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Abstract

We are describing best practices and assessment strategies for the atomic interpretation of cryo-

electron microscopy (cryo-EM) maps. Multiscale numerical geometry strategies in the Situs 

package and in secondary structure detection software are currently evolving due to the recent 

increases in cryo-EM resolution. Criteria that aim to predict the accuracy of fitted atomic models 

at low (worse than 8 Å) and medium (4–8 Å) resolutions remain challenging. However, a high 

level of confidence in atomic models can be achieved by combining such criteria. The observed 

errors are due to map–model discrepancies and due to the effect of imperfect global docking 

strategies. Extending the earlier motion capture approach developed for flexible fitting, we use 

simulated fiducials (pseudoatoms) at varying levels of coarse-graining to track the local drift of 

structural features. We compare three tracking approaches: naïve vector quantization, a smoothly 

deformable model, and a tessellation of the structure into rigid Voronoi cells, which are fitted 

using a multi-fragment refinement approach. The lowest error is an upper bound for the (small) 

discrepancy between the crystal structure and the EM map due to different conditions in their 

structure determination. When internal features such as secondary structures are visible in 

medium-resolution EM maps, it is possible to extend the idea of point-based fiducials to more 

complex geometric representations such as helical axes, strands, and skeletons. We propose 

quantitative strategies to assess map–model pairs when such secondary structure patterns are 

prominent.
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1. Introduction

In the past decade, significant progress has been made in the 3D imaging of macromolecular 

assemblies via cryo-electron microscopy (cryo-EM) and in the development of 

computational algorithms that interpret the resulting volumetric maps at atomic resolution. 
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Modern CMOS detectors combined with movie frame stacking have eliminated much of the 

specimen drift that has limited cryo-EM imaging using earlier detectors. The new direct 

detection camera technology is a major breakthrough toward higher-resolution cryo-EM 

reconstruction (Jin et al., 2008). The new imaging techniques enable the production of many 

3D density maps that, at the highest resolution end of the scale (better than 3.4 Å), allow 

atomic structures to be solved directly. De novo models from high resolution maps (4 Å or 

better) can also be improved with crystallographic refinement techniques.

Major secondary structure features can be reliably detected in medium (4–8 Å) resolution 

maps, and structural components can be fitted and docked at even lower resolutions. 

Although medium to low resolution maps are not currently making headlines, there is an 

increasing number of such fitted models deposited to public databases and models are being 

met with significant scrutiny (Henderson et al., 2012). We are concerned with validation 

strategies and best practices that would help maintain high standards for the structure 

deposition of such fitted models.

For medium to low resolution maps, electron microscopists have a choice among dozens of 

rigid body and flexible fitting packages (López-Blanco and Chacón, 2015). In the following 

study, we describe features of the Situs package, which was first released in 1998 (Wriggers, 

2012). The Protein Data Bank (PDB) uses the “Situs colores program to identify 

transformation matrices that allow spatial overlap of maps deposited to the EM Data Bank 

(EMDB) and models deposited to the PDB so that they can be viewed together,” and finds 

“that the unique algorithm in colores is able to identify optimal fit positions even in tricky 

cases, e.g., where only part of a structure is modelled” (Lawson, 2014). Among 1,014 

EMDB entries with an associated atomic model in the PDB (Lawson, 2014), modelers 

identified the software used in 204 unique cases. The top six programs are as follows: (1) 

UCSF Chimera (Pettersen et al., 2004; 61 models), (2) MDFF (Trabuco et al., 2008; 28 

models), (3) Situs (26 models), (4) EMFit (Rossmann et al., 2001; 24 models), (5) Coot 

(Emsley et al., 2010; 12 models), and (6) Rosetta (DiMaio et al., 2009; 11 models). We note 

that the top three programs are complementary (Chimera is widely used for visualization, 

MDFF is used for molecular dynamics simulations of high-resolution maps, and Situs is 

traditionally used for rigid-body docking at medium to low resolution).

In this whitepaper, our aim is to focus on opportunities, challenges, and aspirations as they 

relate to software developed in our laboratories. Numerical geometry methods are described 

in more detail in figure captions. We proceed in order of increasing cryo-EM resolution as 

follows. In Section 2, we summarize best practices of model evaluation, which are inspired 

by applications of our Situs rigid-body docking tools. We next consider cases where the drift 

of local features can be evaluated due to the existence of a known atomic structure. We 

conclude with an outlook on the detection of secondary structure features in medium- to 

high-resolution EM maps, which hold much promise for future validation strategies.

