembranous 
colitis and ulcerative 
colitis; constipation, 
nausea

DuPont et al. 
(1990)85; Koch et 
al. 
(2004)135;Ericsson 
et al. (1990)137

Racecadotril (100–
300 mg daily, oral) 
[Hidrasec®, 
Tiorfan®, 
Bioproject, France]

Enkephalinase inhibitor; antisecretory Acute nonspeci c diarrhoea Not approved in USA; 
headache

Hamza et al. 
(1999)87

Bismuth 
subsalicylate (0.5–4 
g daily, oral) 
[Pepto-Bismol®, 
Procter & Gamble, 
USA;Bismatrol]

Inhibition of prostaglandin synthesis; 
antisecretory; antimicrobial

Acute mild nonspecic 
diarrhoea

Faecal discoloration, 
tinnitus, CNS 
depression, dizziness, 
Reyes syndrome in 
children

DuPont et al. 
(1990)85

Abbreviations: CaCC, calcium-activated chloride channel; CFTR, cystic fibrosis transmembrane conductance regulator; CNS, central nervous 
system.
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Table 2

Potential antidiarrhoeal therapies

Name/class Target and mechanism Potential indication Development stage

Antisecretory factor Inhibition of enteric nervous system; 
increased epithelial permeability

Acute secretory diarrhoea Phase III

CaCCinh-A01 Absorbable CaCC inhibitor Acute secretory diarrhoea Preclinical

iOWH032 Extracellular-acting CFTR inhibitor Acute secretory diarrhoea Phase I

CFTRinh-172 Absorbable CFTR inhibitor Acute secretory diarrhoea Preclinical

Clotrimazole K+ channel inhibitor Acute secretory diarrhoea FDA-approved for other indication

Eluxadoline μ-opioid receptor agonist Diarrhoea- predominant IBD Phase III

Gallotannins CaCC inhibitors Acute secretory diarrhoea Preclinical Nutritional supplement

LX1033 Tryptophan hydroxylase inhibitor; 
decreased 5-hydroxytryptamine synthesis

Diarrhoea- predominant IBD Phase II

Lysophosphatidic acid Lysophosphatidic acid receptor 2 
antagonist

Acute secretory diarrhoea Preclinical Nutritional supplement

MalH-lectin Inhibitor of the external pore of CFTR Acute secretory diarrhoea Preclinical

NHE3 C-terminal peptide NHE3 regulatory complex agonist Acute secretory diarrhoea Preclinical

Obeticholic acid Semi-synthetic bile acid Bile acid malabsorption 
diarrhoea

Phase II

PPQ/BPO Absorbable CFTR inhibitors Acute secretory diarrhoea Preclinical

R-568 Calcium-sensing receptor agonist Acute secretory diarrhoea Preclinical

Abbreviations: BPO, benzopyrimido-pyrrolo-oxazinedione; CaCC, calcium-activated chloride channel; CFTR, cystic fibrosis transmembrane 
conductance regulator; NHE, sodium/hydrogen exchanger; PPQ, pyrimido-pyrrolo-quinoxalinedione.
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