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Colonization of germ-free mice with a mixture of three
lactobacillus strains enhances the integrity of gut mucosa
and ameliorates allergic sensitization

Hana Kozakova1, Martin Schwarzer1, Ludmila Tuckova1, Dagmar Srutkova1, Elzbieta Czarnowska2,
Ilona Rosiak2, Tomas Hudcovic1, Irma Schabussova3, Petra Hermanova1, Zuzana Zakostelska1,
Tamara Aleksandrzak-Piekarczyk4, Anna Koryszewska-Baginska4, Helena Tlaskalova-Hogenova1

and Bozena Cukrowska2

Increasing numbers of clinical trials and animal experiments have shown that probiotic bacteria are promising tools for

allergy prevention. Here, we analyzed the immunomodulatory properties of three selected lactobacillus strains and the

impact of their mixture on allergic sensitization to Bet v 1 using a gnotobiotic mouse model. We showed that Lactobacillus

(L.) rhamnosus LOCK0900, L. rhamnosus LOCK0908 and L. casei LOCK0919 are recognized via Toll-like receptor 2

(TLR2) and nucleotide-binding oligomerization domain-containing protein 2 (NOD2) receptors and stimulate bone

marrow-derived dendritic cells to produce cytokines in species- and strain-dependent manners. Colonization of germ-free

(GF) mice with a mixture of all three strains (Lmix) improved the intestinal barrier by strengthening the apical junctional

complexes of enterocytes and restoring the structures of microfilaments extending into the terminal web. Mice colonized

with Lmix and sensitized to the Bet v 1 allergen showed significantly lower levels of allergen-specific IgE, IgG1 and IgG2a

and an elevated total IgA level in the sera and intestinal lavages as well as an increased transforming growth factor (TGF)-b
level compared with the sensitized GF mice. Splenocytes and mesenteric lymph node cells from the Lmix-colonized mice

showed the significant upregulation of TGF-b after in vitro stimulation with Bet v 1. Our results show that Lmix

colonization improved the gut epithelial barrier and reduced allergic sensitization to Bet v 1. Furthermore, these findings

were accompanied by the increased production of circulating and secretory IgA and the regulatory cytokine TGF-b. Thus,

this mixture of three lactobacillus strains shows potential for use in the prevention of increased gut permeability and the

onset of allergies in humans.
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INTRODUCTION

Humans, like all vertebrates, are essentially born germ-free

(GF). This GF status changes rapidly during and after delivery,

and subsequent interactions between the host and colonizing

microbiota plays crucial roles in the development and function

of the immune system as well as the maintenance of intestinal

homeostasis.1,2 Perturbations in colonizing microbiota lead to

the breakdown of the equilibrium between commensal and

pathogenic microbes. This dysbiosis has been linked to the

increased permeability of the epithelium3,4 and the develop-

ment of chronic inflammatory diseases, such as allergies and

inflammatory bowel disease.5–7

Allergies have become a serious health burden in developed

countries. In accordance with the general hypothesis of

Strachan8 that the rapid increase in allergic diseases in humans

is dependent on microbial deprivation early in life, reduced

bacterial diversity and lower counts of lactobacilli and bifido-

bacteria have been detected in the gut of allergic children.9,10
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This finding has been the rationale for the administration

of probiotic bacteria for the prevention and/or treatment of

allergies.11–13

Probiotic lactobacilli and bifidobacteria are non-invasive

and non-pathogenic Gram-positive bacteria possessing immu-

nomodulatory properties that are strictly strain-dependent.14

They have been documented to compete with pathogens and

toxins for adherence to the intestinal epithelium and to pro-

mote intestinal epithelial cell survival, enhance barrier function

and directly interact with cells of the immune system, such as

dendritic cells (DCs).15 Through the engagement of innate

receptors, such as Toll-like receptors (TLRs), nucleotide-bind-

ing oligomerization domains (NODs) or C-type lectin recep-

tors, probiotic lactobacilli and bifidobacteria induce distinct

innate responses and cytokine profiles that subsequently shape

T-helper cell responses.16–18 There is accumulating evidence

that certain strains possess intrinsic Th1-type immunomodu-

latory properties,18,19 while others are able to induce regulatory

responses.17,20,21

Transforming growth factor (TGF)-b is present at high con-

centrations in the intestine and has a crucial involvement in

modulating the immune response.22 It has been shown to

inhibit the proliferation and differentiation of both B and T

cells,23 and altered TGF-b signaling has been linked to the

development of allergic disease.24 Furthermore, TGF-b is an

initial trigger for the production of mucosal IgA, which has a

role in regulating mucosal integrity.25 Along these lines, we

have previously shown that Lactobacillus paracasei stimulates

the production of the regulatory cytokine TGF-b from bone

marrow-derived DCs in a TLR2/4-dependent manner.21

Among the inhalant allergens, the pollen of the white birch

(Betula verrucosa) is one of the most important sources

responsible for eliciting allergic symptoms.26 In an experi-

mental model, we have shown that the oral application of L.

