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Abstract Atherosclerosis is a chronic inflammatory disease
of the artery wall, and both innate and adaptive immunity play
important roles in the pathogenesis of this disease. In several
experimental and human experiments of early atherosclerotic
lesions, it has been shown that the first pathogenic event in
atherogenesis is intimal infiltration of T cells at predilection
sites. These T cells react to heat shock protein 60 (HSP60),
which is a ubiquitous self-antigen expressed on the surface of
endothelial cells (ECs) together with adhesion molecules in
response to classical risk factors for atherosclerosis. When
HSP60 is expressed on the EC surface, it can act as a
Bdanger-signal^ for both cellular and humoral immune reac-
tions. Acquired by infection or vaccination, beneficial protec-
tive immunity to microbial HSP60 and bona fide autoimmu-
nity to biochemically altered autologous HSP60 is present in
all humans. Thus, the development of atherosclerosis during
aging is paid by the price for lifelong protective preexisting
anti-HSP60 immunity by harmful (auto)immune cross-
reactive attack on arterial ECs maltreated by atherosclerosis
risk factors. This is supported by experiments, which shows
that bacterial HSP60 immunization can lead and accelerate
experimental atherosclerosis. This review article presents
accumulating proof that supports the idea that tolerization
with antigenic HSP60 protein or its peptides may arrest or

even prevent atherosclerosis by increased production of
regulatory T cells and/or anti-inflammatory cytokines.
Recent data indicates that HSP60, or more likely some of its
derivative peptides, has immunoregulatory functions.
Therefore, these peptides may have important potential for
being used as diagnostic agents or therapeutic targets.
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Introduction

Indicators of a cellular heat shock response were first discov-
ered more than 50 years ago. Ritossa and coworkers first de-
scribed the phenomenon of puffing in the large chromosomes
of the salivary glands of Drosophila melanogaster after being
exposed to heat (Ritossa 1962, 1964; Ashburner 1970). Later,
the first gene and protein products of this morphological
puffing pattern were identified and the term Bheat shock
proteins^ (HSPs) has been created (Tissieres et al. 1974;
McKenzie et al. 1975; Spradling et al. 1975; Moran et al.
1978). HSPs are grouped in families according to their molec-
ular weight, and constitutive members of each family can be
found in different cell compartments under non-stress condi-
tions (Lindquist and Craig 1988). The genes coding for these
proteins have been sequenced, their structure described, their
chromosomal localization defined, and their mode of interac-
tion with nuclear heat shock transcription actors characterized
(Westwood et al. 1991). Both prokaryotic and eukaryotic cells
are expressing HSPs under physiological conditions as well as
all cells that are exposed to various forms of stress. They have
a wide range of physiological functions. Their cellular in-
volvement includes intracellular protein transport, protein
folding, cellular signaling, protein degradation, and also
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certain chaperone functions. Between all mammalian and bac-
terial species, the members of the HSP60 (the 60-kDa HSP)
family (mammalian HSP60 (hSP60), the Mycobacterium
tuberculosis homologue HSP65 (mbHSP65), Chlamydia
pneumoniae homologue (cHSP60), and the Escherichia coli
homologue (GroEL) are highly conserved. That is the reason
why extensive immunological cross-reactions between autol-
ogous and pathogenic HSP60 can occur (Young and Elliott
1989). During different stress conditions, the endogenous
mitochondria-bound HSP60 protein can be translocated to
the cytoplasm and the cell surface. The exact pathway, how-
ever, is still not completely understood.

