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Molecular mechanisms regulating NLRP3
inflammasome activation
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Inflammasomes are multi-protein signaling complexes that trigger the activation of inflammatory caspases and the

maturation of interleukin-1b. Among various inflammasome complexes, the NLRP3 inflammasome is best characterized

and has been linked with various human autoinflammatory and autoimmune diseases. Thus, the NLRP3 inflammasome

may be a promising target for anti-inflammatory therapies. In this review, we summarize the current understanding of

the mechanisms by which the NLRP3 inflammasome is activated in the cytosol. We also describe the binding partners

of NLRP3 inflammasome complexes activating or inhibiting the inflammasome assembly. Our knowledge of the

mechanisms regulating NLRP3 inflammasome signaling and how these influence inflammatory responses offers further

insight into potential therapeutic strategies to treat inflammatory diseases associated with dysregulation of the NLRP3

inflammasome.
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INTRODUCTION

The inflammasome was described a decade ago as a large intra-

cellular signaling platform that contains a cytosolic pattern

recognition receptor, especially a nucleotide-binding oligo-

merization domain-like receptor (NLR) or an absent in mela-

noma 2 (AIM2)-like receptor. Among NLR inflammasome

complexes, the NLRP3 inflammasome has been the most

widely characterized and is a crucial signaling node that

controls the maturation of two proinflammatory interleukin

(IL)-1 family cytokines: IL-1b and IL-18.1–3 Activation of the

pattern recognition receptor NLRP3 leads to recruitment of

the adapter apoptosis-associated speck-like protein containing

a C-terminal caspase recruitment domain (ASC), resulting in the

activation of pro-caspase-1 into its cleaved form.1 Caspase-1 is

known as an inflammatory caspase that plays a role in the

maturation of IL-1b and IL-18 into active cytokines and the

initiation of pyroptosis by autocatalysis and activation.4

Activation of the NLRP3 inflammasome is thought be regu-

lated at both the transcriptional and post-translational levels.

The first signal in inflammasome activation involves the prim-

ing signal, induced by the toll-like receptor (TLR)/nuclear

factor (NF)-kB pathway, to upregulate the expression of

NLRP3, the level of which is otherwise relatively low in numer-

ous cell types.5,6 Signal 2 is transduced by various pathogen-

associated molecular patterns (PAMPs) and damage-associated

molecular patterns (DAMPs) to activate the functional NLRP3

inflammasome by initiating assembly of a multi-protein com-

plex consisting of NLRP3, the adaptor protein ASC, and pro-

caspase-1. Several molecular mechanisms have been suggested

for NLRP3 activation to induce caspase-1 activation and IL-1b

maturation. These include pore formation and potassium (K1)

efflux,7,8 lysosomal destabilization and rupture,9,10 and mito-

chondrial reactive oxygen species (ROS) generation.10–12

Evidence supports that the aberrant activation of the NLRP3

inflammasome is associated with the pathogenesis of various

autoinflammatory, autoimmune, and chronic inflammatory

and metabolic diseases, including gout, atherosclerosis, and

type 2 diabetes.13–15 Thus, activation of the NLRP3 inflamma-

some should be tightly regulated to prevent unwanted host

damage and excessive inflammation. To date, several regula-

tory mechanisms and binding partners have been described in

NLRP3 inflammasome activation. In this review, we focus on
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the molecular mechanisms that activate and regulate excessive

NLRP3 inflammasome activation.

OVERVIEW OF THE NLRP3 INFLAMMASOME COMPLEX

NLRs are innate cytosolic receptors that recognize diverse

PAMPs and DAMPs. Among the NLRs, several members

including NLRP1, NLRP2, NLRP3, NLRC4, NLRP6, NLRP7,

and NLRP12 are able to form multimeric inflammasome com-

plexes.16 NLRP3 (also known as cryopyrin and NALP3) is

the best characterized inflammasome and is expressed mainly

by myeloid lineage cells. NLRP3 is inducible by stimulation of

TLR activation, cytokine stimulation, and other signals.17 The

canonical NLRP3 inflammasome complex is an intracellular

protein complex consisting of the sensor NLRP3, the adaptor

ASC, and pro-caspase-1. The Nlrp3 (CIAS1) gene encodes a

protein containing an amino-terminal pyrin domain, a central

nucleotide-binding domain, and a C-terminal leucine-rich

repeat (LRR) motif.18 After sensing danger signals, presumably

via the LRR domain of NLRP3, NLRP3 monomers induce

oligomerization and interact with the pyrin domain (PYD)

