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SUMMARY

Biomarkers associated with heterogeneity in subject responses to treatment hold potential for treatment
selection. In practice, the decision regarding whether to adopt a treatment-selection marker depends on the
effect of using the marker on the rate of targeted disease and on the cost associated with treatment. We pro-
pose an expected benefit measure that incorporates both effects to quantify a marker’s treatment-selection
capacity. This measure builds upon an existing decision-theoretic framework, but is expanded to account
for the fact that optimal treatment absent marker information varies with the cost of treatment. In addition,
we establish upper and lower bounds on the expected benefit for a perfect treatment-selection rule which
provides the basis for a standardized expected benefit measure. We develop model-based estimators for
these measures in a randomized trial setting and evaluate their asymptotic properties. An adaptive boot-
strap confidence interval is proposed for inference in the presence of non-regularity. Alternative estimators
robust to risk model misspecification are also investigated. We illustrate our methods using the Diabetes
Control and Complications Trial where we evaluate the expected benefit of baseline hemoglobin A1C in
selecting diabetes treatment.
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1. INTRODUCTION

In many clinical settings for disease prevention and treatment, there is significant heterogeneity in sub-
ject response to the same treatment. Biomarkers associated with this heterogeneity, such as demographic
or genetic characteristics, can be used to help subjects select treatment to ensure that a therapy is only
delivered to subjects who are likely to benefit from it.

Statistical measures for quantifying the performance of candidate treatment-selection markers are
essential for developing these markers and evaluating their clinical impact. Testing for a marker by
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treatment interaction is a common strategy for identifying treatment-selection markers. However, there
is a growing emphasis on developing measures of treatment-selection ability that are directly linked to
clinical outcomes. Much of this work focuses on the effect of using the marker on the targeted disease. For
example, the reduction in population disease rate as a result of treatment selection (Song and Pepe, 2004;
Zhang, Tsiatis, Laber, and others, 2012); the accuracy for classifying a subject into treatment-effective or
ineffective categories (Huang and others, 2012); the distribution of the disease risk difference conditional
on a marker in the population or in the marker-positive group (Cai and others, 2011; Foster and others,
2011; Huang and others, 2012; Zhao and others, 2013), all quantify, in some fashion, the impact of using
the marker to select treatment on the rate of disease. In practice, a treatment may affect the population
through not only its effect on the targeted disease but also other costs such as side effect burden or mon-
etary cost. Thus, another important consideration in assessing a treatment-selection rule is the propor-
tion of subjects selected for treatment (Janes and others, 2014). One way to incorporate both disease risk
and proportion treated is to adopt a decision-theoretic framework that puts the marker’s effect on dis-
ease and the proportion treated on the same scale by means of a treatment-disease cost ratio. An example
is the net benefit measure characterizing the reduction in the sum of disease and treatment cost com-
paring a marker-based treatment strategy with the strategy of treating no one (Vickers and others, 2007,
Rapsomaniki and others, 2012).

In this paper, we develop a new measure named expected benefit that extends the net benefit measure to
quantify the reduction in the sum of disease and treatment cost by using the marker. This measure is based
on the comparison between a marker-based treatment-selection rule and the optimal treatment strategy
absent the marker information, where the latter is allowed to vary with the treatment–disease cost ratio. In
addition, we propose a novel method to standardize the expected benefit of a treatment-selection strategy
relative to the benefit that can potentially be achieved using a perfect treatment-selection rule. While the
latter is not identifiable in general, we show that upper and lower bounds can be established through a
potential outcomes framework. We develop a model-based strategy for deriving the treatment-selection
rule and for estimating the corresponding (standardized) expected benefit using data from a randomized
trial, and develop asymptotic theory for the estimators. The expected benefit is not a smooth function
of the generative model which can cause the standard bootstrap to fail; therefore, we develop a novel
adaptive bootstrap confidence interval that provides consistent inference. We also investigate alternative
strategies for deriving the treatment-selection rule and estimators of expected benefit that are robust to
model misspecification.