paracasei to pregnant mothers prevents the development of

allergies in their offspring in a mouse model of birch pollen

allergy.21 Similarly, intranasal application of probiotic bacteria

reduces allergic poly-sensitization in adult mice.27 Although

the majority of studies use single strains, supplementation with

probiotic mixtures might have a greater efficacy.28

Germ-free animals represent a unique tool to study the inter-

actions of hosts with specific probiotic strains or with defined

probiotic mixtures and to investigate their impacts on the

development of the immune system.6,29 Using a mouse model

of allergic sensitization to the major birch pollen allergen Bet v 1,

we have previously shown that neonatal colonization of GF mice

with Bifidobacterium longum is able to prevent allergic sensitiza-

tion,20 but the underlying mechanism of the host–bacteria inter-

action in gnotobiotic models is still far from being elucidated.

Recently, we have selected three lactobacillus strains, L. rham-

nosus LOCK0900, L. rhamnosus LOCK0908 and L. casei

LOCK0919, out of 24 strains isolated from stool samples

obtained from healthy infants.30 These selected strains showed

properties required for probiotic bacteria, e.g., resistance to gast-

ric acids and bile salts and inhibitory activities against bacterial

pathogens.30 Moreover, the mixture of these strains (Lmix)

showed synergistic effects in the induction of anti-allergic

Th1-type cytokines and regulatory cytokine TGF-b in human

whole blood cell cultures compared with the levels induced by

each single strain alone.31 Our pilot study showed that the sup-

plementation of children presenting the first symptoms of

allergy (atopic dermatitis) with the Lmix reduced serum levels

of IgE and IL-5 and diminished the severity of the disease

(Cukrowska, unpublished data).

Based on these observed effects, the aims of this study were to

further characterize the immunomodulatory properties of the

individual lactobacillus strains L. rhamnosus LOCK0900, L.

rhamnosus LOCK0908 and L. casei LOCK0919, as well as their

mixture Lmix, in vitro and to investigate the effects of Lmix on

the development of allergic sensitization to the allergen Bet v 1

in a gnotobiotic mouse model.

MATERIALS AND METHODS

Bacterial strains

L. rhamnosus LOCK0900,32 L. rhamnosus LOCK090833 and L.

casei LOCK091934 were obtained from the Pure Culture

Collection of the Technical University of Lodz, Poland

(LOCK). Overnight cultures in MRS broth (Oxoid,

Basingstoke, UK) were centrifuged and washed in sterile phos-

phate-buffered saline (PBS), and their concentrations were

adjusted to 109 CFU/ml. For the in vitro experiments, single

bacterial strains were inactivated with 1% formaldehyde-PBS

for 3 h at room temperature, washed twice with sterile saline

(PBS) and stored at 240 uC.

Stimulation of HEK293 cells stably transfected with TLR2,

NOD2 and TLR4

The human embryonic kidney cell line HEK293 stably trans-

fected with a plasmid carrying the human (h)TLR2/CD14 gene

was kindly provided by M. Yazdanbakhsh (Leiden, The

Netherlands), cells transfected with hTLR4/MD2/CD14 were

a gift from B. Bohle (Vienna, Austria), and cells transfected

with hNOD2 were purchased from InvivoGen (InvivoGen,

Toulouse, France). The cells were stimulated with the form-

alin-inactivated L. rhamnosus LOCK0900, L. rhamnosus

LOCK0908, L. casei LOCK0919 or their equal-part mixture

(Lmix) at a concentration of 107 CFU/ml. TLR2 ligand

Pam3CSK4 (PAM3; 1 mg/ml; InvivoGen), NOD2 ligand mura-

myl dipeptide (100 ng/ml; InvivoGen) and TLR4 ligand ultra-

pure LPS-EB (LPS; 1 mg/ml, InvivoGen, Toulouse, France)

were used as positive controls. After a 20-h incubation period,

culture supernatants were harvested, and human IL-8 concen-

trations were analyzed by Enzyme-Linked Immunosorbent

Assay (Thermo Fisher Scientific, Waltham, MA, USA) accord-

ing to the manufacturer’s instructions.

Preparation and activation of bone marrow-derived DCs

(BM-DCs)

Mouse BM-DCs were prepared as previously described.21 Briefly,

bone marrow precursors were isolated from the femurs and

tibias of conventional (CV) BALB/c mice. Cells were cultured
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at 43105/ml in bacteriological Petri dishes in 10 ml of culture

medium with GM-CSF (20 ng/ml; Sigma-Aldrich, Saint-Louis,

MO, USA). Fresh medium was added on days 3 and 6, and the

BM-DCs were used on day 8 of culture. The BM-DCs (106

cells/ml) were stimulated with 107 CFU/ml of inactivated L.

rhamnosus LOCK0900, L. rhamnosus LOCK0908, L. casei

LOCK0919 or their equal-part mixture (Lmix) for 18 h. BM-

DCs incubated with Pam3CSK4 (PAM3; 1 mg/ml) or ultrapure

LPS-EB (LPS, 1 mg/ml) were used as controls. Levels of IL-10,

TGF-b and TNF-a in the culture supernatants were deter-

mined by ELISA Ready-Set-Go! Kits (eBioscience, San Diego,

CA, USA) according to manufacturer’s instructions. IL-12p70

levels were measured with matched antibody pairs (BD

Biosciences, San Jose, CA, USA).