In addition to the immunity against organism-specific epi-
topes, all humans develop protective beneficial adaptive im-
munity against the phylogenetically highly conserved micro-
bial HSP60 antigen via infection or vaccination. Under phys-
iological conditions, vascular endothelial cells (ECs) do not
express HSP60. When stressed, however, HSP60 expression
can be induced on the EC surface by classical atherosclerosis
risk factors, such as mechanical stress, temperature, oxygen
radicals, infections, toxins, heavy metals, cigarette smoke, and
pro-inflammatory cytokines (Lamb et al. 2003; Xu and Wick
1996). Importantly, the same stressors can simultaneously in-
duce the expression of both adhesion molecules (ICAM-1,
ELAM-1, and VCAM-1) and HSP60 on the EC surface
(Seitz et al. 1996; Amberger et al. 1997). This mechanism
provides the prerequisite for potentially bacterial/human
HSP60 cross-reactive antibodies and destruction of the EC
by preexisting cellular and humoral immunity against
HSP60, entailing intimal infiltration by mononuclear cells.
Thus, HSP60 that is expressed on the cell surface can act as
a Bdanger signal^ both for cellular and humoral immune reac-
tions. In other words, protective, preexisting anti-HSP60 im-
munity may cause harmful (auto)immune cross-reactive at-
tack on arterial ECs maltreated by atherosclerosis risk factors.
These early inflammatory stage of atherosclerosis is still re-
versible, but if atherosclerosis risk factors persist, the inflam-
matory stage proceeds to plaque formation with deleterious
consequences. At later stages of atherogenesis, intralesional
T cells, macrophages, dendritic cells (DCs), and smooth mus-
cle cells (SMCs) can also express HSP60, and the anti-HSP60
cellular immune reaction could therefore be perpetuated in
situ. These experimentally and clinically proven findings rep-
resent the basis for the BAutoimmune Concept of
Atherosclerosis^ (Wick et al. 2004, 2014; Grundtman et al.
2011; Grundtman and Wick 2011). This concept was first
presented in 1992 and showed that normocholesterolemic rab-
bits immunized with mbHSP65 develop atherosclerotic
plaques irrespective of their cholesterol levels (Wick et al.
1992; Xu et al. 1992). Moreover, during the last two decades,
we and other laboratories have identified HSP60 as one of the
most important antigens in early stages of atherosclerosis (Xu
and Wick 1996; Wick et al. 1995, 2004). Proof of concept for

the presence of antigenic mimicry has been thoroughly inves-
tigated in different animal models and humans (Wick et al.
2014).

Albeit already much can be accomplished only through
certain lifestyle changes and several medicinal therapies for
atherosclerosis exist, e.g., oxidized low-density lipoprotein
(oxLDL)-lowering therapies, there are still a large number of
adverse cardiovascular events indicating an obvious need for
new specifically targeted therapeutic interventions. In this re-
view, the focus will be put on the possible beneficial use of
HSP60 and HSP60-derived peptides with the aim to avoid
atherogenesis and specifically treat already ongoing
atherosclerosis.

HSP60 in human atherosclerosis

As mentioned, all healthy humans display innate and adaptive
anti-HSP60 immunity induced by infection, by vaccination, or
as bona fide autoimmunity against biochemically altered au-
tologous HSP60, probably derived from damaged or necrotic
ECs. Soluble HSP60 (sHSP60) and/or anti-hHSP60 antibody
concentrations may be used as prognostic biomarkers for the
risk of develop cardiovascular disease (CVD) as several stud-
ies have demonstrated a correlation between high anti-
hHSP60 antibody titers and/or elevated sHSP60 levels in in-
dividuals suffering from CVD (Willeit and Kiechl 1993; Xu
et al. 1993a, b; Hoppichler et al. 2000; Pockley et al. 2000;
Zhang et al. 2008; Almanzar et al. 2012). Also, common ca-
rotid artery intima media thickness (IMT; the combined thick-
ness of both the tunica intima and tunica media) correlates
with elevated sHSP60 levels in individuals with prevalent
carotid atherosclerosis (Xu et al. 2000; Xiao et al. 2005).
Anti-hHSP60 antibody titer has also not only been identified
as a new early biomarker for morbidity but also for mortality
from atherosclerosis (Xu et al. 1999). In addition, lifelong
infectious load has also been discussed as correlated with an-
timicrobial HSP60 antibody titers and with atherosclerosis
(Mayr et al. 2000; Burian et al. 2001; Ford et al. 2005).
Cross-reactive antibodies between bacterial/human HSP60
can induce cytotoxic damage of stressed ECs (Mayr et al.
1999; Schett et al. 1995), indicating that humoral immune
reactions to bacterial HSPs may play an important role in the
process of vascular endothelial injury, which is believed to be
a key event in the pathogenesis of atherosclerosis. As
discussed below, it seems most likely that T cells initiate the
disease while anti-hHSP60 antibodies has an accelerating and
perpetuating effect (Knoflach et al. 2007).