In Section 2, we introduce the concept of expected benefit, derive bounds on the expected benefit
of a perfect treatment-selection rule, and define the standardized expected benefit. We develop estima-
tion methods and theoretical results in Section 3. Simulation studies are presented in Section 4 where we
investigate finite sample performance of the estimators. Application of the methodology to the Diabetes
Control and Complications Trial is presented in Section 5. We then conclude the paper with a summary
and discussion.

2. METHODS

We consider the setting of a randomized trial with two arms, T = 0, 1 indicating the untreated and treated
groups, respectively. Let D be a binary outcome that the treatment is intended to prevent, which we call
“targeted disease,” with D = 0, 1 indicating control and case status, respectively, and ρ0 = P(D = 1|T =
0) and ρ1 = P(D = 1|T = 1) indicating disease prevalence in untreated and treated groups. Let Y denote
the biomarker of interest, which may be univariate or multivariate. Let A(Y ) be a treatment-selection rule
based on the marker, which takes values 1 and 0 corresponding to the recommendation for or against the
treatment, respectively. Let i be subject indicator. With N participants in the trial, we observe i.i.d. data
(Yi , Ti , Di ), i = 1, . . . , N .
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As in Vickers and others (2007), we assume the cost of the treatment due to side effects, subject bur-
den, and/or monetary cost can be quantified as c times the cost per disease outcome, where c is a non-
negative utility parameter indicating the ratio of treatment cost relative to disease cost. For example, in
Vickers and others (2007), based on a patient survey, c was chosen to be 5% for treating breast cancer
with adjuvant chemotherapy, which corresponds to assuming that the cost of death is 20 times the cost
of chemotherapy. Without loss of generality, let the cost per disease outcome be 1 such that disease and
treatment cost will be represented in units of the burden per disease outcome. The total cost of a treatment-
selection strategy A(Y ) and of the optimal treatment strategy absent the marker information can thus be
computed as follows.

At cost ratio c, the total cost of a treatment-selection rule A(Y ), i.e. the sum of disease and treatment
cost, is equal to

∑1
a=0 P{A(Y ) = a} × P{D = 1|A(Y ) = a, T = a} + P{A(Y ) = 1} × c. As shown in sup-

plementary material available at Biostatistics online, Appendix A, this equals

ρ0 − E[A(Y ) × {�(Y ) − c}], (2.1)

where �(Y ) = P(D = 1|T = 0, Y ) − P(D = 1|T = 1, Y ) is the absolute risk difference conditional on Y
between untreated and treated. Without the biomarker, treatment will be applied either to all subjects or to
no one. If treating all, the total cost is ρ1 + c, and if treating none, the total cost is ρ0. Therefore, absent the
marker, the optimal treatment-selection rule that minimizes the total cost is to treat everyone if ρ0 > ρ1 + c,
and to treat no one otherwise (Vickers and others, 2007). The total cost of the optimal marker-independent
rule is therefore

ρ0 − [ρ0 − ρ1 − c]+, (2.2)

where [u]+ = max(0, u) is the positive-part function.
We define the expected benefit for a rule A(Y ) and cost ratio c as the difference between (2.2) and (2.1),

i.e. EBA(c) is the reduction in the total cost using A(Y ) relative to the optimal rule absent the marker:

EBA(c) = E[A(Y ) × {�(Y ) − c}] − [ρ0 − ρ1 − c]+. (2.3)

Note that the first component of (2.3) is exactly the net benefit measure of A(Y ) (Vickers and others,
2007); the second component of (2.3) is the net benefit of an optimal treatment-selection rule absent
any marker information. Thus, the expected benefit of a marker-based treatment-selection rule can be
interpreted as the incremental value in net benefit compared with the optimal treatment strategy without
the biomarker. If c = 0 and ρ0 > ρ1, this reduces to the decrease in the disease rate, a measure advocated
by Janes and others (2014). Hereafter, to simplify notation we write EB(c) with the understanding that the
underlying strategy A(Y ) is implicit.