2. Low resolution: Existing best practices for rigid-body fitting

Even in the age of atomic-resolution cryo-EM, the fitting of small fragments to low-

resolution maps can be valuable, as has been exemplified by the recent fitting of the so-
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called SPRY2 domain of ryanodine receptor (RyR1) to four low (worse than 10 Å) 

resolution maps (Lau and Van Petegem, 2014). The small (~50 kDa) fragment was docked 

using colores with Laplacian filtering, and the more recent 3.8 Å cryo-EM map of full RyR1 

(Yan et al., 2015) confirmed the location with an accuracy of 2.1 Å RMSD (Wang, 2015). 

Importantly, not all the low-resolution maps gave the same results (only three out of four 

were correct), but it was clear from the ranking of the correlation coefficients that the odd 

one was incorrect, i.e. there was little contrast between the correlation coefficients of the top 

hit and the next ones down in the ranking (Van Petegem, 2015). To assist Situs users in 

managing similar ambiguities, we feel it is therefore important to describe best practices for 

fitting and validation.

As an inspiration for currently supported validation options, we recommend the 

“Supplementary Information” paper by Tung et al. (2010). In this earlier work, Van 

Petegem’s lab presented a new model of the ABC domains of RyR1. Since their model was 

in conflict with earlier models, the Situs fitting strategy was extensively scrutinized in that 

paper. To simplify the listing of best practices, we assume that the fitted subunits are based 

on reliable crystallographic or NMR structures.

(1) The use of two or more independent cryo-EM maps. Since cryo-EM progresses 

incrementally toward higher resolution maps, it is often possible to compare fitting 

results to older, lower resolution maps derived from different sets of images. In Tung et 

al. (2010), a 14 Å and a 10 Å map of RyR1 was used to confirm that the model was 

robust. This idea could be useful to test the robustness of a fitting method or to validate 

maps. However, the approach does not directly validate models: any discrepancies 

arising in such comparisons may be due to weaknesses in one of the maps (typically the 

older one), which is unrelated to the accuracy of the model derived from the new map.

(2) Statistical confidence analysis. It is possible to estimate the precision of the fitting 

method in a statistical evaluation of the variability of fits. This can be done using 

Fisher’s Z-transform of the scoring function (Volkmann, 2009). For example, a 

precision of 4.4 Å was reported for fits within the 99% confidence level for the 

maximum peak in the cross-correlation (Tung et al., 2010). Unfortunately, although the 

two terms are often confused, precision is not a reliable indicator of accuracy 

(Henderson et al., 2012). The precision of detected features correlates with the accuracy 

obtained in single molecule fits where all density is accounted for (Wriggers and 

Birmanns, 2001). However, in cases where a smaller fragment is fitted to a larger map, 

spurious peaks can arise in the cross-correlation that are far from the true solution 

(Chacon and Wriggers, 2002).

(3) Docking contrast. The docking contrast used by Lau and Van Petegem (2014) and 

Tung et al. (2010) is a feature of the “scoring function landscape” in the Situs colores 

tool. It measures how the score of the top solution stands out from non-redundant 

solutions immediately below in the ranking. The success of this criterion depends on 

how well the atomic fragments match the EM density. The ranking is less reliable if 

fitted atomic fragments are imperfect to begin with (for example, when homology 

models are used or in induced fit situations). Also, the use of a Laplacian filter (Chacon 
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and Wriggers, 2002) or multi-fragment docking (see below) yield a different contrast 

profile compared to a one-at-a time approach.

(4) The use of two or more independent modeling strategies. We encourage our users to 

validate their fits with alternative software such as EMFit in which detailed atomic 

contacts are scored in addition to the density match (Rossmann, 2000). Ideally, different 

software should yield identical results (Tung et al., 2010). Also, it is useful for maps 

near 10 Å resolution (or below) to experiment with the Laplacian filter that matches the 

surface contours (Chacon and Wriggers, 2002). Finally, an important approach to fitting 

smaller fragments is to test whether their matching recapitulates the full assembly: “The 

results indicate the RyR1ABC structure is at the size limit for standard cross-

correlation-based docking into the current 9.6 Å cryo-EM map, and that Laplacian 

filtering is absolutely required for docking any smaller units” (Tung et al., 2010).