Animals

GF inbred BALB/c mice were born and housed under sterile

conditions and fed a sterile standard pellet diet (ST1; Bergman,

Kocanda, Czech Republic; 59 kGy irradiated for 30 min) and

were provided sterile water ad libitum. The animals were kept in

a room with a 12 h light–dark cycle at 22 uC. Fecal samples were

evaluated weekly for the presence of aerobic and anerobic bac-

teria, molds and yeast by standard microbiological methodo-

logies. CV BALB/c mice (n55) were fed the same sterile diet as

their GF counterparts. The animal experiments were approved

by the Committee for the Protection and Use of Experimental

Animals of the Institute of Microbiology v.v.i., Academy of

Sciences of the Czech Republic (approval ID: 50/2013).

Experimental design

Eight-week-old GF mice (n512) were divided into two groups.

The mice were colonized by intragastric tubing with 23108

CFU of equal parts of overnight cultures of L. rhamnosus

LOCK0900, L. rhamnosus LOCK0908 and L. casei LOCK0919

in 0.2 ml of sterile PBS (group 1). The second group served as a

GF control. Three weeks after colonization, the Lactobacillus-

colonized mice and GF controls were intraperitoneally immu-

nized three times with 1 mg of the recombinant birch pollen

allergen Bet v 1 (Biomay, Vienna, Austria) adsorbed to 2 mg

aluminium hydroxide (Serva, Heidelberg, Germany) at 10-day

intervals, as previously described.35 The mice were euthanized

at seven days after the last immunization by cervical dislocation

(Figure 4a). Blood was collected, and serum samples were

stored at 240 uC until analysis. Terminal ileum samples were

removed for immunohistochemistry, Western blot and elec-

tron microscopy analysis, and the rest of the small intestine was

excised for the determination of total IgA, with lavages per-

formed as previously described.36 Mesenteric lymph nodes

(MLNs, pooled per group) and the spleen were aseptically

removed and prepared for in vitro cytokine assays. Briefly, after

gentle crushing, straining through a 70-mm cell strainer (BD

Biosciences, San Jose, CA, USA) and the lysis of red blood cells

(180 mM NH4Cl and 17 mM Na2EDTA, pH 7.3; Sigma-

Aldrich, Saint-Louis, MO, USA), mononuclear cells were

resuspended in complete RPMI 1640 medium (Sigma-

Aldrich, Saint-Louis, MO, USA) containing 10% fetal calf

serum, 2 mM glutamine, 100 U penicillin and 100 mg/ml strep-

tomycin.

Bacterial colonization

The bacterial colonization of the mice was evaluated on the

first 2 days and then at weekly intervals throughout the experi-

ment. The fecal samples were pooled for each group, diluted

(1 : 9, w/v) in sterile PBS and exhaustively vortexed with sterile

glass beads. Volumes of 1 ml at the appropriate 10-fold dilu-

tion were plated onto MRS agar (Oxoid, Basingstoke, UK) and

cultivated in triplicate at 37 uC for 48 h. At the species level,

bacteria were distinguished on the basis of colony morphology.

The strain L. casei LOCK0919 formed small, white, non-muco-

sal colonies, whereas the strains L. rhamnosus LOCK0900 and

LOCK0908 formed larger white-gray-colored mucosal colo-

nies. To distinguish between L. rhamnosus strains, we isolated

DNA from the feces of colonized mice and performed strain-

specific qPCR (Supplementary Information).

Immunohistochemical detection of IgA-producing cells

Segments of the terminal ileum were embedded in Tissue-

Tek (Sakura Finetec Europe B.V., Netherlands) and frozen in

liquid nitrogen. Cryosections (5 mm thick) of acetone-fixed

colon were used for immunocytochemistry. Immunostaining

was performed with a goat anti-mouse IgA-FITC antibody

(Thermo Fisher Scientific, Waltham, MA, USA). Samples were

viewed under an Olympus BX 40 microscope equipped with an

Olympus DP 70 digital camera. Photographs were taken with a

Camedia Master 2.5 and DP-Soft (Olympus Corporation,

Tokyo, Japan).

Transmission electron microscopy

The ileum tissues were cut into small pieces (131 mm) and

immediately fixed in 2.5% glutaraldehyde in PBS for 90 min.

