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IRG1 induced by heme oxygenase-1/carbon monoxide
inhibits LPS-mediated sepsis and pro-inflammatory
cytokine production

Md Jamal Uddin1, Yeonsoo Joe1, Seul-Ki Kim1, Sun Oh Jeong2, Stefan W Ryter3, Hyun-Ock Pae2

and Hun Taeg Chung1

The immunoresponsive gene 1 (IRG1) protein has crucial functions in embryonic implantation and neurodegeneration.

IRG1 promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species

(ROS). The cytoprotective protein heme oxygenase-1 (HO-1), which generates endogenous carbon monoxide (CO), is

expressed in the lung during Lipopolysaccharide (LPS) tolerance and cross tolerance. However, the detailed molecular

mechanisms and functional links between IRG1 and HO-1 in the innate immune system remain unknown. In the present

study, we found that the CO releasing molecule-2 (CORM-2) and chemical inducers of HO-1 increased IRG1 expression in

a time- and dose-dependent fashion in RAW264.7 cells. Furthermore, inhibition of HO-1 activity by zinc protoporphyrin

IX (ZnPP) and HO-1 siRNA significantly reduced expression of IRG1 under these conditions. In addition, treatment with

CO and HO-1 induction significantly increased A20 expression, which was reversed by ZnPP and HO-1 siRNA.

LPS-stimulated TNF-a was significantly decreased, whereas IRG1 and A20 were increased by CORM-2 application and

HO-1 induction, which in turn were abrogated by ZnPP. Interestingly, siRNA against IRG1 and A20 reversed the effects of

CO and HO-1 on LPS-stimulated TNF-a production. Additionally, CO and HO-1 inducers significantly increased IRG1 and

A20 expression and downregulated TNF-a production in a LPS-stimulated sepsis mice model. Furthermore, the effects of

CO and HO-1 on TNF-a production were significantly reversed when ZnPP was administered. In conclusion, CO and HO-1

induction regulates IRG1 and A20 expression, leading to inhibition of inflammation in vitro and in an in vivo mice model.
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INTRODUCTION

Sepsis is a systemic inflammatory response to microbial infec-

tion. During sepsis, excessive activation of the innate immune res-

ponse as the result of bacteremia or hyper-inflammation may

cause organ dysfunction and death.1,2 During inflammation,

pro-inflammatory cytokines and reactive oxygen species (ROS)

responsible for antimicrobial activity are produced by activated

peripheral macrophages, microglial cells and the resident immune

cells of the central nervous system.3 However, during endotoxin-

tolerance, a hypo-inflammatory state of the innate immune sys-

tem can also result in secondary infections with organisms not

typically pathogenic in the immunocompetent host.1

The immunoresponsive gene 1 (IRG1), of which protein is

known as cis-aconitate decarboxylase (CAD) in human, was

first recognized as a 2.3-kb cDNA from a murine macrophage

cell line stimulated with lipopolysaccharide (LPS).4 Gene

expression profiling studies of murine macrophages and

microglial cells have revealed that IRG1 is highly expressed

under pro-inflammatory conditions.5,6 Avian spleen macro-

phages displayed significantly increased expression of IRG1

after Salmonella enterica infection.7 Furthermore, IRG1 is

highly expressed in the pregnant uterus during the early events

leading to implantation,8 the specific phase of pregnancy in

which high levels of inflammatory cytokines are secreted.9
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IRG1 expression is also deregulated in autoimmune or inflam-

matory diseases.6 Furthermore, IRG1 localizes to the mitochon-

dria and may represent a key link between immunological and

metabolic processes.6 IRG1 has crucial functions in embryonic

implantation and neurodegeneration.10 Also, IRG1 promotes

endotoxin tolerance by increasing A20 expression in macro-

phages via increased ROS production.11 In addition, knock-

down of IRG1 increased the activation of NF-kB and IRF3,

which was accompanied by decreased A20 expression and

ROS production. Despite these observations, the precise mole-

cular and biological functions of IRG1 in the innate immune

response remain unknown.