(5) Comparisons with other biophysical and biochemical knowledge. This is the most 

reliable validation strategy because it is independent of the data and modeling work 

flow. For example, Tung et al. (2010) studied the distribution of disease mutants in their 

model. They also evaluated surface features and the position of labels as well as results 

from complementary biophysical and biochemical studies. Fortunately, the modeler is 

usually experienced in experimental interpretation and validation, since functional 

conclusions are drawn from the atomic model as part of the publication and deposition 

process.

The above recommended validation strategies are best practices that will minimize (but not 

eliminate) the risk of modeling error. Anecdotal evidence suggests that criteria that are 

solely based on the “scoring landscape”, such as confidence analysis (precision) and docking 

contrast, are imperfect predictors of accuracy. For example, it is notoriously difficult to 

predict the global shape of larger homology models, so their fit might produce unambiguous 

solutions that have high contrast and high precision, yet the fit may be incorrect (Tung et al., 

2010). Also, the use of crystallographic validation methods that evaluate the stereochemistry 

of protein models are limited in terms of predicting the global pose. For example, the 

influenza B virus receptor-binding site complex of antibody CR8033 exhibits steric clashes 

with hemagglutinin (Dreyfus et al., 2012), but the model is most likely correct since both 

subunits were solved in isolation, and induced fit changes in the EM map of the complex can 

explain the clashes (Dreyfus et al., 2012). We argue, therefore, that at the present time a 

meta-analysis of multiple criteria that takes into account all experimental knowledge is the 

most promising strategy in validation.

3. Medium resolution: Tracking by fiducials

From a numerical geometry perspective, the above one-at-a-time rigid body docking 

requires very little information, namely the centroid and pose (orientation) of the docked 

molecular structure. In other words, the fitting accuracy is estimated globally for the entire 

model. A major limitation of this approach is its inability to differentiate between 

misalignment and internal conforma- tional change. It would be desirable to add flexibility 

to the model by introducing sampling points that correspond to specific shape features. The 

displacement of the sampling points would then account for systematic differences between 
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a map and a model, even when both are in (nearly) equivalent conformations. The 

magnitude of any conformational change can be quantified by the RMSD of the sampling 

points, and the drift vectors of individual points could provide a sparsely sampled 

deformation field. One can indeed devise such a model for flexible fitting of models to low-

resolution EM maps (Birmanns and Wriggers, 2007). Fig. 1 illustrates the flexible modeling 

of the myosin motor domain (Wriggers, 2010). In flexible fitting, the deviating atomic 

structure is brought into register with the EM density by forcing the fiducials to coincide.

In this work, we are extending the earlier approach to track features in map–model pairs that 

are deemed to be equivalent in order to search for systematic differences between low- to 

medium-resolution EM maps and a known atomic structure. We compare three motion-

tracking models. The first model, naïve vector quantization (VQ), involves motion capture, 

but with the stabilizing skeletons (see Fig. 1B) turned off. This is a worst-case scenario, 

where errors from both model and EM coarse-graining can combine. We expect a more 

robust fit to be provided by direct cross-correlation maximization between the EM map and 

a smoothly deformable model using inverse distance weighting (IDW) interpolation, which 

we developed earlier for flexible fitting (Rusu et al., 2008). Finally, we perform a 

tessellation of the structure into N rigid Voronoi cells (see Fig. 1), which are fitted 

simultaneously by maximizing the cross-correlation in a 6N-dimensional search (see Fig. 2).

We compare in Fig. 3 the geometric features of an atomic structure of GroEL (PDB ID 

1XCK) with those of an 11.5 Å resolution map (EMDB ID 1080) and a 6 Å resolution map 

(EMDB ID 1081). All three structures represent the wild-type specimen and are expected to 

be equivalent in their conformations. Consequently, our stability tests should yield very 

small deviations for the EM features from those corresponding to the known crystal 

structure. We carried out calculations for the more efficient VQ approach up to N = 500, 

which is just below the maximum meaningful number of features, Nmax, contained in 

EMDB ID 1080 (this number can be estimated from the density-occupied map volume 

divided by the volume of a cubic resolution element, and yields Nmax ~660 for the 11.5 Å 

map and Nmax ~2300 for the 6 Å map). Calculations for the computationally more 

demanding global deformation and Voronoi tessellation models were carried out up to N = 

100.