domain of ASC through homophilic interactions.3 The adaptor

ASC then recruits the cysteine protease pro-caspase-1 via a

caspase recruitment domain (CARD).3 The resulting autoca-

talysis and activation of caspase-1 lead to maturation and secre-

tion of proinflammatory cytokines IL-1b and IL-18 and, under

certain conditions, to induction of pyroptosis, a form of

programmed inflammatory cell death.19–21 Recent structural

studies have revealed that two successive steps in nucleation-

induced and ‘prion-like’ polymerization — i.e., NLRP3

nucleation of the PYD filaments of ASC and the clustering

of pro-caspase-1 within star-like fibers of ASC — are

essentially required for the proximity-induced activation of

inflammasomes.22,23

NLRP3 also interacts with NOD2, which plays a non-

redundant role in the processing of pro-IL-1b, in a CARD-

independent manner.24 It has also been shown that both

NOD2 and NLRP3 play roles in MDP-induced IL-1b release

in macrophages.25 In non-canonical activation of the NLRP3

inflammasome, cytosolic detection of lipopolysaccharides

(LPS) activates caspase-11, which promotes susceptibility to

endotoxin-induced sepsis even in Tlr4(-/-) mice.26,27 Recently,

a noncanonical role of NLRP3 has been revealed in T helper

type 2 cells as a critical transcriptional factor in T helper 2

differentiation through binding to the Il4 promoter and trans-

activation of its promoter activity.28 IL-1b is a key proinflam-

matory cytokine that affects nearly every cell type and mediates

inflammation in a variety of tissues; thus, it is involved in

various systemic inflammatory diseases, marked by recurrent

fevers, leukocytosis, and elevated acute phase proteins.29,30

Additionally, IL-1b levels and activities are highly associated

with the pathogenesis of various autoinflammatory and auto-

immune diseases.30,31 Unlike other cytokines, the IL-1 family

appears to have unique properties because it is also involved in

the suppression of inflammation and subsequent direction of

adaptive immune responses.31

LIGANDS/STIMULI THAT ACTIVATE THE NLRP3

INFLAMMASOME COMPLEX

To date, it has been accepted that activation of the NLRP3

inflammasome depends on two signals: a priming signal,

required for the upregulation of NLRP3 and pro-IL-1b, and

a second signal that triggers assembly into the NLRP3 inflam-

masome complex.21,32,33 NLRP3 responds to many stimuli for

activation of the inflammasome.34 The NLRP3 inflammasome

is activated by a variety of PAMPs and DAMPs, originating

from numerous pathogens, a large number of pore-forming

toxins, adenosine triphosphate (ATP), and particulate crystals

and aggregates.34,35 Various bacterial and viral pathogens and

their components that activate the NLRP3 inflammasome

complex have been summarized extensively in previous

reviews.35–39 The general mechanisms by which NLRP3 inflam-

masome is activated are summarized in Figure 1. Thus, we

briefly review previous works on bacterial and viral infections

associated with NLRP3 inflammasome activation.

PAMP signals that activate the NLRP3 inflammasome

The NLRP3 inflammasome is activated by numerous bacterial

pathogens including Staphylococcus aureus, Group B Strepto-

coccus, Listeria monocytogenes, and Neisseria gonorrhoeae.40–42

Viral nucleic acids are usually detected by the retinoic acid-

inducible gene 1 and AIM2-like receptor (ALR) inflamma-

somes; however, several viruses and their components, including

influenza virus (the proton-selective ion channel protein M2),43

encephalomyocarditis virus (viroporin 2B),44 poliovirus and

enterovirus 71 (non-structural 2B protein),44 rhinovirus (2B

proteins),45 human respiratory syncytial virus (small hydro-

phobic protein),46 are sufficient to stimulate NLRP inflamma-

some activation. Recent studies have revealed a crucial

protective role of inflammasome activation during viral infec-

tion, via an increase in adaptive immune activation with lim-

ited tissue damage.47,48 NLRP3 itself was not required, whereas

ASC and caspase-1 were essential for the activation of adaptive

and protective immunity against flu challenge.48 Furthermore,

the inhibitory roles of bacterial and viral pathogens upon

NLRP3 inflammasome activation have also been reported in

terms of the evasion mechanisms of many pathogens from host

defenses, although the details of these mechanisms are beyond

the scope of this review.