Heme oxygenase-1 (HO-1), a stress-inducible protein, cata-

lyzes the oxidative degradation of heme to generate carbon

monoxide (CO), iron and biliverdin-IXa; and promotes cellular

protection.12 In addition, anti-inflammatory, anti-apoptotic and

cytoprotective properties of CO have been described.13 The anti-

inflammatory effects of HO-1 may have therapeutic potential in

inflammatory conditions such as arthritis14 and inflammatory

bowel disease.15 In sepsis, HO-1 is involved in the induction of

IL-10 and the suppression of pro-inflammatory factors such as

TNF-a and nitric oxide synthase-2 in macrophages,16 and also

mediates the anti-inflammatory effects of adiponectin in Kupffer

cells.17 Furthermore, increased HO-1 expression was observed in

the lung during LPS tolerance and cross tolerance.18 In addition,

overexpression of hepatic HO-1 has been observed during endo-

toxin tolerance.19 Currently, there are no reports regarding the

effects of HO-1 on the regulation of IRG1 expression under pro-

inflammatory conditions.

Since both HO-1 and IRG1 proteins are simultaneously

expressed during endotoxin tolerance and regulate anti-inflam-

matory functions, we examined the functional link between

HO-1 and IRG1 expression with respect to inhibition of inflam-

mation in a murine model in vivo and in vitro.

METHODS AND MATERIALS

Reagents and antibodies

Antibodies against HO-1 and A20 were purchased from Cell

Signaling Technology (Danvers, MA, USA). Antibodies against

IRG1, b-actin and anti-mouse and anti-goat antibodies con-

jugated to horseradish peroxidase were obtained from Santa

Cruz Biotechnology (Santa Cruz, CA, USA). CO-releasing

molecule-2 (CORM-2, tricarbonyl dichlororuthenium dimer),

ruthenium chloride (RuCl3), LPS, cobalt protoporphyrin IX

(CoPP), hemin and protease inhibitor cocktail sets were pur-

chased from Sigma-Aldrich (St Louis, MO, USA). Zinc proto-

porphyrin IX (ZnPP) was from Frontier Scientific Inc. (Logan,

UT, USA). Dulbecco’s modified Eagle medium, fetal bovine

serum, penicillin–streptomycin and sodium pyruvate were

purchased from Invitrogen (Grand Island, NY, USA). All other

chemicals were obtained from Sigma-Aldrich.

Cell culture

RAW264.7 cells were cultured in Dulbecco’s modified Eagle

medium with 10% heat-inactivated fetal bovine serum and

1% penicillin-streptomycin at 37 uC in 5% CO2. Cells were

cultured to 75%–80% confluence and then split at a density

of 53105 cells/ml in six-well plates. The cells were incubated

overnight and then treated with or without LPS (100 ng/ml) for

8 h, 16 h or 24 h. After incubation, cells were harvested for

reverse transcription-polymerase chain reaction (RT-PCR),

real-time RT-PCR and western blotting. Cell supernatants were

collected for ELISA assays (R&D Systems, Inc., Minneapolis,

MN, USA) for measuring the level of TNF-a production.

Animal model of endotoxemia

Seven-week-old male C57BL/6 wild-type mice were exposed to

inhalation of CO gas (250 ppm) 4 h/day for 6 days or treated

with CORM-2 (30 mg/kg, i.p.) and hemin (10 mg/kg, i.p.) for

2 h; with or without ZnPP (5 mg/kg, i.p.), respectively (Tsoyi

et al., 2011). After 2 h or 6 days, the mice were injected with LPS

(12.5 mg/kg, i.p.) to induce endotoxemia. At 16 h post-injec-

tion, mice were sacrificed, and blood serum and liver tissues

were collected and stored at 280 uC for protein and RNA

analysis. All experiments with mice were approved by the

Animal Care Committee of the University of Ulsan, Ulsan,

Korea.

Transfection

Predesigned siRNAs were purchased from Santa Cruz Bio-

technology. RAW264.7 cells (53105/ml) were cultured in six-

well plates for 3 h and then transfected with IRG1 siRNA

(100 nM) or A20 siRNA (100 nM) or HO-1 siRNA (100 nM),

using lipofectamine 2000 according to the manufacturer’s

instructions. After transfection, cells were treated with CORM-

2 (20 mM) or hemin (10 mM) with or without LPS (100 ng/ml).