After fixation in 1% osmium tetroxide (Sigma-Aldrich, Saint-

Louis, MO, USA) for 1 h and washing in 0.1 M cacodylate

buffer, the samples were successively dehydrated in 35%,

70%, 96% and 100% ethanol and propylene oxide (EMS,

Hatfield, PA, USA). Subsequently, they were embedded in

Epon resin (EMS, Hatfield, PA, USA). Selected semi-thin sec-

tions of ileum were cut into 65 nm ultra-thin sections by Leica

Ultracut Uct52 (Leica Microsystems, Wetzlar, Germany),

stained with uranyl acetate and lead citrate, and examined by

electron microscopy (Jem 1011; Jeol, Peabody, MA, USA).

Images of the ultrastructural features of the ileal structures

and junctions were visualized at magnifications ranging from

33000 to 3100 000. Specimens were obtained from five mice

from each group. The widths and lengths of the intracellular

junctions were measured using the morphometric iTEM pro-

gram (Olympus Corporation, Tokyo, Japan) at a magnification

of 3100 000. For each specimen, 10–15 measurements were

performed, and the results are presented in nm.

Western blot analysis of ZO-1 and occludin

The terminal ileum was homogenized on ice in protein extract

buffer with a protease inhibitor cocktail (Thermo Fisher
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Scientific, Waltham, MA, USA) for 10 min and sonicated.

Samples were centrifuged at 10,000 rpm for 10 min at 4 uC
and stored at 280 uC until use. Protein concentrations were

measured using a BCA Protein Assay Kit (Thermo Fisher

Scientific, Waltham, MA, USA). Western blotting was per-

formed as previously described.37 The membranes were

blocked with 2% (w/v) dry milk in 0.05% PBS-Tween-20 for

1 h at room temperature and incubated overnight at 4 uC with

antibodies against occludin (1 : 1000) ZO-1 (1 : 1000) (Thermo

Fisher Scientific, Waltham, MA, USA) and b-actin (1 : 5000)

(Abcam, Cambridge, UK). After incubation with the respective

primary antibodies, secondary staining was conducted using

horseradish peroxidase-conjugated species-specific antibodies

(1 : 1000) (Thermo Fisher Scientific, Waltham, MA, USA) for

1 h at room temperature. The reactions were developed using a

SuperSignal West Femto Maximum Sensitivity Substrate

(Thermo Fisher Scientific, Waltham, MA, USA), and the signal

intensities were measured with a G : BOX (Syngene, Cambridge,

UK) and processed with the ImageJ program.38

Allergen-specific antibody responses: ELISA and basophil

release assay

Allergen-specific serum IgG1, IgG2a and IgA levels were deter-

mined by ELISA as previously described.39 Briefly, 96-well

microtiter plates were coated with Bet v 1 (2 mg/ml). Serum

samples were diluted 1 : 10000 for IgG1, 1 : 100 for IgG2a and

1 : 10 for IgA. Rat anti-mouse IgG1, IgG2a and IgA antibodies

(1 mg/ml; BD Biosciences, San Jose, CA, USA) were applied,

followed by peroxidase-conjugated mouse anti-rat IgG antibod-

ies (1 : 1000; Jackson ImmunoResearch Laboratories, West

Grove, PA, USA) for detection. Antibody levels were reported

as optical densities. Allergen-specific IgE levels in the sera were

quantified by the degranulation of rat basophil leukemia (RBL-

2H3) cells as previously described.40 RBL-2H3 cells were plated

in 96-well tissue culture plates (43104 cells per well) and pas-

sively sensitized by incubation with mouse sera at a final dilution

of 1 : 30 for 2 h. After washing, Bet v 1 (0.3 mg/ml) was added for

30 min at 37 uC to induce degranulation. Supernatants were

incubated with 4-methylumbelliferyl-N-acetyl-b-D-glucosami-

nide (Sigma-Aldrich, Saint-Louis, MO, USA) for analysis of b-

hexosaminidase using an Infinite M200 (Tecan Group,

Männedorf, Switzerland) fluorescence microplate reader (lex:

360 nm/lem: 465 nm). The results are reported as the percentage

of total b-hexosaminidase release from the cells after disruption

with 1% Triton X-100.

Total IgA and IgE responses

Total IgA and IgE were measured in the sera and gut lavages

(IgA only) with a mouse IgA and IgE ELISA quantification kit

(Bethyl, Montgomery, TX, USA) according to manufacturer’s

instructions. The serum samples were diluted 1 : 400 for the IgA

and 1 : 10 for the IgE measurements, and for IgA determination

in the gut lavages, a 1 : 2500 dilution was used. Antibody levels

are reported as mg/ml for the sera and as mg/g for the gut

lavages.