Specific cellular immunity to HSP60 exists in the early
stages of atherosclerosis (Knoflach et al. 2003, 2007, 2009).
For example, it has been demonstrated in several studies that T
cells are one of the first cells to invade the arterial intima, later
followed by macrophages, DCs, and SMCs in predisposed
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sites (Xu et al. 1990; Kleindienst et al. 1993; Millonig et al.
2002). However, it has been shown that preexisting vascular-
associated dendritic cells (VADCs) are presented in the tertia-
ry lymphoid structures in the aortic adventitia at predisposed
sites, even before the invasion of T cells (Bobryshev and Lord
1996, 1998;Waltner-Romen et al. 1998; Millonig et al. 2001a,
b; Liu et al. 2008; Bobryshev 2010; Cybulsky and Jongstra-
Bilen 2010). These DCs can function as antigen-presenting
cells (APCs) and thereby capture potentially harmful exoge-
nous or autoantigens and present these to T cells and macro-
phages. Lesion-derived T cells display an oligoclonally re-
stricted repertoire in contrast to the polyclonal pattern of pe-
ripheral blood mononuclear cells (PBMCs), indicating that
oligoclonal T cell expansion can take place in human athero-
sclerotic lesions (Rossmann et al. 2008). We have recently
shown that these early autoreactive intralesional T cells, de-
rived from early, clinically still inapparent human atheroscle-
rotic lesions, can specifically react to certain hHPS60 epitopes
(Almanzar et al. 2012). Similarly, also T cells derived from
late complicated human atherosclerotic plaques harbored spe-
cific hHSP60 epitope reaction, which confirms earlier data
where also cross-reactive epitopes were found between
cHSP60 and hHSP60 (Almanzar et al. 2012; Benagiano
et al. 2005). Interestingly, some potentially atherogenic
hHSP60 epitopes were only found in early lesions vs. late
plaques while others were shared (Almanzar et al. 2012). T
cells from atherosclerotic lesions from rabbits do also give
strong proliferative response to mbHSP65 (Xu et al. 1993a,
b). Furthermore, oxLDL and LDLx (human group X-secreted
phospholipase A2) but not native LDL can activate plaque T
cells through DCs and HSP60 and 90 seem to play a role in
this immune reactivity as Tcell antigens (Liu et al. 2015). This
congruence a strong indication that these hHSP60 epitopes
recognized already by early lesional Tcells plays a pathogenic
role throughout atherogenesis and may represent interesting
early candidates for investigation in diagnostic, preventive,
and therapeutic approaches; however, this needs further inves-
tigations with larger cohorts of patients. Moreover, besides
being specific T cell antigens per se, presented on APCs,
HSP60 or peptides thereof could promote immune activation
by other mechanisms, in a non-mutually exclusive way. HSPs
being chaperone can form immune complexes with other an-
tigens including tumor antigens, and these can be presented as
antigens through classes I or II antigen presenting pathways
(Murshid et al. 2012). Although HSPs, including HSP60, are
potent activators of the innate immune system, very few data
are available for their role in the context of atherosclerosis
(Wallin et al. 2002). HSPs can be actively released through
exosomes or passively as in cell necrosis. Such HSP could
function as endogenous ligands in the extracellular space
and activate the innate immune system, through toll-like re-
ceptors (TLRs) or by association with ligands as endotoxin
(Tamura et al. 2012).

The importance of HSP60 B cell epitopes in atherosclerosis
has also been investigated, however, to a much less extent. For
example, atherosclerosis patients show common T and/or B
cell epitope specificities with cross-reactivity between
Porphyromonas gingivalis HSP60 and hHSP60 (Choi et al.
2004). Furthermore, antibodies to microbial HSP60/65 recog-
nize specific epitopes on hHSP60. These cross-reactive epi-
topes were shown to serve as autoimmnune targets in incipient
atherosclerosis (Perschinka et al. 2003).

HSP60 in experimental atherosclerosis

Early atherosclerotic lesions show a strong upregulation of
hHSP60 and the stress-inducible form hHSP70 in ApoE−/−

mice (Kanwar et al. 2001). The increased expression can al-
ready be found in 3-week-old mice before lesion formation is
visually detectable. This is followed in 8 to 20-week-old mice
by a strong and hererogeneous expression in lesional ECs of
early to advanced fibrofatty plaques, macrophages, SMCs,
and CD3+ T cells, with levels correlating to disease severity
(Kanwar et al. 2001). However, in advanced collagenous acel-
lular calcified plaques in 40- to 69-week-old mice, the expres-
sion is markedly downregulated. In 3- to 69-week-old
normocholesterolemic ApoE+/+ mice, no expression could
be found, indicating that HSPs might be a good marker for
progression stages of atherosclerosis (Kanwar et al. 2001). A
schematic overview of the experimental atherosclerosis devel-
opment can be found in Fig. 1.