Western blotting

After harvesting of the cells, protein extracts were prepared

using lysis buffer containing RIPA buffer, with protease and

phosphatase inhibitors. Protein concentration in the cell lysate

was measured by the bicinchoninic protein assay (Pierce

Biotechnology Inc., Rockford, IL, USA). An equal amount of

protein for all samples was subjected to electrophoresis and

then transferred to polyvinylidene difluoride membranes.

The membranes were blocked with 5% non-fat milk in PBS

containing 0.1% Tween 20 for 20 min and incubated at 4 uC
overnight with primary antibodies for HO-1, IRG1, A20 and b-

actin, followed by secondary antibodies conjugated with horse-

radish peroxidase. Immunocomplexes were visualized using

the enhanced chemiluminescence western blotting detection

system (GE Healthcare Life Sciences, Buckinghamshire, UK).

RT-PCR

Total RNA was extracted using the TRIzol reagent (Invitrogen,

CA, USA) according to the manufacturer’s instructions. In

short, 2 mg of total RNA was used to make cDNA by using

M-MLV reverse transcriptase (Promega Corporation, WI,

USA) and oligo (dT) 15 primer (Promega Corporation,

Madison, WI, USA). The resulting cDNA was subjected to

PCR for mouse GAPDH (forward (f)-aggccggtgctgagtatgtc,

reverse (r)-tgcctgcttcaccttct, 530 bp), HO-1 (f-tcccagacaccgc-
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tcctccag, r-ggatttggggctggtttc, 313 bp), IRG1 (f-ggtatcattcggag-

gagaa, r-acagagggagggtggaatct, 440 bp) and TNF-a (f-agcccac-

gtcgtagcaaaccaccaa, r-acacccattcccttcacagagcaat, 421 bp). PCR

was performed with the following conditions: denaturation tem-

perature 94 uC for 0.5 min, annealing temperature (according to

respective primer) for 0.5 min and extension temperature 72 uC
for 1 min, and the PCR cycle was determined according to a

kinetic profile. GAPDH was used as an internal loading control.

PCR products were observed on 2% agarose gels containing ethi-

dium bromide using a digital gel documentation set.

Real-time RT-PCR

Total RNA was extracted from RAW264.7 cells or mouse liver

tissues using the TRIzol reagent (Invitrogen, Carlsbad CA, USA)

according to the manufacturer’s instructions. In brief, 2 mg of

total RNA was used to make cDNA by using M-MLV reverse

transcriptase (Promega Corporation, Madison, WI, USA) and

oligo (dT) 15 primer (Promega Corporation, Madison, WI,

USA). The resulted cDNA was subjected to real-time RT-PCR

using SYBR Green qPCR Master Mix (Applied Biosystem

Warrington, WA1, UK) on an ABI 7500 Fast Real-Time PCR

System (Applied Biosystem Warrington, WA1, UK) for mouse

GAPDH (f-gggaagcccatcaccatct, r-cggcctfcaccccatttg), IRG1 (f-

gctgtgcaggtgttgagcc, r-cataactgtgttcccgaggtgtc), A20 (f-gcctgt-

gcaaaagagatttcagat, r-tgattcacagagcatgtaggcc), HO-1 (f-tcagtcc-

caaacctcgcggt, r-gctgtgcaggtgttgagcc) and TNF-a (f-agaccctca-

cactcagatca, r-ttgctacgacgtgggctaca). GAPDH was used as an

internal loading control to normalize all PCR products.

Enzyme-linked immunosorbent assay (ELISA)

RAW264.7 macrophages on six-well plates were incubated

overnight and then pre-treated with CORM-2 or hemin with

or without ZnPP for 30 min followed by stimulation with LPS

for 24 h. In addition, mice were administrated with CO gas or

CORM-2 or hemin with or without ZnPP for 2 h and sepsis was

induced by LPS injection. The TNF-a levels of supernatant

collected from different samples or blood serum collected from

different mice were assayed by using mouse ELISA kit (R&D

systems, Minneapolis, MN, USA).

Statistical analysis

Results are expressed as the means6s.d. Statistical differences

between groups were evaluated by one-way ANOVA or Student’s

t-test when multiple groups were compared. Differences were con-

sidered to be significant when P,0.05.