Cytokine production

Spleen cells and pooled MLN cell suspensions were cultured in

48-well flat-bottom plates at a concentration of 53106 cells in

500 ml of complete RPMI 1640 medium. Cells were cultivated

with/without Bet v 1 (10 mg/well) restimulation at 37 uC under

5% CO2 for 48 h. After cultivation, supernatants were collected

and stored at 240 uC until analysis. IL-4, IL-5, IL-10 and inter-

feron (IFN)-c levels were determined by a Mouse Cytokine/

Chemokine Multiplex Immunoassay (Millipore, Billerica, Ma,

USA) according to the manufacturer’s instructions and ana-

lyzed with a Luminex 200 System (Bio-Rad Laboratories,

Hercules, CA, USA) at sensitivities of ,0.3 pg/ml for IL-4,

,0.3 pg/ml for IL-5, ,10.3 pg/ml for IL-10 and ,0.7 pg/ml

for IFN-c. TGF-b was measured in the culture supernatants and

in 1 : 10 diluted serum samples with an ELISA kit (R&D Duoset

Systems, Minneapolis, MN, USA) according to the manufac-

turer’s instructions, with a detection limit of ,4 pg/ml.

Statistical analyses

The non-parametric Mann–Whitney test was used for compari-

sons between two groups, and for comparisons between mul-

tiple groups, ANOVA with Tukey’s multiple comparison test

was performed with the GraphPad Prism 5.02 software. Values

of P,0.05 were considered significantly different. All data are

expressed as the mean6standard error of the mean (s.e.m.)

unless stated otherwise.

RESULTS

TLR2 and NOD2 but not TLR4 are involved in the

recognition of all three investigated Lactobacillus strains

To specify pattern recognition receptors involved in

Lactobacillus signaling pathways, the single strains L. rhamno-

sus LOCK0900, L. rhamnosus LOCK0908, L. casei LOCK0919

or their equal-part mixture (Lmix) were incubated with

HEK293 cells transfected either with TLR2, TLR4 or NOD2.

The cytokine IL-8 level was measured as an indicator of cell

stimulation via a specific receptor, and it was found to be

significantly increased in the supernatants of the HEK293/

TLR2 cells incubated with L. rhamnosus LOCK0900 and in

the HEK/NOD2 cells exposed to L. casei LOCK0919 and

Lmix (Figure 1a and b). There was no IL-8 stimulation detected

in the HEK293/TLR4 cells incubated with any single lactoba-

cillus strain or Lmix (Figure 1c).

Strain-specific profile of cytokines produced by stimulated

BM-DCs

Activation of BM-DCs with the single strains L. rhamnosus

LOCK0900, L. rhamnosus LOCK0908 and L. casei LOCK0919

or Lmix showed a trend toward the increased induction of the

regulatory cytokine TGF-b independent of the applied bac-

terial strain. However, the production of IL-10, IL-12p70 and

TNF-a was strictly species- and strain-dependent, and the

stimulation of cytokine production by Lmix corresponded

with the average of the cytokine concentrations induced by

individually applied bacterial strains (Figure 2).
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Colonization with Lmix improves the intestinal barrier

To evaluate the effect of Lmix colonization on the intestinal

barrier, ultrastructural analyses of the apical portion of ileal

enterocytes were performed. In mice reared under conventional

conditions, the brush borders were regular, straight and con-

tained microfilaments extending into the terminal web (TW)

(Figure 3a). The apical junctional complex, including the tight

junction, adherens junction (AJ) and desmosome, were well

organized. In contrast, the enterocyte brush borders of the GF

mice were irregularly arranged and exhibited decreased num-

bers of cytoskeletal microfilaments and a lack of elongation into

the TW. As shown in Table 1, the AJ region was significantly

broader and shorter in the GF mice compared with the CV and

Lmix-colonized mice. Interestingly, incomplete apical junc-

tional complexes lacking desmosomes (DE) were observed in

approximately 30% of the enterocytes of the GF mice

(Figure 3b). Lmix colonization of the GF mice led to a more

organized arrangement of enterocyte microvilli with cytoskele-

tal microfilaments anchored in the TW, similar to the CV mice

(Figure 3c). In these mice, DEs were detected in each apical

junctional complex in contrast with the GF mice. Moreover,

the AJs in the Lmix-colonized mice were significantly elongated

and narrow compared with the GF mice, resembling those

found in the CV mice (Table 1). Western blot analysis of the

terminal ileum further confirmed the electron microscopic

findings. The levels of ZO-1 (Figure 3g) were significantly

increased in the CV and Lmix-colonized mice compared with

the GF controls. Concomitantly, the occludin level was signifi-

cantly higher in the CV mice, and there was a trend toward its

increase in the Lmix-colonized mice (Figure 3h).

Colonization of GF mice with Lmix

The stability of colonization with Lmix was evaluated through-

out the experiment. By plating the fecal samples on MRS agar,

we were able to distinguish the bacteria at the species level. As

shown in Figure 4b, starting from the second day after col-

onization, the concentration of L. casei reached 3.3–5.03109

CFU/g of feces, while L. rhamnosus strains were detected at

concentrations ranging from 0.2–8.03108 CFU/g. To distin-

guish between the two L. rhamnosus strains, we isolated the

DNA from the stool samples and showed that the LOCK0908

strain was more abundant compared with the LOCK0900

strain by qPCR (Figure 4c).