DAMP signals and environmental stimuli triggering the

NLRP3 inflammasome

Sensing a danger signal is an important physiological role of

the NLRP3 inflammasome; various DAMP signals have been

reported to activate the NLRP3 inflammasome.49 Extracellular

ATP is a well-known endogenous danger signal and widely

used for canonical activation of the NLRP3 inflammasome.40

Recent studies have shown that cell stress in NLRP3 inflamma-

some-associated autoinflammatory disease enhanced ATP

release and maintained high levels of IL-1b and IL-18 in

blood monocytes.50 Nanoparticle-induced ATP release acti-

vates the NLRP3 inflammasome through interaction with

adenosine receptors as well as cellular uptake by nucleoside
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transporters.51 However, ATP-induced NLRP3 inflammasome

activation is differentially regulated between dendritic cells and

macrophages. In dendritic cells, stimulation with TLR ligands

in the absence of ATP stimulation was sufficient to produce

mature IL-1b.52

Additionally, gout-associated etiologic agents, such as uric

acid crystals and calcium pyrophosphate dehydrate (CPPD)

crystals, can lead to the activation of the NLRP3 inflammasome

and production of IL-1b and IL-18.53 Endogenous triggering by

the glycosaminoglycan hyaluronan, an important component
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Figure 1 Both signal 1 and signal 2 are required for NLRP3 inflammasome activation. Activation of the NLRP3 inflammasome requires at least two
signals: signal 1, also known as the priming signal, is mediated by microbial ligands recognized by TLRs or cytokines such as TNF-a. Signal 1
activates the NF-kB pathway, leading to upregulation of pro-IL-1b and NLRP3 protein levels. The signal 2 is mediated by numerous PAMP or DAMP
stimulation, and promotes the assembly of ASC and pro-caspase-1, leading to activation of the NLRP3 inflammasome complex. Under non-
infectious conditions, extracellular ATP and K+ efflux leads to the activation of NLRP3 inflammasome via the P2X7 receptor and pannexin-1.
Various endogenous and exogenous particulates, including MSU crystals, CPPD crystals, cholesterol crystals, amyloid b, silica crystals, asbestos,
and alum, promote lysosomal damage and release cathepsin B into the cytosol, leading to the NLRP3 inflammasome activation. Particulate matters
(uric acid, silica, and alum) are also able to trigger inflammasome assembly through multiple purinergic receptor signaling. Additionally, calcium
influx through TRPM2 activates NLRP3 inflammasome through mitochondrial ROS. Dissociated TXNIP, which is triggered by intracellular ROS,
also activates the NLRP3 inflammasome. ADP, adenosine diphosphate; ATP, adenosine triphosphate; K+, potassium; ASC, apoptosis-associated
speck-like protein containing a C-terminal caspase recruitment domain; CPPD, calcium pyrophosphate dehydrate; DAMPs, damage-associated
molecular patterns; NLRP3, NACHT, LRR, and PYD domains-containing protein 3; NF-kB, nuclear factor kappa-light-chain-enhancer of activated
B cells; P2X7, P2X purinoceptor 7; P2R, purinergic receptor; PAMPs, pathogen-associated molecular patterns; ROS, reactive oxygen species;
TLRs, toll-like receptors; TNF-a, tumor necrosis factor-a; TXNIP, thioredoxin (TRX)-interacting protein.
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of the extracellular matrix,54 and amyloid-b fibrils55 activates

the NLRP3 inflammasome, thus linking them to inflammatory

disease and tissue damage. Environmental crystalline struc-

tures, including silica, asbestos, aluminum salt crystals,56,57

and the adjuvant aluminum hydroxide,58 are also able to trig-

ger NLRP3 inflammasome activation. Moreover, an adjuvant-

free, allergic lung inflammation induced by ovalbumin requires

the NLRP3 inflammasome activation.59 Ultraviolet irradiation

activates the NLRP3 inflammasome in keratinocytes60 and

ultraviolet B-induced caspase-4 is required for efficient

NLRP3 inflammasome activation through interaction with

and activation of caspase-1 in macrophages.61 Recent studies

showed that albumin triggers NLRP3 inflammasome activa-

tion in renal proximal tubular cells and downregulates tight

junction proteins at the gene and protein levels, affecting renal

tubular integrity.62

Dietary intake of fatty acids and cellular lipid metabolism are

associated with regulation of the NLRP3 inflammasome.

Previous studies showed that dietary saturated fatty acids

induced NLRP3 inflammasome activation63 and enhanced

IL-1b-induced adipocyte inflammation, leading to insulin res-

istance.64 Monounsaturated fatty acids in high-fat diets

decrease IL-1b secretion and increase insulin sensitivity.65

Recently, mitochondrial uncoupling protein-2 (UCP2), an

essential inducer of fatty acid synthase, has been shown to

regulate NLRP3 inflammasome activation through stimulation

of lipid synthesis. Importantly, UCP-2-deficient mice showed

improved survival after polymicrobial sepsis and decreased

lipid synthesis and secretion of IL-1b and IL-18 after LPS

challenge.66 Considerable efforts have focused on identifying

agonists of NLRP3 inflammasome activation as well as deter-

mining the molecular mechanisms by which diverse agonists

induce the assembly of inflammasome components.