RESULTS

CO and HO-1 induction increases IRG1 expression in

macrophages

CO is produced as an end product of HO-1 activity. CO-releas-

ing molecules (i.e., CORM-2) can release CO in a controllable

manner under physiological conditions.20 IRG1, which is

highly conserved in vertebrates, exerts crucial functions during

the immune response,4 whereas HO-1, a stress-inducible

enzyme, can confer protection in inflammation. Both HO-119

and IRG111 were found to be increased during endotoxin tol-

erance, suggesting a potential regulatory link between HO-1

and IRG1. To examine this hypothesis, we treated the murine

macrophage cell line RAW264.7 with CORM-2 (20 mM) for vary-

ing time periods. Following CORM-2 treatment, IRG1 expression

increased at 16 h, whereas HO-1 expression began to increase at

4 h (Figure 1a). Therefore, in subsequent experiments, we mea-

sured IRG1 expression at 16 h. In addition, CORM-2 treatment

dose-dependently increased activity of HO-1 (Supplemenatry

Figure 1c) at 16 h, and the levels of IRG1 and HO-1 mRNA

(Figure 1b and Supplementary Figure 1a and b) and protein

(Figure 1c) at 8 h and 16 h, respectively. CoPP is a potent and

well-known inducer of HO-1.21 Hemin, a constituent of hemo-

globin, may have therapeutic potential for the treatment of acute

porphyrias.22 The anti-inflammatory or host defense functions of

hemin may be mediated via stimulation of HO-1 expression.23

We therefore examined the effects of CoPP and hemin on HO-1

and IRG1 expression. RAW264.7 cells were treated with CoPP or

hemin (0–20 mM). CoPP increased the levels of IRG1 and HO-1

mRNA (Figure 1d) and protein (Figure. 1e) in a dose-dependent

fashion. Similarly, hemin increased IRG1 and HO-1 mRNA

(Figure 1f and Supplementary Figure 1d and e) and protein

(Figrue 1g) levels.

To confirm the effect of CO on HO-1 and IRG1 expression,

we used RuCl3 as a negative control for CORM-2 to rule out the

effect of the ligand ruthenium of CORM-2. RuCl3 contains the

metal ruthenium as ligand and the non-metal chloride as sub-

stitute group, and the ligand ruthenium of CORM-2 itself may

influence HO-1 expression. RuCl3 (10–20 mM) had no effect on

HO-1 and IRG1 expression (Figure 2a), confirming the involve-

ment of CO (but not ruthenium) in the effects of CORM-2. To

further confirm the effects of CO, CO gas (250 ppm) was used.

We found that treatment of CO gas significantly increased

mRNA levels of HO-1 and IRG1 in a time dependent manner

(Supplementary Figure 2a). Furthermore, to evaluate the role of

CORM-2-induced HO-1 on IRG1 expression, the HO-1 inhib-

itor ZnPP was used. ZnPP treatment (10–20 mM) inhibited the

expression of IRG1 mRNA (Figure 2b and Supplementary

Figure 2b) and protein (Figure 2d and Supplementary Figure

2c) induced by CORM-2 in RAW264.7 cells with no signifi

cant effect on HO-1 mRNA (Figure 2c and Supplementary

Figure 2b). In loss function experiment of HO-1 using HO-1

siRNA, we found that HO-1 gene silencing significantly inhi-

bited CORM-2 induced protein (Figure 2e) and mRNA

(Supplementary Figure 2d) levels of IRG1. This result suggests

that CO-induced HO-1 activity may regulate IRG1 expression

in macrophages. In support of this hypothesis, we found that

the HO-1 inducing compounds CoPP and hemin (10 mM)

induced IRG1 mRNA (Figure 2f and Supplementary Figure

2e) and protein (Figure 2g and Supplementary Figure 2f);

whereas expression induced by these agents was significantly

(P,0.01) inhibited by ZnPP treatment (20 mM). In addition,

basal expression of IRG1 mRNA was significantly inhibited in

the liver tissue from HO-1 KO mice (Supplementary Figure 2g).