The incremental value in net benefit by using the marker is informative for several reasons. Net benefit
itself is useful for comparing treatment-selection strategies because the difference in net benefit between
two models is equal to the difference in their expected benefits, as the second component of (2.3) does
not depend on the marker. However, the net benefit of a marker-based strategy does not always properly
quantify the absolute benefit gained by the marker for different choices of the treatment–disease cost ratio
because the default strategy of no treatment may not be the optimal strategy absent the marker information.
The expected benefit measure, in contrast, takes into account the optimal treatment choice absent the
marker. Moreover, when we evaluate whether a new model improves over an existing marker/model, the
expected benefit of the existing marker can serve as a useful reference for gauging whether the difference
in expected benefit between models is meaningful.

In practice, it is difficult to agree upon one single parameter c. An expected benefit curve, which plots
EBA(c) versus c, can be used to gauge marker value at multiple values of c. Examples of EB curves are
shown in Figure 1 in Section 5.



386 Y. HUANG AND OTHERS

Fig. 1. Expected benefit curves of HBA1C and the bounds for perfect biomarker for guiding the prevention of microal-
buminuria in the DCCT example.

2.1 Perfect treatment-selection capacity and standardized expected benefit

In this section, we derive the expected benefit of a perfect treatment-selection rule which can be used to
standardize the expected benefit of a marker-based rule. This type of standardization puts the expected
benefit measure on a scale between 0 and 1 and makes it invariant to the choice of disease cost. Standard-
ization has been used when measuring a biomarker’s capacity for risk prediction, e.g. in Bura and Gastwirth
(2001) and Baker and others (2009), but not yet for treatment selection.

We define a perfect treatment-selection rule using a potential outcomes framework. Let D(1), D(0)

denote the pair of potential outcomes under treatment or no treatment, respectively. The four possible
values of D(0), D(1) are shown below with q1, q2, q3, and q4 denoting the unobserved population pro-
portion of subjects falling into each category, where benefits and harms are with respect to the targeted
disease of interest.

D(0) D(1) Proportion

1 0 Benefited q1

1 1 Unaffected q2

0 0 Unaffected q3

0 1 Harmed q4

Given cost ratio c � 0, a perfect treatment-selection rule will recommend treatment for all treatment-
benefited subjects and recommend against treatment for all others. This will lead to a population-
averaged total disease and treatment cost of q2 + q1c = ρ0 − q1 + q1c. Thus, the expected benefit of
a perfect treatment-selection rule, i.e. the “perfect expected benefit” (PEB), is PEB(c) = q1(1 − c) −
[ρ0 − ρ1 − c]+.

While in general q1 is not identifiable given the observed data, upper and lower bounds can be identified
using a disease risk model, i.e. the model of the risk of D conditional on Y and T . Let qk(Y ), k =1, 2, 3,
and 4 indicate the probability that a subject with marker Y falls into the i th potential outcome category.
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Let ρ0(Y ) = P(D = 1|Y, T = 0), ρ1(Y ) = P(D = 1|Y, T = 1). Then