MOLECULAR MECHANISMS OF THE CANONICAL

ACTIVATION OF THE NLRP3 INFLAMMASOME

Because of the vast number and diversity of NLRP3 stimuli

known to activate the NLRP3 inflammasome, it seems unlikely

that they all bind to the NLRP3 structure to activate the inflam-

masome. Thus, a major outstanding question in the field relates

to the exact molecular mechanism underlying activation of the

NLRP3 inflammasome. In this chapter, we discuss three gen-

erally accepted mechanisms regarding activation of the NLRP3

inflammasome complex.

ROS signaling in NLRP3 inflammasome complex activation

For NLRP3 inflammasome activation, several mechanisms

and/or pathways have been proposed. The mitochondria are

the main intracellular organelles that contribute the most to

cellular ROS.67 Previous studies showed that ROS, especially

those from mitochondria, contributed to activation of the

NLRP3 inflammasome.10,12,68–70 Indeed, numerous NLRP3

inflammasome activators are known to trigger mitochondrial

ROS production in a variety of cells. For example, the saturated

fatty acid palmitate leads to the activation of the NLRP3

inflammasome and release of active IL-1b in a mitochondrial

ROS-dependent manner.63 Moreover, multiple NLRP3-

triggering agents leading to mitochondrial dysfunction and cell

death result in the cytosolic increase of oxidized mitochondrial

DNA, which, in turn, appears to bind to NLRP3 and to activate

the NLRP3 inflammasome complex.71 However, both mito-

chondrial ROS-dependent and -independent pathways are

required for NLRP3 inflammasome activation triggered by

serum amyloid A.72 Another recent study suggested that

ROS-dependent and -independent NLRP3 activators cause

mitochondrial destabilization and dysfunction, thereby pro-

moting NLRP3 inflammasome activation.73 Moreover, lipo-

some-mediated inflammasome activation is dependent on

the generation of mitochondrial ROS, and ROS-dependent

calcium influx via the TRPM2 channel.74

In addition to mitochondrial respiration, intracellular ROS

are generated through a variety of enzymes, including nicoti-

namide adenine dinucleotide phosphate oxidases (NOX),

xanthine oxidase, and oxygenase.75–77 Earlier studies showed

that NOX-induced ROS generation was key for activation of

the NLRP3 inflammasome upon triggering by ATP or particle

phagocytosis.56,78,79 Currently, it is unclear whether NOX-

derived ROS are required for NLRP3 inflammasome activa-

tion. Several studies demonstrated that caspase-1 activation

and IL-1b secretion are not affected, and may even be

increased, in phagocyte oxidase-defective monocytes in

chronic granulomatous disease.80–82 Moreover, macrophages

from NOX2-deficient mice dose not fail in the maturation

and secretion of IL-1b in response to various signals, includ-

ing silica crystals, monosodium urate (MSU), ATP, and

deoxyadenylic-deoxythymidylic.57 In superoxide dismutase

1-deficient macrophages and in vivo, increased superoxide

generation inhibits caspase-1 activation and cytokine

production.83 Furthermore, ROS are required for the prim-

ing step by proinflammatory signals, but not for activation

of the NLRP3 inflammasome.84

Recent studies have revealed that xanthine oxidase-derived

ROS play a role in IL-1b release and caspase-1 secretion in

macrophages during NLRP3 inflammasome activation.85

Much progress has been made in the elucidation of ROS

involvement in the regulation of NLRP3 inflammasome activa-

tion.85 However, it is also clear that more work is needed to

understand how ROS from different sources differentially

regulate inflammasome activation.

Potassium efflux and activation of the NLRP3

inflammasome

Another well-established mechanism of NLRP3 inflammasome

activation is a decrease in the intracellular K1 concentration. It

was previously shown that the common NLRP3 activators ATP

and nigericin cause a non-selective conductance of K1 across

the cell membrane and the alteration of intracellular ionic con-

tents, for the initiation of pro-IL-1b processing.7 Furthermore,

a reduction in intracellular K1 levels was found to be essential

for NLRP3 inflammasome activation in monocytes/macro-

phages when triggered by numerous known NLRP3 activators,

including the pore-forming toxin nigericin, P2X purinoceptor
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7 (P2X7) stimulation by ATP, or bacterial infection with live