Genetically normocholesterolemic rabbits immunized with
mbHSP65 (in the present context, mbHSP65 is always used as
a paradigmatic and potent representative of bacterial HSP60)
develop atherosclerotic plaques irrespective of their diet with
low or high-cholesterol levels, and T cells isolated from these
lesions specifically respond to mbHSP65 in vitro (Xu et al.
1992, 1993a, b;Metzler et al. 1999), a finding similar to that in
humans (Rossmann et al. 2008; Benagiano et al. 2005). Both
C57BL/6J mice, fed high-cholesterol diet, and LDLr−/− mice,
fed a normal chow diet, revealed enhanced early atheroscle-
rotic lesions after immunization with mbHSP65 (Afek et al.
2000; George et al. 1999). When C56BL/6NJcl mice were
immunized with hHSP60 and fed with high-cholesterol diet,
an enhanced fatty streak formation resulted (Mori et al. 2000).
In rats that were immunized with mbHSP65, a brisk and
sustained humoral response together with increased neointi-
mal growth could be observed (George et al. 2003). On the
other hand, in the absence of traditional risk factors for ath-
erosclerosis and Tcell activation, early inflammatory stages of
atherosclerotic lesions induced by mbHSP65 immunization
can be regressed (Sun et al. 2010; Xu et al. 1996). After
mbHSP65 immunization, enhanced progression of atheroscle-
rosis and an increase in intralesional CD3+ T cells have been
documented in C57BL/6J, LDLr−/−, and ApoE−/− mice
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(Shoenfeld et al. 2000). Transfer of these mbHSP65 reactive
lymphocytes to syngenic mice led to an enhancement of fatty
streak formation, supporting a selective immunomodulation
of the atherosclerotic plaques. Similarly, in ApoE−/− mice,
high-titer immunoglobulin treatment with human anti-
HSP60 autoantibodies can accelerate atherosclerosis
(Foteinos et al. 2005). In contrast, immunization with
mbHSP65-alum protects ApoE−/− mice against progression
of early atherosclerosis (Klingenberg et al. 2012). However,
it has been shown that alum displays strong atheroprotective
properties by itself by increasing Th2 responses, anti-MDA-LDL
IgM titers, the number of CD4+CD25+Foxp3+Tregs, and down-
regulating Tcell activation markers (Khallou-Laschet et al. 2006;
Wigren et al. 2009). It seems likely that alum boosts immune
reaction against self-antigens (mbHSP65) by facilitating the

uptake of mbHSP65 by local APCs or by the recruitment of
inflammatory APCs at the injection site that then migrate to the
peripheral lymphatic tissues where they activate antigen-specific
Tregs that protect against mbHSP65 autoimmunity.

Comparable results can be seen when animals are immu-
nized with peptides of the corresponding HSP60. For exam-
ple, immunizations with mbHSP65 peptide (91-105) leads to
enhanced atherosclerosis in rabbits and aortic EC injury in
mice (Zhang et al. 2012). Adopted transfer of mbHSP65 pep-
tide (91-105)-specific splenic cells that secrete increased
levels of interferon-γ (IFN-γ) can accelerate atherosclerosis
(Zhang et al. 2012).When immunized with mbHSP65 peptide
(153-171), different mice strains (with different H-2 haplo-
types) induced a cross-reactive T cell proliferative response
to homologous GroEL (Brett et al. 1989). Similarly,

Fig. 1 aUnder physiological conditions, vascular endothelial cells (ECs)
do not express heat shock protein (HSP)60 on the surface; however, after
HSP60/65 immunizations (or other kind of stressors), HSP60 is
transported and appears on the EC cell surface. The surfaces expression
of HSP60 appears simultaneously with the expression of adhesion
molecules. Activated T cells are the first invaders of the arterial intima
in early atherosclerotic lesions. Early, still inapparent, atherosclerotic
lesions show HSP60-specific T cells. Pre-existing resident vascular-
associated dendritic cells (VADCs) might present the HSP60 antigen,
either locally in the intima or after transport to draining lymph nodes.
An increased number of macrophages, smooth muscle cells (SMCs),
lipid deposition, foam cells formation, and release of pro-inflammatory
mediators both locally and into the circulation are seen in the more
developed plaque. Increased titers of anti-HSP60 autoantibodies and
soluble HSP60 (sHSP60) are detected in the circulation. Stressed, but
not unstressed ECs can be lysed by anti-HSP60 anti-HSP60 antibodies
in a complement-mediated fashion or via antibody-dependent cellular
cytotoxicity. Also, late complicated plaques show HSP60-specific T
cells. Some of these epitopes are shared in early vs. late lesions;