These data suggest that HO-1 is an upstream regulatory protein

for IRG1 expression.
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NO increases IRG1 expression in a HO-1-dependent manner

in macrophages

The free radical gas NO can exert a variety of physiological func-

tions, including the promotion of cell survival during conditions

of serum starvation and oxidative stress.24,25 Furthermore, NO is

involved in HO-1 upregulation.26 To further elucidate the

involvement of HO-1 in IRG1 regulation, we used the NO donor

SNAP. Treatment of RAW264.7 cells with SNAP (0–40 mM)

significantly increased both IRG1 and HO-1 expression

(Supplementary Figure 3a and b). To further confirm the role

of HO-1 in NO-dependent IRG1 expression, we pre-treated

RAW264.7 cells with ZnPP (20 mM) and then incubated the cells

with SNAP for 8 h or 16 h. ZnPP treatment significantly inhibited

IRG1 mRNA and protein level induced by SNAP (Supplementary

Figure 3c and d). These data further support the regulatory link

between HO-1 and IRG1 in anti-inflammatory processes.

HO-1 regulates A20 in macrophages

The zinc-finger protein A20 (also known as TNFAIP3) is a key

negative regulator of NF-kB signaling downstream of innate

immune receptors such as tumors necrosis factor receptor and

Toll-like receptors.27 Furthermore, IRG1 is known to promote

endotoxin tolerance by increasing A20 expression.11 Therefore,

we measured the effects of CO and HO-1 on A20 regulation.

CORM-2 time-dependently increased A20 protein level beginning

at 16 h (Figure 3a). Treatment of RAW264.7 macrophages with

CORM-2 also increased A20 expression in a dose-dependent man-

ner (Figure 3b and c). To evaluate the effect of CORM-2-induced

HO-1 on A20 expression, we pre-treated RAW264.7 macrophages

with ZnPP (20 mM), and the cells were incubated with CORM-2.

Interestingly, ZnPP (20 mM) pre-treatment reduced A20 mRNA

(Figure 3d) and protein (Figure 3e and Supplementary Figure 4a)

expression in response to CORM-2 stimulation. In loss function

experiment using HO-1 siRNA, we found that HO-1 gene silen-

cing dramatically diminished CORM-2 induced protein levels of

A20 (Figure 2f). In addition, to confirm the direct effect of HO-1

on A20 expression, macrophages were treated with hemin, which

caused increased A20 expression (Figure 3g and 3h). ZnPP pre-

treatment (20 mM), significantly decreased A20 protein level in

response to hemin (Figure 3h and Supplementary Figure 4b),

suggesting a role for HO-1 in A20 regulation.

CO and HO-1 mediated IRG1 expression decreases

inflammation via A20 expression in macrophages

A20 is widely known to regulate inflammation and immunity, and

confers cellular protection from TNF-a-induced cytotoxicity.28
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Figure 1 CORM-2, CoPP and hemin increase IRG1 expression in RAW264.7 macrophages. (a) RAW264.7 cells were treated with 20 mM CORM-2 for 0, 2,
4, 8, 16 and 24 h and protein level of IRG1 and HO-1 were detected by western blot analysis. (b and c) RAW264.7 cells were treated with CORM-2 (0, 5, 10,
20 and 40 mM) for 8 or 16 h. IRG1 and HO-1 mRNA and protein were measured, by RT-PCR analysis. (d–g) RAW264.7 cells were treated with CoPP or
hemin (0, 1, 5, 10 and 20 mM) for 8 or 16 h. (d) After CoPP treatment at the indicated concentrations (0–20 mM) for 8 h, mRNA expression of IRG1 and
HO-1 were detected. (e) After CoPP treatment (0–20 mM) for 16 h, IRG1 and HO-1 protein level were detected. (f) After hemin treatment at the indicated
concentrations (0–20 mM) for 8 h, mRNA expression of IRG1 and HO-1 were detected. (g) After hemin treatment (0–20 mM) for 16 h, IRG1 and HO-1
protein level were detected. Protein level was detected by western blot analysis and mRNA levels were measured by RT-PCR analysis. Representative bands
are shown.
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RAW264.7 macrophages were pre-treated with CORM-2 or hemin

in the presence of ZnPP and then stimulated with LPS for 24 h.