Escherichia coli.8 Additionally, S. aureus hemolysins in the

presence of lipoproteins are able to activate the NLRP3 inflam-

masome via K1 efflux.86 It is also known that the NLRP1

inflammasome activator anthrax lethal toxin of Bacillus

anthracis depends on low intracellular K1 for IL-1bmaturation

and inflammasome activation.8 Currently, a reduction in intra-

cellular K1 concentration is thought to be a common pathway

for NLRP3 inflammasome complex activation, triggered by

numerous NLRP3 signals, including bacterial toxins and pha-

gocytosis of particulate matter.87

Both mitochondrial ROS and K1 efflux, induced by various

NLRP3 activators, appear to contribute together to activation

of the NLRP3 inflammasome, leading to caspase-1 activation

and IL-1b maturation. Candida albicans and its components,

the secreted aspartic proteases, and Aspergillus hyphae activate

the NLRP3 inflammasome, and this is mediated through path-

ways involving both ROS generation and K1 efflux.88–90 In a

study on the pathogenesis of osteoarthritis, hydroxyapatite

crystals stimulated NLRP3 inflammasome activation through

multiple pathways: ROS generation, lysosomal damage, and

K1 efflux.91 Additionally, the anthracycline doxorubicin

induces systemic inflammation associated with IL-1b release,

mediated by NLRP3 inflammasome activation, which is con-

trolled by co-treatment with ROS inhibitors or by cultivation

of cells with high levels of extracellular K1.92

Lysosomal destabilization and activation of the

NLRP3 inflammasome

In addition to ROS and K1 efflux, disruption of the lysosomal

membrane, caused by phagocytosis of particulate matter or live

pathogens or by sterile lysosomal damage (without crystals),

results in NLRP3 activation.55,57 In agreement with this, proton

pump inhibitors (used for neutralization of lysosomal pH) or

blockade of cathepsin(s) significantly inhibits NLRP3 inflam-

masome activation.57,93 Indeed, various PAMPs and DAMPs

seem to be dependent on lysosomal destabilization for trigger-

ing NLRP3 inflammasome activation. For example, disruption

of lysosomal membranes and cathepsin B release are required

for NLRP3 inflammasome activation by adenovirus type 5,

through penetration of endosomal membranes.94 Group B

Streptococcus-induced NLRP3 inflammasome activation

also depends on hemolysin-mediated lysosomal leakage.95

Recently, lysosomal rupture and the release of lysosomal

hydrolases have been shown to be essential for albumin-

triggered tubulointerstitial inflammation and fibrosis, implic-

ating lysosomal damage in the pathogenesis of chronic kidney

disease through NLRP3 inflammasome activation.96

Earlier studies showed that rapid cell death induced by dis-

ease-associated CIAS1 mutations was significantly inhibited by

the cathepsin B-specific inhibitor CA-074-Me.97 Moreover,

caspase-1 activation during pyroptosis, a programmed cell

death pathway, leads to increased membrane permeability

and calcium influx, resulting in lysosomal exocytosis and lyso-

somal protein secretion.98 The lysosome-destabilizing agents

Leu-Leu-OMe and alum induce lysosomal rupture and release

of lysosomal hydrolases prior to cell death. However, lysosomal

rupture is a late event after NLRP3 inflammasome activation in

response to prototypical pyroptosis inducers, such as nigericin

and ATP.99

Previous studies also reported that lipid-stressed macro-

phages primed with LPS show lysosomal dysfunction, lysoso-

mal membrane damage, and cathepsin release.100,101 It was

shown that phagolysosomal damage was required for choles-

terol crystal-induced NLRP3 inflammasome activation.102 In

addition, cholesterol crystal-induced IL-1b release was reduced

in mice deficient in cathepsins B or L.102 In palmitate-induced

NLRP3 inflammasome activation, lysosomal protease cathe-

psin B is required for IL-1b release (signal 2), whereas the

lysosomal calcium pathway is essential for production of

pro-IL-1b levels through stabilization of IL-1b mRNA.101

Thus, the lysosome plays an essential role in both the priming

and assembly phases of the lipotoxic inflammasome.101

By activation of the NLRP3 inflammasome complex, several

molecular pathways in response to various PAMPs and DAMPs

are interconnected. Activation of the NLRP3 inflammasome by

nigericin leads to mitochondrial ROS generation, subsequently

causing lysosomal membrane permeabilization.101 Recent

studies showed that sustained zinc depletion leads to lysosome

damage, acting as a stimulus for NLRP3 inflammasome

activation.103 Additional mechanism by which lysosomal rup-

ture activates the NLRP3 inflammasome complex has been

demonstrated in macrophages.9 The TAK1-JNK pathway,

which is also modulated by calcium-dependent calcium/cal-

modulin-dependent protein kinase type II function, is acti-

vated through lysosomal rupture and is required for the

complete activation of the NLRP3 inflammasome.9 Although

we discuss here common mechanisms, i.e., ROS signaling,62 K+

efflux,82 and lysosomal destabilization,55 in terms of NLRP3

inflammasome activation, other pathways, such as purinergic

receptor signaling,104 are being revealed to explain the mechan-

isms by which diverse stimuli activate the NLRP3 inflamma-

some complex (Figure 1).

Spatial arrangement of intracellular organelles for activation

of the NLRP3 inflammasome

Several lines of evidence indicate that the spatial arrangement

of intracellular organelles is important for NLRP3 inflamma-

some activation. Earlier findings revealed that inflammasome

activation triggers the redistribution of both NLRP3 and the

adaptor ASC in the perinuclear space, where the endoplasmic

reticulum and mitochondria organelle clusters are co-localized.