The observed RMSD values give insight into discrepancies between the structures and into 

limitations of the tracking strategies. All three approaches initially increase their RMSD as 

the models become more flexible due to increasing numbers of features. The VQ approach 

requires sufficient point density (N > 100) to track features consistently. VQ is somewhat 

complementary to the other two approaches (due to its ability to easily reach high N on 

standard workstations). However, it suffers from intermittent bursts of instability at lower N 

and at high N values, the curves are not as smooth as those computed by the other 

approaches. A more consistently accurate fit at lower N values is provided by the 

deformable model using IDW interpola- tion (Rusu et al., 2008). The observed RMSD 

varies smoothly between 1 and 2 Å. Finally, the lowest RMSD is consistently provided by 

the tessellation of the structure into rigid Voronoi cells utilizing multi-fragment refinement 

(see Fig. 2). This lowest error is an upper bound for the (small) discrepancy between the 

crystal structure and the EM map due to different experimental conditions. Given that the 
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best performing Voronoi tessellation approach produces a low RMSD below 2 Å, and the 

VQ approach for high N values is saturating in both cases, we believe that the maximum 

Voronoi RMSD of ~2 Å is close to the (unknown) structure discrepancy. Interestingly, there 

is little difference between the Voronoi plots of the 11.5 Å and the 6 Å maps, which 

suggests a systematic difference between the crystal structure and both EM reconstructions. 

Assuming that the crystal structure is more reliable than either of the EM maps, the results 

suggest that at medium to low resolution there might be a risk of over- fitting the atomic 

structure (e.g. by using an aggressive molecular dynamics approach that would erase all 

feature discrepancies between the map and the model).

4. Medium to high resolution: Validation using secondary structure 

elements?

Given the increasing number of available cryo-EM density maps in the medium to high 

resolution range, the secondary structure features of cryo-EM maps have been well 

characterized and their features are now well understood. In fact, secondary structure 

elements are often the most obvious features in density maps at medium to high resolutions. 

Consequently, we argue in this section that it is useful to generalize the above point-wise 

tracking (see Fig. 3) to more abstract representations of geometric shapes that are tuned to 

the specific properties of secondary structure elements. In general, long helices can be 

detected reliably and b-sheets also begin to become visible at resolutions of 8 Å or better 

(Baker et al., 2012). It is also possible to predict the location of b-strands at medium 

resolutions (Si and He, 2014a).

Secondary structures have unique density signatures. Helices, particularly long ones, appear 

as cylinders, and simple sheets appear as thin twisted layers of density (see Fig. 4). Since 

Jiang et al. discovered that it is possible to identify helices in sub-nanometer resolution maps 

(Jiang et al., 2001), various computational methods have been developed to detect helices 

and b-sheets, including SSEhunter, SSETracer and voltrac (Baker et al., 2007; Dal Palu et 

al., 2006; Kong and Ma, 2003; Kong et al., 2004; Rusu and Wriggers, 2012; Si and He, 

2013; Si et al., 2012; Zeyun and Bajaj, 2008). SSELearner combines image process- ing 

techniques and machine learning (Si et al., 2012). An example of the helices (red sticks) and 

b-sheets (green volume) detected using SSETracer is shown in Fig. 4B. It is also possible to 

obtain a skeleton (pink) that represents possible connected components in the density map 

(see Fig. 4B). Recently, StrandTwister was developed to detect b-strands (see red lines in 

Fig. 4C) from b-sheet density through the analysis of b-sheet twists (Si and He, 2014a). The 

results generated from such detection methods reflect the strength of the density features in 

secondary structure regions.

Unfortunately, as more cryo-EM maps become available for examination, it is quite 

common to see quality variations in the density of secondary structure elements (see Fig. 5). 

For example, the upper left helix in Fig. 5 exhibits a strong cylinder-like shape, while the 

upper middle helix shows thinner and discontinuous pieces of a cylinder in the same density 

map at the same threshold. These quality variations might be due to uneven resolutions 

across the map, 3D reconstruction artifacts, or heterogeneity of the con- formation. 

Likewise, it is possible that a matched atomic model does not accurately reflect the EM 
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density due to limitations of the modeling or fitting. Given the increasing number of map–

model pairs deposited in the EMDB and PDB, we argue that there is a need to quantify the 

fitting locally to distinguish those models that agree well with the local density features from 

those that do not. Fig. 5 is an illustration of such cases, which should be useful to modelers 

in the community who develop such validation software.