Colonization by Lmix suppresses Bet v 1-specific antibody

production

To analyze the effect of Lmix colonization on allergic sensi-

tization, our recently published mouse model20,41 was

applied, and the production of specific antibodies and cyto-

kines were evaluated. Lmix-colonized and GF mice were

immunized intraperitoneally with the recombinant birch

pollen allergen Bet v 1 at 10-day intervals starting at 3 weeks

after bacterial colonization (Figure 4a). Colonization with

Lmix significantly reduced Bet v 1-specific IgE (P,0.03),

IgG1 (P,0.03) and IgG2a (P,0.03) serum antibodies com-

pared with the age-matched Bet v 1-sensitized GF controls

(Figure 4d–f). No differences were found in Bet v 1-specific

IgA antibodies between both groups (GF: 0.18760.44 OD

and Lmix: 0.16760.027 OD; P50.857).
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Figure 1 Stimulation of HEK293 TLR2-, NOD2- and TLR4-transfected
cells with Lactobacillus strains. Human embryonic kidney cells
(HEK293) stably transfected with an expression vector for human
TLR2 (293-hTLR2) (a), NOD2 (pUNO-hNOD2) (b) and TLR4 (293-
hTLR4/MD2/CD14) (c) were cultured for 20 h with 107 CFU/ml of form-
alin-inactivated L. rhamnosus LOCK0900 (L900), L. rhamnosus
LOCK0908 (L908), L. casei LOCK0919 (L919) or an equal-part mixture
of these strains (Lmix). PAM3 (1 mg/ml), MDP (10 mg/ml) and ultrapure
lipopolysaccharide from E. coli (LPS; 1 mg/ml) were used as positive
controls for TLR2, NOD2 and TLR4, respectively. Unstimulated cells
(ctrl) were used as negative controls. Stimulation was evaluated by the
measurement of IL-8 production. The results are expressed as the
mean6s.e.m. Pooled values of at least three experiments are shown.
PAM3, MDP and LPS served as positive or negative stimulated controls
and were not included in statistical analysis. aSignificantly different from
unstimulated control; *P,0.05, **P,0.01 and ***P,0.001. Ctrl,
unstimulated cells; HEK293, human embryonic kidney cell line 293;
MDP, muramyl dipeptide; NOD2, nucleotide-binding oligomerization
domain-containing protein 2; PAM3, Pam3CSK4; TLR, Toll-like receptor.
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Colonization with Lmix reduces systemic IgE and induces

systemic and local IgA production

Colonization of the GF mice with Lmix induced a decreasing

trend in the level of total IgE in the serum samples (Figure 5a),

while the total levels of IgA in the serum samples (P,0.013)

and small intestinal lavages were significantly increased

(P,0.04) in comparison with the Bet v 1-senzitized GF con-

trols (Figure 5b and c). In the Lmix-colonized group, the

induction of activated IgA-secreting plasma cells in the lamina

propria of the terminal ileum was confirmed by immuno-

fluorescence staining (Figure 5d). However, no IgA-producing

cells were found in the age-matched GF controls (Figure 5d).

Lmix colonization reduces Bet v 1-specific IL-4 and IL-5

cytokine production

To investigate the impact of Lmix on Th1 and Th2 cytokine

production, splenocytes and pooled MLN cells from Bet v 1-

sensitized mice were cocultured with Bet v 1 in vitro. We

observed the significantly reduced secretion of the Th2 cyto-

kine IL-4, a trend toward a reduction in IL-5 and a slight

increase in the level of the Th1-type cytokine IFN-c in spleen

cell supernatants from the Lmix-colonized mice compared

with the GF controls (Figure 6a–c). No IL-4 production was

detected in the pooled MLN cell cultures, and the levels of both

IL-5 (Figure 6d) and IFN-c (GF: 5.56 pg/ml and Lmix: 1.30 pg/

ml) were lower in the supernatants from the Lmix-colonized

mice compared with the GF controls.

Colonization with Lmix stimulates TGF-b production

To evaluate the effects of Lmix colonization on the regulatory

cytokine response, the level of TGF-b was determined in serum

samples and supernatants from spleen or MLN cells co-

cultured with Bet v 1 in vitro. A significant upregulation of

TGF-b in the sera was detected in the mice colonized with

Lmix compared with the GF controls (P,0.009) (Figure 7a).

We observed a significant increase in the TGF-b level in super-

natants of the Bet v 1-stimulated splenocyte cultures of

the Lmix-colonized mice compared with the GF controls

(Figure 7b). A similar tendency was detected in supernatants

of the MLN cells isolated from the Lmix-colonized mice

(Figure 7c). There was no difference between the Lmix-

colonized and GF control groups in IL-10 production in any

of the cell culture supernatants (data not shown).