Previous studies showed that inflammasome stimuli caused a

drop in intracellular coenzyme NAD(1) levels, thus inactivating

the deacetylase sirtuin 2, to promote accumulation of acetylated

a-tubulin, which, in turn, results in dynein-dependent transport

of mitochondria. Subsequently, the microtubule-driven apposi-

tion of ASC on mitochondria to NLRP3 on the endoplasmic

reticulum contributes to NLRP3 inflammasome activation.105

As described below, the mitochondrial antiviral signaling pro-

tein (MAVS) adaptor and its small heterodimer partner are

required for recruitment of NLRP3 to mitochondria, although
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the two molecules function in opposite manners.106 The mito-

chondrial protein MAVS contributes to NLRP3 inflammasome

activation,106 whereas small heterodimer partner (SHP) func-

tions as a fine tuner and negatively regulates NLRP3 inflamma-

some activation.107 SHP deficiency results in the close proximity

of NLRP3 and ASC in the endoplasmic reticulum, in cases in

which the optimal sites (mitochondrial structures) for inflamma-

some activation.107 These recent findings suggest that the

mitochondria-associated membrane (MAM) structure — the

physiological interaction between the endoplasmic reticulum

and mitochondria — is critical for various biological functions

including inflammasome activation.108

Recently, resveratrol, a natural polyphenol, was shown to

suppress the assembly of ASC and NLRP3 by inhibition of the

acetylated a-tubulin-mediated spatial arrangement of mito-

chondria and endoplasmic reticulum, resulting in decreased

NLRP3 inflammasome activation.109 Moreover, when at least

two NLRs are activated (e.g., by Salmonella enterica serovar

Typhimurium), NLRC4 and NLRP3 are simultaneously present

in a single inflammasome complex in macrophages to drive

IL-1b processing.109 Further studies regarding the detailed

mechanisms responsible for the spatial localization of different

components are needed to understand how different members

of the NLR family and their adaptors cooperate together to

activate the entire inflammasome complex.

ADAPTORS/MOLECULES INVOLVED IN ACTIVATION OF

THE NLRP3 INFLAMMASOME COMPLEX

As discussed above, the exact molecular mechanisms of NLRP3

inflammasome complex organization have not been deter-

mined. Emerging evidence indicates that several molecules/

adapters other than ASC are also involved in the interaction

and activation of the NLRP3 inflammasome complex. Earlier

studies showed that thioredoxin (TRX)-interacting protein

(TXNIP) linked to NLRP3 is required for inflammasome

activation and insulin resistance.110 In the resting state,

TXNIP binds to TRX; NLRP3 inflammasome stimuli such as

uric acid crystals result in dissociation of TXNIP from TRX,

allowing it to bind NLRP3. The association of TXNIP with

NLRP3 inflammasome activation is thought to be important

in the pathogenesis of type 2 diabetes.110 In addition, MAVS,

which interacts with NLRP3, participates in NLRP3 inflamma-

some function as an interacting partner. Indeed, MAVS is

required for NLRP3 recruitment to mitochondria and the pro-

duction of IL-1b.106

It has also been shown that guanylate-binding protein (GBP)