however, some only exist in each subset. If exposure of stress persists,
the plaque becomes more complex and forms a core of necrotic and
apoptotic cells, cell debris, and cholesterol crystals, along with a fibrous
cap. Rupture of unstable plaques exposes the core and can lead to
thrombus formation, myocardical infarction, claudication, stroke, and
death. b After tolerization with full-length HSP60/65 or preferable with
their peptide(s), a lower number of lesional T cells, macrophages, and
SMCs are seen. A reduced level of TH1 and increased level of TH2
mediators can be found locally, in secondary lymphoid organs, and/or
in the circulation. An increased number and suppressive capacity of
regulatory T cells has also been found. Moreover, increased anti-HSP60
IgG1 (auto)antibodies are found in the circulation after HSP60 treatment,
which may lead to a lower titer of sHSP60 and decreased EC damage.
The lipid reduction that has been found in tolerized animals is probably a
by-product of HSP60/65 immune interference and not a consequence of
the tolerance. However, it is still not yet fully elucidated if lipid levels can
be reduced after HSP60/65 tolerization. A decreased T cell reactivity in
the secondary lymphoid organs against HSP60 antigens indicates an
induction of tolerance to HSP60. Partly adapted from ServierMedical Art
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immunization of ApoE−/− mice with a specific monoclonal
mouse antibody (II-13) that recognizes amino acid residues
288-266 of hHSP60, effectively induced atherosclerosis due
to the recognition of specific epitopes expressed on arterial
ECs (Foteinos et al. 2005). II-13 injection resulted in EC dam-
age, followed by increased leukocyte attachment and accumu-
lation of macrophages and SMC in lesions, whereas the
monoclonal antibody ML-30, which binds to amino acids
315-318 of HSP60, lacked cytotoxic effects against cells
in vitro (Foteinos et al. 2005).

Notably, HSPs are rather large proteins that give, when
processed, rise to a multitude of potential epitopes. Only a
few of these, however, are atherogenic. In atherosclerosis,
different epitopes from the sameHSPmay therefore have very
different functional effect on the immune response, some be-
ing pro-inflammatory and others tolerogenic. Therefore, our
laboratory’s scientific goal during the last years has been to
identify epitopes, rather than the full-lengths HSP60 protein,
that can be found in a majority of patients and to characterize
the appropriate immune response in order to identify the most
pro-inflammatory epitope for the induction of tolerance.

HSP60 tolerization in atherosclerosis

Having investigated and proven the autoimmunological
HSP60-modulated concept of atherogenesis, the idea about
the development of a tolerization against atherogenic HSP60
epitopes has centered our laboratory’s and others research ac-
tivities since it may be a plausible approach to preventing or
even treating atherosclerosis. By treating hypercholesterol-
emic ApoE−/− and LDLr−/− mice either intranasally or orally
with whole mbHSP65 preparations or immunize them with
specific derived peptides thereof, the principle of tolerization
has been successfully applied (Fig. 2). In one study, LDLr−/−

mice were fed mbHSP65 in different concentrations every
other day for 10 days, and after the last feeding, they were
challenged with either (i) an immunizat ion with
M. tuberculosis (containing large amounts of bacterial
HSP65) or (ii) recombinant mbHSP65 or (iii) by high-

cholesterol diet (Harats et al. 2002). The results showed that
oral tolerance with mbHSP65 significantly attenuated athero-
genesis (Harats et al. 2002). Moreover, the reactivity of lym-
phocytes in mice that have been fed with mbHSP65 and im-
munized against mbHSP65 or M. tuberculosis was signifi-
cantly reduced. Also the specific HSP65-reactivity in
splenocytes was reduced in these mice. Cells extracted from
the lymph nodes of these mice produced more interleukin
(IL)-4 (TH2 cytokine) compared with cells of non-tolerized
animals (Harats et al. 2002). However, no suppressive effect
was seen on TH1 cytokine secretion, as evidenced by the un-
altered IFN-γ production (Harats et al. 2002). The role of IL-4
in atherosclerosis has been proven previously (Huber et al.
2001). Feeding mbHSP65 orally suppressed high-cholesterol
diet-induced atherosclerosis where spontaneous reactivity to
mbHSP65 was not evident compared to the M. tuberculosis
and mbHSP65-driven fatty-streak model (Huber et al. 2001).
We have also successfully orally tolerized ApoE−/− and
C57BL/6JmicewithmbHSP65.We found that atherosclerotic
lesions were significantly reduced together with a decrease in
pro-inflammatory cytokines and increased in anti-
inflammatory cytokines in the aorta. This was accompanied
with increased numbers of CD4++CD25++Foxp3+regulatory
Tcells (Grundtman et al. 2015) (Fig. 2). Importantly, we could
identify and functionally characterize novel atherogenic and
atheroprotective mbHSP65 epitopes (Grundtman et al. 2015).
To further analyze and understand the functionality of these
peptides and to investigate if they could be used as anti-
atherosclerosis vaccines without compromising protective im-
munity against other, non-atherosclerosis-associated domains
of the HSP60 molecule not associated with atherosclerosis are
needed. Another method of oral immunizationwithmbHSP65
used genetically modified recombinant Lactococcus lactis
stains to deliver the protein to the mucosa and induce intracel-
lular or extracellular production of the protein (Jing et al.
2011). Using this method, atherosclerosis was attenuated in
LDLr−/− mice. This antigen-specific tolerance was probably
mediated by a shift from a TH1 cell immune response to a TH2
cell response, because IL-10 concentrations increased and
IFN-γ levels decreased in vitro (Jing et al. 2011). Maron