CORM-2 or hemin treatment induced the upregulation of IRG1

and A20 protein (Figure 4b and f) and mRNA (Supplementary

Figure 5) which were dramatically inhibited by ZnPP. Additionally,

CORM-2 or hemin treatment significantly decreased LPS-induced

TNF-a protein (Figure 4a and e) and mRNA (Supplementary

Figure 5), and this effect was abrogated by ZnPP treatment.

These results indicate a role of IRG1 and A20 expression induced

by CO/HO-1 in the inhibition of inflammation. To confirm the

function of IRG1 expression by CO/HO-1 in terms of inflam-

mation regulation by A20, macrophages were transfected with

IRG1 siRNA and treated with CORM-2 or hemin and stimulated

with LPS. We found that CORM-2 or hemin-induced A20 express-

ion was significantly downregulated whereas TNF-a mRNA was

significantly increased by IRG1 siRNA transfection compared to

control siRNA transfection (Figure 4c and g). Furthermore, when

cells were transfected with A20 siRNA, we detected increased

expression of TNF-a in LPS-stimulated cells while CORM-2 or

hemin treatment did not reverse TNF-a production (Figure 4d

and h). Based on these results, we conclude that CO and HO-1

mediates anti-inflammatory effects through the IRG1-A20 axis.

CO and HO-1 inhibits inflammation via IRG1 and A20

expression in an in vivo mouse model

HO-1 was reported to improve animal survival in lethal endo-

toxemia.29,30 Furthermore, HO-1,18 IRG1 and A2011 were found

to be expressed under conditions of endotoxin tolerance. We

also demonstrated that IRG1 and A20 increased in endotoxin

tolerance (Supplementary Figure 6b–d) where TNF-a was

decreased (Supplementary Figure 6a, b and d). However, no

reports have previously examined the effects of HO-1 in relation

to the regulation of IRG1 and A20 expression in the septic

mouse model. In our study, we investigated the effect of CO/

HO-1-induced IRG1 and A20 expression on LPS-induced TNF-

a production as an indicator of lethal endotoxemia. To examine

the in vivo effects of CO on LPS-induced endotoxemia and

expression of IRG1 and A20, mice were subjected to inhalation

CO (250 ppm) for 4 h/day for 6 days in the absence or presence

of ZnPP (5 mg/kg, i.p.) on a daily basis for 6 days and then LPS

was injected (12.5 mg/kg, i.p.). At 16 h post LPS injection, CO

inhalation significantly decreased LPS-induced TNF-a levels in

blood serum (Figure 5a) and liver tissues (Figure 5b) of endo-

toxemic mice, which were reversed by ZnPP treatment. In addi-

tion, CO inhalation significantly increased IRG1 and A20

mRNA levels in liver tissues, which were reversed by ZnPP treat-

ment (Figure 5c). Furthermore, to confirm the effects of CO and

HO-1 on LPS-induced endotoxemia, we pre-treated mice with

CORM-2 (30 mg/kg, i.p.), hemin (10 mg/kg, i.p.) and ZnPP

(5 mg/kg, i.p.) for 2 h, and then the mice were administrated

with LPS (12.5 mg/kg, i.p.) for 16 h. Interestingly, treatment

with CORM-2 or hemin significantly increased the expression

of HO-1, IRG1 and A20 mRNA (Figure 5f), and simultaneously

decreased the levels of TNF-a protein (Figure 5d) and mRNA
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(Figrue 5e) in liver tissue and blood serum from LPS-induced

endotoxemic mice. Therefore, the results from in vivo experi-

ments suggest that CO and HO-1 mediate anti-inflammatory

activities through IRG1 and A20 expression in the septic mice

model.