5, a member of the interferon-inducible GBP family, binds to

the pyrin domain of NLRP3 and serves as an activator of

selected NLRP3 inflammasomes, especially in response to sol-

uble agents or Salmonella typhimurium, but not crystalline

agents or double-stranded DNA.111 Recently, HOIL-1L, a com-

ponent of linear ubiquitination assembly complex (LUBAC),

was found to be an essential activator of NLRP3/ASC inflam-

masome assembly through linear ubiquitination of ASC, a

novel LUBAC substrate.112 Additionally, the direct binding of

NLRP3 to the mitochondrial lipid cardiolipin is important for

NLRP3 inflammasome activation in response to both ROS-

dependent and -independent activators. 73

Recent studies showed that DHX33, a member of the DExD/

H-box helicase family, plays a role in activation of the NLRP3

inflammasome through interaction with NLRP3. DHX33

binds to double-stranded RNA (dsRNA) as a cytosolic RNA

sensor and is essential for the secretion of IL-18 and IL-1b from

human macrophages stimulated with cytosolic dsRNA and

bacterial/viral RNA.113 Additionally, dsRNA-dependent pro-

tein kinase (PKR, also known as EIF2AK2) is an interacting

partner of NLRP3 and important for inflammasome activa-

tion in response to dsRNA, ATP, MSU, the adjuvant alum,

rotenone, live E. coli, and S. typhimurium.114 Moreover, a

model of calcium-sensing receptor-mediated NLRP3 inflam-

masome activation has been proposed.115 In this model, Lee

et al. reported that the calcium-sensing receptor activates

NLRP3 inflammasome through an increase of intracellular

calcium, and even activates spontaneous inflammasome activ-

ity in the cells of patients with cryopyrin-associated periodic

syndrome.115

Moreover, the interaction of NLRP3 with mitofusin 2, a

mediator of mitochondrial fusion, is required for NLRP3

inflammasome activation after infection with RNA viruses,

including influenza and encephalomyocarditis virus.116 A spe-

cific role for the serine-threonine kinases RIP1 (RIPK1) and

RIP3 (RIPK3) has been recently reported recently in the activa-

tion of the NLRP3 inflammasome complex during infection

with RNA viruses.117 RNA viral infection triggers the assembly

of the RIP1–RIP3 complex, which, in turn, activates the GTPase

DRP1 and its translocation to mitochondria, resulting in mito-

chondrial damage and NLRP3 inflammasome activation.117

A detailed discussion of NLRP3 inflammasome activators has

been provided in a recent review.118 Currently identified inter-

acting partners for NLRP3 inflammasome activation and a

model of its assembly are shown in Figure 2.

NEGATIVE REGULATION OF NLRP3 INFLAMMASOME

COMPLEX ACTIVATION

Negative regulation of NLRP3 inflammasome activation is

necessary for maintenance of appropriate induction of inflam-

masome function and for preventing a potentially harmful

reaction to the host. Earlier studies showed that tripartite-motif

protein 30 (TRIM30) is a negative regulator of NLRP3 inflam-

masome activation in response to ATP, nigericin, MSU, and

silica, through modulation of ROS production, even though

TRIM30 did not interact with any component of the NLRP3

inflammasome complex.119 Nitric oxide, a small molecule syn-

thesized by numerous cell types and tissues, inhibits NLRP3-

mediated ASC pyroptosome formation and IL-1b secretion

through stabilization of mitochondria.120 Additionally, carbon

monoxide (CO), a gaseous molecule produced during heme

catabolism, plays a role as an inhibitor of NLRP3-induced cas-

pase-1 activation and the secretion of IL-1b and IL-18. It has

been found that CO inhibits the generation of mitochondrial

ROS, mitochondrial membrane potential, and the cytosolic
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translocation of mitochondrial DNA in macrophages in res-

ponse to LPS and ATP.121

The adaptor protein caspase recruitment domain-containing

protein 8 (CARD8) interacts with NLRP3 and inhibits IL-1b
secretion during NLRP3 inflammasome activation. However,

CARD8 is unable to bind to mutant NLRP3 associated with

cryopyrin-associated periodic syndrome (CAPS), suggesting

that it is relevant to the pathogenesis of CAPS.122 Notably,

A20, a well-known negative regulator of NF-kB signaling,

was found to inhibit NLRP3 inflammasome activation by sup-

pressing basal and LPS-induced NLRP3 expression levels.

A20myel-KO mice showed excessive cytokine secretion and
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NLRP3. During RNA viral infection, the GTPase DRP1 and its translocation to mitochondria, resulting in NLRP3 inflammasome activation. Another
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dependent protein kinase (PKR) is an interacting partner of NLRP3 and activates inflammasome complex. MAVS, a well-known mitochondrial
protein and an interacting partner to NLRP3, also mediates NLRP3 mitochondrial localization and inflammasome activation. Cardiolipin binding to
NLRP3 is also critical for ROS-dependent and -independent activation of NLRP3 inflammasome complex. In addition, LUBAC is involved in the
activation of NLRP3 inflammasome complex through linear ubiquitination of ASC. Calcium-sensing receptors are also important for the promotion
of NLRP3 inflammasome assembly through an increase of calcium influx. The interaction of NLRP3 with mitofusin 2 is required for NLRP3
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caspase-1 processing and exhibited enhanced arthritis patho-

logy, which was dependent on the NLRP3 inflammasome.123

The leucine-rich repeat Fli-I-interacting protein 2 (LRRFIP2)

associates with NLRP3 and negatively regulates NLRP3 inflam-

masome activation. LRRFIP2 also interacts with Flightless-I, a

pseudosubstrate of caspase-1, and promotes the inhibitory
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NLRP3 inflammasome complex assembly. NO and MNS inhibit formation of the ASC pyroptosome and speck formation by targeting the NLRP3
complex. GPSM3 and CARD8 directly bind to NLRP3 and act as negative regulators of the NLRP3 inflammasome. IKKa negatively controls the
NLRP3 inflammasome through interaction with the ASC adaptor molecule. LRRFIP2 interacts with Flightless-1, a pseudosubstrate of caspase-1,
and inhibits caspase-1 activation. The orphan nuclear receptor SHP interacts with NLRP3, and mediates translocation of NLRP3 into mitochondria,
thus regulating NLRP3 inflammasome activation. CO plays a general inhibitory role in mitochondrial ROS generation and translocation of mito-
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effect of Flightless-I on caspase-1 activation.124 In addition, it