Fig. 2 Mayer’s hematoxylin and eosin staining of the brachiocephalic
artery of an ApoE–/– mouse fed with a conventional diet, in addition b
immunized with mbHSP65, and c orally tolerized with full-length

mbHSP65. A significant increase in lesion size is seen after mbHSP65
immunization. In contrast, an amelioration of the lesion size is seen after
oral mbHSP65 treatment. Original magnification ×200
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et al. investigated the effect of nasal and oral administration of
mbHSP65 using LDLr−/− mice that maintained on a high-
cholesterol diet (Maron et al. 2002). A significant decrease
in the size of atherosclerotic plaques, a reduction in
macrophage-positive area in the aortic arch, decreased
IFN-γ expression (TH1), increased IL-10 expression (TH2),
a reduced number of CD4+ T cells, and decreased levels of
anti-mbHSP65 antibodies were found in nasally treated mice
(Maron et al. 2002). The antibodies showed a TH2-phenotype
pattern with significantly increased amounts of IgG1 antibod-
ies, which also is consistent with the cytokine profile found in
these mice (Maron et al. 2002). Maron et al. also showed that
mucosal treatment withmbHSP65 stimulates the development
of adaptive immune cells that secrete anti-inflammatory cyto-
kines (IL-10) and that these cells can then migrate from mu-
cosal inductive sites to the aorta, where they are restimulated
by HSP to secrete anti-inflammatory cytokines (Maron et al.
2002). The anti-inflammatory environment in the vascular
wall then leads to a decrease in inflammatory IFN-γ secreting
cells, which can result in an enhanced secretion of IL-10 by
macrophages and SMCs (Fig. 1). Most of these studies have
only used full- length HSP60/65 and not defined
proatherogenic peptides, therefore, not taking into account
the importance of bacterial-human cross-reactive epitopes.
However, several studies have successfully investigated the
possibility to treat experimental atherosclerosis with HSP60-
specific peptides.

Recently, oral tolerance against mbHSP60, mbHSP60 pep-
tide 253-268, and HSP70 peptide 111-125 (the sequence was
based on a partially conserved human, rat, and mouse se-
quence of the HSP70 molecule) were scrutinized (van
Puijvelde et al. 2007). In mbHSP60 and mbHSP60-peptide-
treated LDLr−/− mice, the plaque size in carotid arteries have
been reduced by 80 % and by 27 % in the aortic root (van
Puijvelde et al. 2007). The plaque size reduction correlated
with an increase in CD4+CD25+Foxp3+ regulatory T cells in
several organs and an increased mRNA expression of Foxp3,
CD25, and CTLA-4 in atherosclerotic lesions of treated mice
(van Puijvelde et al. 2007). A 13- and 9-fold increased T cell
proliferation confirmed that mbHSP60 but also the
mbHSP60-peptide can induce a specific T cell response.
However, after oral treatment, mice showed a significant re-
duction in proliferative responses to mbHSP60 (van Puijvelde
et al. 2007). Moreover, tolerance induction lead to the produc-
tion of IL-10 and transforming growth factor (TGF)-β by
lymph nodes cells in response to mbHSP60 (van Puijvelde
et al. 2007). Induced oxLDL-specific regulatory T cells are
responsible for the reduction in atherosclerotic plaque forma-
tion (van Puijvelde et al. 2006). When a combination between
human apolipoprotein B (ApoB) (688-707) and hHSP60
(153-163) peptides were used to immunize mice, an additive
effect on atheroproduction was found (41.2 % reduction in
early atherosclerotic lesions) compared to when the ApoB