Secondary feature representations can be used to define metrics for evaluating the local 

fitness of a map–model pair. For example, the helical axes and b-strands in Figs. 4B and 4C 

could be used to measure lateral helical or strand displacement, or any longitudinal length 

discrepancy. The density property of secondary structure elements is already widely used for 

the validation of map–model pairs. Helical density has been characterized using various 

metrics, such as cross-correlation coefficients with cylindrical templates (Baker et al., 2007; 

Rusu and Wriggers, 2012), gradient trees (Dal Palu et al., 2006), and local structural tensors 

(Si and He, 2013; Si et al., 2012; Zeyun and Bajaj, 2008). These methods characterize the 

cylindrical property along the axis of the helix. The continuity of high density along the axis 

and the local thickness of the cylindrical density are often indicators of the strength of the 

helix density feature. The density feature of a b-sheet is less well explored compared to that 

of a helix. Nevertheless, thinning and pruning has been shown to derive the surface of a b-

sheet (Baker et al., 2007). Recent studies suggest that the twist of a b-sheet can also be 

exploited, even if the strands themselves cannot be visualized (Si and He, 2014a,b).

In summary, we are witnessing the development of quantitative secondary structure-based 

methods that are able to characterize local discrepancies in a map–model pair. This area of 

research is in its infancy now but we expect that it will grow significantly in the near future.

5. Conclusions

The overall aim of this paper was to describe and to propose validation tools for medium- to 

low-resolution cryo-EM based atomic models. The proposed strategies will aid in the routine 

determination of large-scale structures of biomolecular assemblies and in the validation of 

structural models that will be deposited to public databases, such as the Protein Data Bank 

(PDB) and the EM Data Bank (EMDB).

Our tests suggest that multi-fragment rigid body refinement is a superior “motion” model for 

tracking deformations, and that Voronoi cells of fiducials can be used as templates for 

tracking conformational differences. This is another successful adaptation of the new fitting 

paradigm of simultaneous refinement of multiple subunits.

Our work also suggests that flexible fitting methods, such as all-atom molecular dynamics, 

may accidentally erase meaning- ful differences between atomic structures and EM maps if 

all discrepancies between models and maps are eliminated. This is a problem that mostly 

affects medium- to low-resolution maps where the fitted atomic structure might be more 

reliable than the map density. The ultimate remedy to this problem is to attain higher 

resolutions that allow cryo-EM to solve atomic structures directly. Nevertheless, medium- to 

low-resolution maps still dominate the EMDB. It is therefore important to separate flexibly 

fitted models from rigid ones in a statistical evaluation of map–model pairs.
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In this whitepaper, we have also presented various map–model pairs that are potentially 

useful for testing valida- tion methods based on secondary structure elements. Our “call to 

arms” seeks to shift the research emphasis from the qualitative detection of secondary 

structures to the quantita- tive validation of secondary structure patterns. This approach 

would open doors for new applications in the validation of atomic structures based on 

secondary structure patterns. It would also improve the reliability of existing methods and 

provide a local measure of fitness for maps in case of reliable reference structures.

6. Availability

Tools and tutorials for the numerical experiments in this paper will be made available with 

version 2.8 of Situs (http://situs.biomachina.org).
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Fig. 1. 
Illustration of the motion capture network (Rusu et al., 2008; Wriggers, 2010), which was 

originally developed for low-resolution flexing and which serves here as an inspiration for 

feature tracking. (A) Crystal structure of the myosin 2 (subfragment 1) motor domain rigid 

body fitted to the 14 Å resolution EM density (Wriggers, 2010). Atoms are shown as dotted 

spheres and the EM density is shown as a black wire mesh. The atom colors correspond to 

Voronoi cells in (B). The crystal structure does not match the EM density perfectly as 

indicated by the imperfect overlap. (B) Simulated fiducials (black spheres) used for guiding 

the flexible fitting of the atomic structure. The colors represent the Voronoi cells (Wriggers 

et al., 2004) surrounding the fiducials. The fiducials are computed using a so-called vector 

quantization method based on unsupervised learning (Wriggers et al., 2004). The motion 

capture network (black distance constraints between fiducials) reflects the topology and 

rigidity of the atomic structure (Wriggers, 2010) and provides a more robust model. (C) 

Discretely sampled displacements as a course representation of the conformational 

difference. Arrows point from the fiducial position in (B) to the position in the EM map. (D) 

Flexibly fitted atomic structure superimposed with the EM map. The centroids of the 

Voronoi cells are shifted to their new position. This can be achieved in a molecular 

dynamics refinement step or by spatial interpolation (Rusu et al., 2008; Wriggers, 2010). 