was recently shown that the orphan nuclear receptor SHP acts as

a negative regulator of NLRP3 inflammasome activation

through binding with NLRP3 and is also required for transloca-

tion of NLRP3 into mitochondria and the maintenance of

mitochondrial homeostasis.107 In SHP-deficient macrophages,

mitochondrial ROS generation and cytosolic translocation of

mitochondrial DNA were increased significantly.107

The aryl hydrocarbon receptor (AhR) negatively regulates

NLRP3-mediated caspase-1 activation and IL-1b secretion

in macrophages through binding to the xenobiotic response

element in the NLRP3 promoter and inhibiting NLRP3 tran-

scription.125 Another recent study showed that IkB kinase

a (IKKa) is a negative regulator of ASC-dependent inflamma-

some activation through interaction with the inflammasome

adaptor ASC.126 Signal 2 activation of the NLRP3 inflamma-

some attenuates the kinase activity of IKKa through recruit-

ment of phosphatase PP2A, thus releasing ASC to participate in

inflammasome assembly.126 Recent studies using a yeast two-

hybrid screen showed that the hematopoietic-restricted G pro-

tein signaling modulator-3 (GPSM3) interacts with NLRP3

and acts as a negative regulator of IL-1b production in response

to NLRP3-dependent inflammasome activators.127 In the

screening of a kinase inhibitor library in another recent study,

3,4-methylenedioxy-b-nitrostyrene (MNS) was identified by

the prevention of NLRP3-mediated ASC speck formation

through targeting NLRP3 or NLRP3-associated complexes.128

It is also noted that caspase-1, in spite of its essential role in the

assembly of NLRP3 inflammasome, is found to play a critical

regulatory role in house dust mite-induced allergic lung

inflammation through downregulation of IL-33.129

Recent studies have identified a key role of autophagy in

activation of the NLRP3 inflammasome.130–133 Autophagy acts

as a negative regulator of NLRP3 inflammasome activation

through various mechanisms, including direct inhibition of

NLRP3 inflammasome activation by removing sources of

endogenous NLRP3 inflammasome agonists, such as damaged

mitochondria and mitochondrial DNA,62,69,132 suppression of

IL-1b secretion by targeting pro-IL-1b for lysosomal degrada-

tion,134 and selective degradation of inflammasome compo-

nents, such as NLRP3 and ASC.131,135

More detailed information on the negative regulation of the

NLRP3 inflammasome, including the roles of microRNAs and

autophagy, has been detailed in recent reviews.136 Together,

efforts to identify new negative regulators of NLRP3 inflamma-

some activation may provide novel strategies to treat acute and

chronic inflammatory diseases associated with aberrant activa-

tion of the NLRP3 inflammasome. Figure 3 presents a schem-

atic model for various molecular pathways that negatively

regulate the NLRP3 inflammasome.

CONCLUDING REMARKS

Unraveling the molecular mechanisms responsible for NLRP3

inflammasome complex activation is key for improving our

understanding of host innate defenses and the pathogenesis

of various inflammatory diseases associated with the NLRP3

inflammasome. Here, based on a considerable amount of data

accumulated from recent studies, we showed that the NLRP3

inflammasome, the best characterized inflammasome, is acti-

vated by numerous PAMPs and DAMPs. Understanding how

different PAMPs and DAMPs can induce the complex activa-

tion of the NLRP3 inflammasome remains a topic of consid-

erable interest. In addition, identifying and characterizing

specific binding partners modulating inflammasome activa-

tion in vitro and in vivo may be interesting and challenging.

Obviously, our understanding of the NLRP3 inflammasome

molecular mechanisms needs to be integrated with informa-

tion about the exact molecular structure of the NLRP3 inflam-

masome. Finally, we have just begun to understand the negative

regulators and their mechanisms that finely control and pre-

vent excessive inflammasome activation. Further analysis of

these negative regulators and signals should ultimately help

us to modulate NLRP3 inflammasome activation therapeut-

ically and to develop better treatments to prevent inflammatory

diseases associated with the NLRP3 inflammasome.
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Cutting edge: reactive oxygen species inhibitors block priming, but
not activation, of the NLRP3 inflammasome. J Immunol 2011; 187:
613–617.

85 Ives A, Nomura J, Martinon F, Roger T, LeRoy D, Miner JN et al.
Xanthine oxidoreductase regulates macrophage IL1b secretion
upon NLRP3 inflammasome activation. Nat Commun 2015; 6:
6555.
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