q1(Y ) + q2(Y ) = ρ0(Y ) ⇒ q1(Y ) � ρ0(Y ),

q1(Y ) + q3(Y ) = 1 − ρ1(Y ) ⇒ q1(Y ) � 1 − ρ1(Y ),

q1(Y ) − q4(Y ) = ρ0(Y ) − ρ1(Y ) ⇒ q1(Y ) � ρ0(Y ) − ρ1(Y ),

which implies max{0, ρ0(Y ) − ρ1(Y )} � q1(Y ) � min{ρ0(Y ), 1 − ρ1(Y )}. Taking an expectation over Y ,
we have E[{�(Y )}+] � q1 � ρ0 − E[{ρ0(Y ) + ρ1(Y ) − 1}+]. Note that alternative nonparametric bounds
for q1 can be derived without relying on any biomarker model: max(0, ρ0 − ρ1) = [E{�(Y )}]+ �
q1 � min(ρ0, 1 − ρ1) = ρ0 − [E{ρ0(Y ) + ρ1(Y ) − 1}]+. The bounds constructed based on the disease
risk model are narrower since [E{�(Y )}]+ � E[{�(Y )}+] and [E{ρ0(Y ) + ρ1(Y ) − 1}]+ � E[{ρ0(Y ) +
ρ1(Y ) − 1}+], and will be the focus of this paper. These types of restrictions on the probability of potential
outcome category have also been recognized by others, e.g. Gadbury and others (2004), Huang and others
(2012), and Zhang and others (2013).

Using disease risk model, we obtain lower and upper bounds for the perfect expected benefit

PEBl(c) = E[{�(Y )}+] × (1 − c) − [ρ0 − ρ1 − c]+, (2.4)

PEBu(c) = (ρ0 − E[{ρ0(Y ) + ρ1(Y ) − 1}+]) × (1 − c) − [ρ0 − ρ1 − c]+. (2.5)

Finally, dividing the expected benefit of a marker-based treatment-selection strategy by the bounds of
expected benefit from perfect treatment selection, we obtain bounds for the standardized expected benefit:
SEBl(c) = EB(c)/PEBu(c) and SEBu(c) = EB(c)/PEBl(c).

In summary, the expected benefit of a perfect treatment-selection rule can be derived but is non-
identifiable due to the non-identifiability of the percent of “benefited” individuals (or equivalently, the
percent of “harmed” or “unbenefited” since q1 can be determined when any of q2, q3, or q4 is fixed).
An alternative to constructing bounds on q1 using a risk model is to conduct a sensitivity analysis treat-
ing the percent harmed (q4) as a sensitivity parameter, and to compute PEB for each fixed q4 value. A
narrower bound for PEB might be achieved when a narrow range of q4 is plausible based on biologi-
cal assumptions. In the special case where the treatment has a monotone effect on the targeted disease
and will not cause any harm (so q4 = 0), we have q1 = ρ0 − ρ1, and PEB can be uniquely identified as
(ρ0 − ρ1) × (1 − c) − [ρ0 − ρ1 − c]+, which is equal to its lower bound in (2.4) since E[{�(Y )}+] =
E{�(Y )} = ρ0 − ρ1 under monotonicity.

The expected benefit from perfect treatment selection sets a reference for gauging the benefit of a
particular treatment-selection rule or the difference in benefit between two rules. A demonstration of the
comparison between two markers is presented in supplementary material available at Biostatistics online,
Figure 1.

3. DERIVATION OF TREATMENT-SELECTION RULES AND ESTIMATION OF EXPECTED BENEFIT

In this section, we consider methods for deriving marker-based treatment-selection rules in order to max-
imize expected benefit and to estimate their (standardized) expected benefit. We consider the class of
selection rules A(Y ) which depends on the sign of a smooth function of Y , namely h(Y ), i.e. A(Y ) =
I {h(Y ) > 0}. We propose two strategies for optimizing the selection rule A(Y ) and estimating (standard-
ized) expected benefit. The first requires correct modeling of the risk difference �(Y ), whereas the second
does not and is thus more robust to model misspecification. However, the first strategy is more efficient
under a correctly specified model.
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3.1 Model-based approach

Based on (2.3), it can be seen that a marker-based rule A(Y ) that optimizes expected benefit at cost
ratio c is equal to 1 whenever �(Y ) > c and 0 otherwise. That is, h(Y ) = �(Y ) − c. For details, see,
e.g. Vickers and others (2007). We model the disease risk with a generalized linear model (GLM):
g{P(D = 1|Y, T )} = β0 + β1T + βT