DISCUSSION

In the present study, we aimed to investigate the ability of Lmix,

a mixture of the three lactobacillus strains L. rhamnosus

LOCK0900, L. rhamnosus LOCK0908 and L. casei LOCK0919,

to modulate allergic sensitization in a gnotobiotic mouse model.

We showed that colonization with Lmix ameliorated Bet v 1-

specific allergic responses at both the humoral and cellular levels.

Furthermore, Lmix colonization improved the barrier structure

of the gut, which was immature in the GF mice.

The modulation of immune responses by single bacterial

strains or by mixtures of different probiotic strains has been

8000
a

6000

4000

pg
/m

l
2000

0
ctrl LmixL919L908L900

a
a

**
IL-10

LPS PAM3

800
b

600

400

pg
/m

l

200

0
ctrl LmixL919L908L900

TGF-b

LPS PAM3

20000
c

15000

10000

pg
/m

l

5000

0
ctrl LmixL919L908L900

a

a a

a
a

a
***

***
***

***
***

IL-12p70

LPS PAM3

4000
d

3000

2000

pg
/m

l

1000

0
ctrl LmixL919L908L900

TNF-a

LPS PAM3

Figure 2 Stimulation of bone marrow-derived dendritic cells with Lactobacillus strains. BM-DCs were cultured with 107 CFU/ml of formalin-
inactivated L. rhamnosus LOCK0900 (L900), L. rhamnosus LOCK0908 (L908), L. casei LOCK0919 (L919) strains or an equal-part mixture of these
strains (Lmix) for 18 h. As positive controls, PAM3 (1 mg/ml) or ultrapure lipopolysaccharide from E. coli (LPS; 1 mg/ml) were applied. Ctrl served as
negative controls. The levels of IL-10, TGF-b, IL-12p70 and TNF-a in the culture supernatants were determined by ELISA and expressed as the
mean6s.e.m. Pooled values of at least three experiments are shown. PAM3 and LPS served as stimulated controls and were not included in
statistical analysis. aSignificantly different from unstimulated control; *P,0.05, **P,0.01 and ***P,0.001. BM-DC, bone marrow-derived
dendritic cells; ctrl, unstimulated cell; Lmix, Lactobacillus mixture; PAM3, Pam3CSK4; TGF, transforming growth factor; TNF, tumor necrosis
factor.

Probiotic Lactobacillus mixture ameliorates allergic sensitization

H Kozakova et al

Cellular & Molecular Immunology

256



documented in mouse models as well as in human trials.42,43

This modulation occurs either by the promotion of Th1-type

responses44 or by the induction of regulatory cells and cyto-

kines.20,45 Using a gnotobiotic mouse model, we showed that

colonization with Lmix reduced the serum levels of the Th2-

related Bet v 1-specific IgE and IgG1 antibodies as well as the

Th1-related IgG2a antibody, implicating the involvement of

regulatory mechanisms. These findings were further supported

by the significantly higher serum level of TGF-b. After the in

vitro restimulation of splenocytes or MLN cells with Bet v 1, we

observed an alteration in Th2/T regulatory (Treg) cytokine pro-

duction. We detected the downregulation of the Th2-associated

cytokines IL-4 and IL-5 and the upregulation of TGF-b produc-

tion in the Lmix-colonized group, suggesting that Lmix colo-

nization induced immunoregulatory mechanisms. Previously,

Feleszko et al.45 have demonstrated that the oral delivery of
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Figure 3 The effects of Lmix colonization on the architecture of the apical junctional complex of enterocytes and the production of ZO-1 and
occludin. Electron microscopy micrographs of the apical surfaces of ileal enterocytes in CV, GF and Lmix-colonized mice (Lmix). The epithelial
surface is covered by microvilli. Microfilaments extend from the microvilli into the apical cytoplasm and filamentous TW, which was deficient in the
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Table 1 Effects of bacterial colonization on the width (W) and

length (L) of the apical intracellular junction in the ileum of CV,

GF and Lmix-colonized mice

Tight junctions (nm) Adherens junctions (nm)

Group W L W L

CV 1061 336640 3062 226650

GF 1061 203650* 40610* 181640*

Lmix 1163 236680 3067 234670

Abbreviations: CV, conventional; GF, germ-free; Lmix, Lactobacillus

mixture.

The values are expressed as the mean6s.e.m. (nm) and were obtained

from 10–15 measurements per sample, and n55 samples were assessed

per group.

*P,0.05, significant difference of the GF group versus the Lmix and CV

groups.
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probiotic bacteria leads to the suppression of allergic sensitiza-

tion and airway inflammation by TGF-b-producing Treg cells,

which can be found in MLNs. It has also been shown that the

peripheral conversion of CD41 T cells to Treg cells occurs prima-

rily in gut-associated lymphoid tissue in the presence of TGF-b
and retinoic acid.46 In accordance with these findings, we sug-

gest that colonization with a lactobacillus mixture induces the

upregulation of TGF-b production in the intestine and the

generation of Treg cells.