Figs. 1 and 2 were created with VMD (Humphrey et al., 1996).
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Fig. 2. 
Illustration of the effect of simultaneous multi-fragment fitting. Docking of rigid G-actin 

subunits (green, purple, orange chains) and phalloidin (blue chain) to an F-actin cryo-EM 

map at 10.5 Å resolution (data provided by Vitold Galkin and Edward H. Egelman). Shown 

are two adjacent G-actin symmetry mates within a single strand of the two-start actin helix 

(26.2 degrees rotation, 53.2 Å translation). Spheres denote ends of the fragmented 

polypeptide chains within each G-actin. Left: traditional one-at-a- time fitting of the rigid 

subunits suffers from steric clashes and significant separation in the chain ends. Right: 

simultaneous multi-fragment fitting provides a cleaner model (with reduced chain separation 

and no steric clashes) that can be “healed” with local molecular dynamics simulation that 

fuses the separated chains. The cross-correlation coefficient optimized here is a widely used 

fitting score. Its maximization is equivalent to minimizing the squared differences, which is 

maximum-likelihood if the errors are normal (as is generally assumed in EM fitting 

applications, although this may not necessarily be the case). This scoring function has been 

adopted by a large number of groups, and a number of computer programs based on it are 

readily available (López-Blanco and Chacón, 2015). Over the years, we have developed 

Fourier-based techniques to accelerate translational or rotational matching (López-Blanco 

and Chacón, 2015), and the colores program has become the workhorse for Situs docking 

(Wriggers, 2012). Lasker et al. (2009) originally discovered that the accuracy of traditional 

interactive component placement, one at a time, can be increased by simultaneous 

refinement. In the Situs collage tool, the approach softly enforces shape complementarities 

between components via normalization of the cross-correlation (Birmanns et al., 2011). The 

approach also led to an implementation of symmetry constraints during the refinement 

(Wriggers, 2012), and it opened the door to a new high-dimensional conformational search 

(López-Blanco and Chacón, 2013) of multiple fragments, which were optimized in parallel 

using genetic algorithms in combination with tabu search techniques (Rusu and Birmanns, 

2010). We have recently adopted this approach, termed voltrac, to trace a-helices in high-

resolution EM maps (Rusu and Wriggers, 2012) and to segment filaments in tomograms 

(Rusu et al., 2012).
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Fig. 3. 
Tracking of geometric features. PDB ID 1XCK vs. EMDB ID 1080 (top; GroEL at 11.5 Å 

resolution) and EMDB ID 1081 (bottom; GroEL at 6 Å resolution). Shown are RMSD 

values of feature discrepancies observed by (1) naïve vector quantization (Wriggers et al., 

2000, black dots), (2) a global deformable model based on IDW interpolation (Rusu et al., 

2008, red), and (3) rigid-body multi-fragment model based on Voronoi tessellation (green).
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Fig. 4. 
Secondary structure detection based on characteristic density patterns. (A) The density map 

(gray) extracted from EMDB 1733 (6.8 Å resolution) superimposed on its atomic model 

(cyan; PDB 3C91_H), using the model as a mask. (B) The detected helices (represented as 

red sticks) and two b-sheets (green density), using SSETracer (Si and He, 2013) and the 

skeleton (pink) using SkelEM (Al Nasr et al., 2013). (C) The best of the top ten sets of 

detected b-traces (red lines) using StrandTwister (Si and He, 2014a) are superimposed with 

the backbone of the b-strands and the density map (gray) of EMDB ID 2165 and PDB ID 

4B4T_1 sheet C. Figs. 4 and 5 were created using Chimera (Pettersen et al., 2004).
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Fig. 5. 
Quality variation in density maps at secondary structure regions. Each local region is labeled 

with EMDB ID, PDB ID, and the resolution of the cryo-EM map. The atomic model (blue 

ribbon) is aligned with a local density pattern (gray) in the pose taken from the database.
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