2 Y + βT
3 Y T, where g is a known link function, e.g. the logit or inverse

normal CDF. Let β̂ denote the maximum likelihood estimator (MLE) of β, and let �̂(Y ) denote the MLE of
�(Y ). A model-based treatment-selection rule can be constructed as A(Y ) = I {�̂(Y ) > c}. Assuming that
the model for �(Y ) is correctly specified, a model-based estimator of expected benefit can be constructed

based on (2.3): ÊB(c) = ∑N
i=1(�̂i − c)+/N −

(∑N
i=1 �̂i/N − c

)
+

, where �̂i = �̂(Yi ) is the estimate of

�(Y ) for subject i . Note that a good fit of the risk model itself is sufficient for the good fit of the model
for �(Y ), but not necessary. Hosmer–Lemeshow type techniques can be used to evaluate both types of
calibration (Huang and Pepe, 2010; Janes and others, 2014).

We estimate the lower bound on PEB with P̂EB
l
(c) = ∑N

i=1(�̂i )+ × (1 − c)/N − (
∑N

i=1 �̂i/

N − c)+ and the upper bound with P̂EB
u
(c) = ∑N

i=1{R̂isk0i − (R̂isk0i + R̂isk1i − 1)+} × (1 − c)/N −(∑N
i=1 �̂i/N − c

)
+

, where R̂isk0 and R̂isk1 are model-based estimates of P(D = 1|Y, T = 0) and

P(D = 1|Y, T = 1), respectively. Corresponding lower and upper bounds on SEB(c) can be estimated

as ÊB(c)/P̂EB
u
(c) and ÊB(c)/P̂EB

l
(c).

3.2 Robust approaches

Optimality of a model-based treatment-selection rule A(Y ) = I {�̂(Y ) > c} and validity of the model-based
estimator for corresponding expected benefit rely critically on correct specification of the model for �(Y ).
Here we describe alternative approaches for characterizing the optimal treatment-selection rule and for
estimating expected benefit that are more robust to model misspecification, in the sense that good perfor-
mance of the derived rule and unbiasedness of the estimates of EB do not require correct specification of
�(Y ).

Suppose that we are interested in picking the best rule among all rules of the form A(Y ) = I {h(Y ) > 0}
with h(Y ) belonging to a pre-specified class, e.g. h(Y ) can be a linear function of Y . The optimal rule can
be estimated by maximizing an estimate of the expected benefit. Following the notations in Section 2.1,
let D(t) indicate the potential disease outcome if a subject were to receive treatment t , t = 0, 1. Let
D(A) = D(0) × I {A(Y ) = 0} + D(1) × I {A(Y ) = 1} be the potential outcome that would be observed
if a randomly chosen subject from the population were to be assigned treatment according to rule A(Y ).
The expected benefit under A(Y ) can be represented as EB(c) = ρ0 − E{D(A)} − E{A(Y )} × c − [ρ0 −
ρ1 − c]+. Let CA = T × A(Y ) + (1 − T ) × {1 − A(Y )} be the indicator of observing D(A), i.e. CA = 1
if A(T ) = T . Then to estimate E{D(A)}, one can use the inverse-probability weighted estimator (IPWE)

1

N

N∑
i=1

CAi Di

P(CA = 1|Yi )
, (3.1)

or a doubly robust augmented IPWE

1

N

N∑
i=1

CAi Di

P(CA = 1|Yi )
− CAi − P(CA = 1|Yi )