DISCUSSION

Macrophages can exert pro- or anti-inflammatory functions

depending on the type of stimuli.31 Anti-microbial activity

has been observed in activated peripheral macrophages and

microglial cells during inflammation.3 Previously, it has been

reported that HO-1 induction through the PI3K/Akt/Nrf2 sig-

naling pathway is associated with protection against oxidative

stress.32,33 In murine cerebral endothelium, inhibition of NF-kB

and COX2 by CoPP, a HO-1 inducing compound, suggests pro-

tective functions of HO-1.34 Mitochondrial injury is experiment-

ally and clinically well recognized in sepsis.35 HO-1 activates

mitochondrial biogenesis,36 and thus, may limit inflammatory

damage and improve cell survival during bacterial sepsis.37

IRG1 is highly upregulated in murine macrophages and mi-

croglial cells under pro-inflammatory conditions.6 Furthermore,

reduced antimicrobial activity was evident in IRG1-deficient

macrophages during bacterial infection.38 IRG1 can regulate mito-

chondrial b-oxidation and mitochondrial ROS production.38

Mitochondrial localization of IRG16 is involved in mitochondrial

ROS production which governs macrophage bactericidal activ-

ity,38 and altered production of pro-inflammatory cytokines.39

In addition, IRG1 exerts anti-microbial activity on pathogens

through synthesizing itaconic acid.40 Thus, IRG1 plays a crucial

role in macrophage function and inflammation.38 Interestingly,

HO-1 and IRG1 are both expressed during LPS tolerance and

provide protection against inflammation, suggesting a possible

relationship between HO-1 and IRG1. IRG1 is highly expressed

during inflammation and proven to have anti-inflammatory as

well as anti-microbial activity in macrophages, yet the underlying

molecular mechanisms have not yet been elucidated. In this study,

we demonstrate that HO-1 mediates its anti-inflammatory effects

through IRG1 expression under septic conditions.

To investigate a possible interaction between HO-1 and

IRG1, we treated macrophages with ZnPP, a selective inhibitor

of HO-1 activity.41 Inhibition of HO-1 activity resulted in the

inhibition of IRG1 expression that was upregulated by treat-

ment of macrophages with CORM-2 or HO-1 inducers. Our

results suggest that the stimulatory effect of CORM-2, a CO

CORM-2 (h) 0  2  4 8 16  24  

CORM-2 (mM) 0  5  10 20 

A20

Actin

A20

Actin CORM-2 (mM)   0  5  10 20 

A
20

 m
R

N
A 

 
(N

or
m

al
iz

ed
 b

y 
G

A
P

D
H

)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0

1

2

3

A
20

 m
R

N
A 

 
(N

or
m

al
iz

ed
 b

y 
G

A
P

D
H

)

CORM-2 (mM) 0 10 20 10 20

ZnPP (20mM) – – – + +

– – – + +

****

##

CORM-2 (mM) 0  10 20 10 20

ZnPP (20mM) – – – + +

0.0

0.5

1.0

1.5

2.0

2.5A20

Actin

A20

Actin

Hemin (mM) 0 10 20 10 20
ZnPP (20mM)

Hemin (mM) 0  1  5 10 

A
20

 m
R

N
A 

 
(N

or
m

al
iz

ed
 b

y 
G

A
P

D
H

)

20 

**
**

CORM-2
 (20mM) – + + +

Con siRNA  HO-1 siRNA  

A20

Actin

HO-1

a

b

c d

e

f

g h

Figure 3 CORM-2 and hemin increases A20 expression via HO-1 activation in RAW264.7 macrophages. (a) RAW264.7 cells were incubated with
CORM-2 (20 mM) for 0, 2, 4, 8, 16 and 24 h, and western blot analysis was performed to detect A20 expression. (b and c) Cells were treated with CORM-
2 (0, 5, 10, 20 and 40 mM) for 8 and 24 h and then, the levels of (b) A20 protein and (c) A20 mRNA were measured by western blot analysis and real-time
RT-PCR analysis, respectively. (d and e) Cells were pre-treated with ZnPP (20 mM) for 0.5 h and further incubated with CORM-2 (10 and 20 mM) for 8 or
24 h. (d) The levels of A20 mRNA were analyzed at 8 h by real-time RT-PCR. (e) A20 protein level was carried out at 24 h by western blot analysis.
(f) Cells were transfected with HO-1 siRNA or control siRNA (Con siRNA). Cells were treated with 20 mM CORM-2 for 24 h, and cells were harvested and
protein levels of HO-1 and A20 were performed by western blotting. (g) Cells were treated with hemin at various doses for 8 h, and the levels of A20
mRNA were analyzed by real-time RT-PCR. (h) Cells were pre-treated with ZnPP (20 mM) for 0.5 h and hemin (10 and 20 mM) was treated for 24 h, and
then A20 protein level was analyzed by western blot analysis. The representative bands or blots are shown. Data represent mean6s.e.m., **P,0.001 as
compared with control; and ##P,0.001 as compared with the cells exposed only to CORM-2, respectively.