In correlation with the increased production of TGF-b, we

found a significant increase in the gut and serum IgA levels in

the Lmix-colonized mice. Secretory IgA has been shown to play

a crucial role in maintaining bacterial homeostasis in the gut

(reviewed in Ref. 47). These results are in accordance with

previous findings that the colonization of GF mice with

probiotic bacteria induces the activation of IgA production

and that a mixture of probiotic strains is more effective in

the development of plasmablasts in the gut compared with

single strains.48

The intestinal barrier is immature in GF mice,49 and Lmix

significantly improves this condition. We found that the entero-

cyte brush borders of the GF mice were irregularly arranged

and exhibited a decreased number of cytoskeletal microfila-

ments and a lack of elongation into the terminal web. The

adherens junctions in the Lmix-colonized mice were signifi-

cantly elongated and narrow compared with those in the GF

mice and resembled those found in CV mice. This fortification

of the intestinal barrier was further evident from the increased

levels of the ZO-1 and occludin proteins in the Lmix-colonized

and CV mice. To our knowledge, this is the first report
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documenting the effect of lactobacillus colonization on the

ultrastructure of brush border and apical junctional complexes

of enterocytes in gnotobiotic mice. Along these lines, increased

gut permeability has been found in children with food aller-

gies50 and it has also been recently detected in asthmatic

patients.51 The homeostasis of the intestinal epithelium is

maintained by a complex interplay of multiple regulatory

mechanisms.52 In vitro studies have indicated that the pro-

allergic cytokine IL-4 contributes to barrier impairment in

contrast with TGF-b, which enhances the barrier function

and activates the expression of proteins comprising intercellu-

lar junctions.53 In our study, the improvement of the gut

barrier in the Lmix-colonized mice was accompanied by the

reduced secretion of pro-allergic cytokines and the significant

enhancement of TGF-b.

There is increasing evidence that probiotic bacteria can exert

their functions by directly interacting with pattern recognition

receptors. In this study, we showed that TLR2 played an

important role in the recognition of L. rhamnosus LOCK0900

and that NOD2 participated in the recognition of L. casei

LOCK0919. In contrast, L. rhamnosus LOCK0908 was poorly

recognized by both of these receptors. Interestingly, a signifi-

cant feature of the L. rhamnosus LOCK0908 strain is its high

level of exopolysaccharide (EPS) production.33 Fanning et al.54
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have recently shown that bifidobacterial strain-producing sur-

face EPS fail to elicit a strong immune response compared with

EPS-deficient variants. Thus, it is tempting to speculate that the

lack of TLR2, TLR4 and NOD2 activation by L. rhamnosus

LOCK0908 may be caused by EPS covering the bacterial surface

and masking bioactive components, which play a role in bind-

ing to pattern recognition receptors.

We have previously shown in human blood cell cultures that

the application of L. rhamnosus LOCK0900, L. rhamnosus

LOCK0908 and L. casei LOCK0919 strains together as a mix-

ture has synergistic effects on the induction of anti-allergic

Th1-type cytokines compared with the levels induced by each

single strain alone.31 We were not able to confirm these find-

ings using mouse BM-DCs, and we did not observe any syner-

gistic effects on cytokine production. This discrepancy may be

explained by the different manners of bacterial inactivation

(heating vs. formalin inactivation)55 and also by the different

donor species and cell types used.

By evaluating bacterial colonization, we were able to show

that all three bacterial strains were detectable in the fecal sam-

ples until the end of the experiment. Two days after coloniza-

tion, L. casei LOCK0919 became the dominant strain in the

feces of the colonized mice. This finding can be related to a

recent analysis of the complete genomic sequence of L. casei

LOCK0919, which has revealed the presence of factors relevant

to its colonization and persistence in the human gut, including

proteins with roles in adhesion to host cell structures.34

However, further experiments are needed to determine

whether the effects observed in vivo can be achieved by the

colonization of mice by L. casei LOCK0919 alone. Although

the L. rhamnosus strains represented a minority of the strains

present in the feces of the colonized mice, we cannot exclude

that they may play an important role in the immunomodula-

tory activity of the mixture and that they are necessary for the

successful reduction of allergic sensitization. This argument is

supported by our recent finding that EPS produced by the L.

rhamnosus LOCK0900 strain can modulate the cytokine pro-

duction of BM-DCs induced by another bacteria.56

In conclusion, we have shown that the three lactobacillus

strains in Lmix, L. rhamnosus LOCK0900, L. rhamnosus

LOCK0908 and L. casei LOCK0919, were able to reduce sensi-

tization to Bet v 1. The specific serum IgE and IgG levels as well

as the production of the pro-allergic cytokines IL-4 and IL-5 by

splenocytes and MLN cells were also reduced. This suppression

was accompanied by the upregulation of the regulatory cyto-

kine TGF-b and the improvement of the epithelial gut barrier.

These results clearly demonstrate the beneficial roles of the

selected lactobacillus strains in the process of allergic sen-

sitization and support their uses in the early prevention of

allergies.
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