(14.7 %) or hHSP60 (21.2 %) peptides were applied alone
by following atherosclerotic lesion development (Lu et al.
2010). In another study, orally induced tolerance to a combi-
nation of hApoB peptide 661-680 and hHSP60 peptide 153-
163 prevented progression of atherosclerotic lesions and en-
able plaque stabilization, induction of CD4++CTLA-4+ regu-
latory T cells and CD4++CD25++Foxp3+ regulatory T cells
secreting increased amounts of TGF-β (Mundkur et al.
2013a). Again, the same human ApoB (688-707) and
hHSP60 peptide (153-163) were used with the aim to develop
an in vitro assay to screen peptide molecules for their inflam-
matory properties. The results were similar to earlier studies
using these peptides, with induced T cell proliferation and
expansion of regulatory T cells with IL-10 and TGF-β secre-
tion and reduction of early atherosclerotic lesion formation in
mice by 32.1 and 33.5 %, respectively (Mundkur et al.
2013b). It has recently been shown that resident commensal
bacterial GroEL, but not mouse-derived HSP60, could cause
naïve T cells to differentiate into CD4++CD25++Foxp3+ T
cells, indicating that the production of regulatory T cells de-
pends on the type of HSP (Ohue et al. 2011). Furthermore,
mice that were immunized with a construct containing multi-
ple epitopes fromApoB100 (688-707), hHSP60 peptide (153-
163), and Chlamydia pneumonia (67-74 and 283-291)
showed significantly smaller early atherosclerotic lesions
(Lu et al. 2012). The reduction in lesion size correlated with
cellular infiltration and cytokine/chemokine secretion in the
serum or by stimulated spleen cells as well as specific cellular
immune responses when compared to controls (Lu et al. 2012)
(Fig. 1).

Nasally induced tolerance to HSP60 in mice lead to sup-
pression of atherosclerosis accompanied by a significant in-
crease in CD4++LAP+ and CD4++CD25++Foxp3+ regulatory
T cells and a simultaneously increased production of TGF-β
(Li et al. 2012). Furthermore, the productive effect of
mbHSP65 was neutralized by injection of an antibody to
TGF-β (Li et al. 2012). Also in cholesterol-fed wild-type rab-
bits, nasal immunizations with mbHSP65 effectively attenu-
ated atherosclerosis with a 15 % reduction in aortal lesion size
(Xiong et al. 2009). Tolerance to mbHSP65 lead to a suppres-
sion of T cell proliferation, increase of IL-10 production, an
absence of related antibodies, and a downregulation of serum
lipid levels in this group (Xiong et al. 2009). Results from
another group of rabbits nasally immunized with HSP65+
CTB-P277, a conjugated protein (CTB; is the non-toxic B
subunit of the cholera enterotoxin and is used as an
adjuvant/fusion protein), used as a vaccine against autoim-
mune diabetes (Elias and Cohen 1996; Jin et al. 2008),
showed a lipid reduction after immunization. However, no
tolerance or reduction in lesion size was found (Xiong et al.
2009). Reduction of lipids is therefore not necessarily associ-
ated with immune tolerance to HSP65 but probably a by-
product of HSP65 immune interference. It might also not be
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a consequence or a combined phenomenon of HSP65-specific
tolerance.