IRG1 induced by CO/HO-1 inhibits inflammation

MJ Uddin et al

Cellular & Molecular Immunology

175



donor, on IRG1 expression depends on the subsequent stimu-

lation of HO activity, which generates CO and other end pro-

ducts. Thus, our results suggest a regulatory role for HO-1

activity in IRG1 expression. Furthermore, genetic deletion of

HO-1 in mice resulted in significant reduction of IRG1 mRNA

expression, confirming regulation of IRG1 by HO-1. The endo-

genous free radical gaseous mediator NO can also induce HO-1

expression in a variety of cells, including macrophages and

vascular smooth muscle cells.26,42 To confirm HO-1 involve-

ment in IRG1 expression, we used the NO donor SNAP. We

found that IRG1 was significantly upregulated by SNAP, which

was reversed by ZnPP-dependent inhibition of HO-1 activity,

which further supports a regulatory role of HO-1 in IRG1

expression.
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A20 was at first identified as a TNF-inducible gene in

HUVECs.43 A20 protein can protect cells from TNF-a-induced

cytotoxicity.28 The significance of A20 in downregulating NF-

kB and inflammation was found in A20-knockdown mice that

underwent severe and multiorgan inflammation and cachexia

just after birth.44 Furthermore, TNF-a-induced apoptosis and

NF-kB activation were inhibited by A20 over-expression.45

Thus, it is clear that A20 is involved in the inhibition of NF-

kB signaling and inflammation. Recently, IRG1 has been re-

ported to promote endotoxin tolerance by increasing A20

expression in macrophages through ROS production.11 There-

fore, to examine the anti-inflammatory, interactive and mech-

anistic effects of both CO treatment and HO-1 induction on

IRG1 and A20 expression, we treated macrophages with

CORM-2 and hemin. Based on our observations that CORM-2

treatment and HO-1 induction by hemin significantly increased

IRG1 and A20 expression, which were reversed by ZnPP, we

conclude that the HO-1/CO system increases both IRG1 and

A20 expression. These results prompted us to examine whether

CO treatment and HO-1 induction would mediate anti-in-

flammatory effects via IRG1 and A20 expression. To support

the anti-inflammatory effects of HO-1/CO -mediated IRG1

and A20, we incubated macrophages with CO or hemin in the

absence and presence of ZnPP, followed by LPS stimulation.

Interestingly, ZnPP significantly reversed HO-1/CO-mediated

inhibition of TNF-a expression, along with a decrease in IRG1

and A20 expression. Our findings thus suggest that CO and HO-

1 inhibit inflammation by increasing IRG1 and A20 expression.

Furthermore our results were confirmed by observations that

siRNA targeting IRG1 and A20 reversed the inhibitory effect of

HO-1/CO on LPS-stimulated TNF-a production.

Sepsis, a systemic inflammatory response, results from

excessive stimulation of the host immune system by pathogen

components to produce various pro-inflammatory cytokines,

and the excessive secretion of these cytokines cause systemic

inflammation leading to the lethal multiple organ damage.46 In

our study, we demonstrated that CO treatment and HO-1

induction significantly increased IRG1 and A20 expression

and decreased TNF-a production in an LPS-stimulated sepsis

mice model. In addition, the effect of CO/HO-1 on TNF-a
production was significantly reversed with intraperitoneal

administration of ZnPP, confirming a role for HO-1 activity.
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In summary, we have identified that CO treatment with

exogenous donor compounds and chemically induced HO-1

induction can regulate IRG1 and A20 expression, thereby

inhibiting inflammation in vitro and in a mouse model of sep-

sis, as illustrated in Fig. 6. This study identifies a novel CO/HO-

1/IRG1/A20 signaling pathway responsible for the inhibition of

LPS-driven inflammation and potentially provides the ration-

ale for novel therapeutic strategies for the treatment of inflam-

matory diseases.
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