HSP tolerization in other autoimmune diseases

HSP tolerization has been shown to ameliorate a number of
autoimmune diseases; however, the mechanism of protection
is still largely unclear. For example, a single mbHSP70 immu-
nization can suppress inflammation and tissue damage, and
enhance regulatory response as shown by the antigen-specific
IL-10 production, in a pristane-induced arthritis (PGIA) mod-
el (Wieten et al. 2009). Furthermore, immunization with
Mycobacterium vaccae (a mycobacterial strain expressing
large amounts of HSP65) resulted in protection or exacerba-
tion of PGIA (Thompson et al. 1991). HSP60-specific T cells
response modulating atherogenic responses in adjuvant arthri-
tis have also been shown after DNA vaccination with human
HSP70 and HSP90 (Quintana et al. 2004). Pretreatment with a
M. tuberculosis (TB-HSP70) peptide 234-252 could suppress
the development of adjuvant-induced arthritis in Lewis rats,
generating peptide-specific T cells, produced high levels of
IL-10 and low levels of IFN-γ (Tanaka et al. 1999).
Similarly, a different HSP70 peptide, peptide 111-125, could
trigger self-HSP cross-reactive T cells to downregulate arthri-
tis via IL-10 and when given intra-nasally it protect Lewis rats
from the development of arthritis (Wendling et al. 2000).
Interestingly, the same peptide has been used in another study
with the aim to treat atherosclerosis; however, no effect could
be found (van Puijvelde et al. 2007). Transfer of B29-induced
CD4+CD25+Foxp3+ T cells (B29 is a conserved HSP70-
epitope) can suppress established PGIA in mice (van
Herwijnen et al. 2012). Recently, a clinical pilot phase II trial
with the objection to induce immune deviation by mucosal
dnaJP1 peptide-specific immunotherapy in active early rheu-
matoid arthritis (RA) patients was completed. Immunological
analysis at initial, intermediate, and end treatment points
showed a change from pro-inflammatory to regulatory T cell
function (Prakken et al. 2004). Conclusively, a T cell-depen-
dent, pro-inflammatory pathway can be specifically and safely
modulated in patients with RA. Epitope-specific mucosal ther-
apy does not seem to lead to an increased number of epitope-
specific T cells, but rather to a functional readjustment of the
responding antigen-specific T cells. This study and others
(Prakken et al. 2004; Lee et al. 2000) show that committed
TH1 cells can still undergo phenotypic change, which previ-
ously was considered to be impossible.

Moreover, HSP90 can inhibit spontaneous diabetes in
NOD mice (model for spontaneous type I diabetes) (Elias
et al. 1991; Birk et al. 1996). Preclinical studies of HSP pep-
tides in NOD mice have gone onto develop DiaPep277 (res-
idues 437-460 of the humanHSP60molecule), with the aim to
treat developing diabetes mellitus in humans. This peptide

may well be the first therapeutic vaccine with the capacity to
reinstall the HSP-mediated immune regulation in this impor-
tant clinical entity (Aldridge 2012). The results from the phase
II and III clinical studies are very promising. DiaPep277 treat-
ment preserved beta-cell functions and improved clinical out-
comes over 2 years in newly diagnosed type I diabetes patients
(Raz et al. 2001). Other experimental autoimmune diseases
inhibited by immunization of HSPs are colitis (Tanaka et al.
2007), acute rejection of skin and tumor allografts (Borges
et al. 2010), and experimental autoimmune encephalomyelitis
(Billetta et al. 2012).

Conclusions

The role for both pro- and anti-atherogenic innate and adap-
tive immune responses in atherosclerosis has been proven in
several studies. Moreover, common HSP60 autoantigens,
against which an immune response with an activation of
atheroprotective or atherogenic adaptive immune responses
occurs, have been identified in animal and human models of
atherosclerosis. Therefore, an induction of immune tolerance
through the activation of cellular and humoral immune reac-
tions to these antigens is hypothesized being atheroprotective.
The success of using the recently identified specific immuno-
reactive antigenic HSP60 epitopes for tolerization further sup-
ports the idea that active vaccination may emerge as a novel
immuno-modulating atheroprotective strategy. The intricate
regulatory networks governing these tolerizations, however,
are not yet fully understood. Moreover, there is still a lot to
learn how certain HSP epitopes are atherogenic while others
are atheroprotective. There are some characteristics of a pep-
tide that is desirable to fulfill if it should be used as a
tolerization peptide. Firstly, the peptide should be recognized
by the human immune system and thus be able to bind to HLA
molecules. Secondly, the peptide should mimic the naturally
processed epitope, as altered peptides may behave unpredict-
ably, and thirdly, a peptide needs to have high homology to
self and still be immunogenic. Furthermore, the peptide
should not cause excessive immune activation or inappropri-
ate immune tolerance. There are several HSP60-specific pep-
tide candidates for immunotherapy proven to be effective in
different animal models of atherosclerosis. Even though
mouse models of atherosclerosis have very much increased
our understanding of atherosclerosis, it is still to note that there
may be several problems with translating mouse data to
humans. Thus, even if the tolerizing approach in mice may
form the basis for the subsequent development of such a vac-
cine in humans, it is rather improbable that the same HSP60
peptide candidate will emerge as atherogenic in both species.
However, promising results from clinical trials for treating
rheumatoid arthritis and type I diabetes are currently ongoing
(Prakken et al. 2004; Raz et al. 2001, 2007; Huurman et al.
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2007, 2008; Lazar et al. 2007; Koffeman et al. 2009). A better
understanding of these networks is highly warranted.
Enhancement of peptide immunogenicity and combination
of peptide therapy with immune-modulating agents would
be of great importance.
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