P(CA = 1|Yi )
m(Yi ; β̂), (3.2)

where P(CA = 1|Y ) = P{A(Y ) = T |Y } = P{T = A(Y ) = 1|Y } + P{T = A(Y ) = 0|Y } = P(T = 1|Y ) ×
A(Y ) + P(T = 0|Y ) × {1 − A(Y )}; m(Yi ; β̂), an estimate of E{D(A)|Yi } equals R̂isk1(Yi )A(Yi ) −
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R̂isk0(Yi ){1 − A(Yi )} based on some working risk model. The doubly robust estimator augments the IPWE
of E{D(A)} with a term that involves the risk of D given Y and T . It has the double-robustness property
in that it is consistent for E{D(A)} if either P(T = 1|Y ) or the risk model is correctly specified. In a
randomized trial, P(T = 1|Y ) is known, so consistency of the estimator is always achievable; the sec-
ond term in (3.2) “augments" the empirical estimate so as to increase asymptotic efficiency as shown in
Zhang, Tsiatis, Laber, and others (2012).

Based on the IPWE and the augmented estimator of E{D(A)} in (3.1) and (3.2), corresponding empir-
ical and augmented estimators for EB(c) are∑N

i=1 Di × [1 − I {h(Yi ) > 0}] × (1 − Ti )∑N
i=1(1 − Ti )

−
∑N

i=1 Di × I {h(Yi ) > 0} × Ti∑N
i=1 Ti

− c × 1

N

N∑
i=1

I {h(Yi ) > 0} −
[∑N

i=1 Di × (1 − Ti )∑N
i=1(1 − Ti )

−
∑N

i=1 Di × Ti∑N
i=1 Ti

− c

]
+

, (3.3)

and

(3.3) + 1

N

N∑
i=1

Ti × I {h(Yi ) > 0} + (1 − Ti ) × I {h(Yi ) > 0} − π(Y ; h)

π(Y ; h)

× [R̂isk1 × I {h(Yi ) > 0} + R̂isk0 × I {h(Yi ) � 0}], (3.4)

respectively, with π(Y ; h) = P(T = 1)I {h(Y ) > 0} + P(T = 0)I {h(Y ) � 0}.
As in Zhang, Tsiatis, and others (2012) and Zhao and others (2012), the problem of maximizing the

expected benefit estimators in (3.3) and (3.4) can be transformed into a weighted classification problem.
Consider deriving a rule based on a linear marker combination h(Y ) = α0 + αT

1 Y . As shown in supplemen-
tary material available at Biostatistics online, Appendix C, the values α0, α1 that maximize these expect
benefit estimates can be shown to be the minimizers of

N∑
i=1

|Wi |I {sgn(Wi ) |= sgn(α0 + α1Yi )}, (3.5)

with Wi = −Di Ti/(N1/N ) + Di (1 − Ti )/(N0/N ) − c for maximizing (3.3) and Wi = −Di Ti/N1 +
Di (1 − Ti )/N0 − {P(T = 1) − Ti }/P(T = 0) × R̂isk0 + R̂isk1/N − c/N for maximizing (3.4), where
N1 and N0 are sample sizes in treated and untreated groups. We consider two algorithms in the simu-
lation studies to derive α0, α1 for minimizing (3.5), one fitting a weighted linear logistic regression model
regressing binary outcome sgn(Wi ) versus Yi with individual weight |Wi |, the other directly solving for
α0, α1 by minimizing (3.5) through a grid search.

Finally, we consider an alternative robust approach for deriving h(Y ) that is computationally simpler. We
adopt a working model �(Y ) = expit(β0 + βT

2 Y ) − expit(β0 + β1 + βT
2 Y + βT

3 Y T ) for risk difference
based on a GLM. Let �̂(Y ) be the MLE of �(Y ), and h(Y ) = �̂(Y ) − δ. An optimal δ can be identified
by maximizing the empirical (3.3) or doubly robust (3.4) estimator of EB using this h(Y ) and a grid search.
Note EB(c) in a randomized trial can be represented as

P{D = 1, A(Y ) = 1|T = 0} − P{D = 1, A(Y ) = 1|T = 1} − P{A(Y ) = c} × c − [ρ0 − ρ1 − c]+ (3.6)

= [P{D = 1|A(Y ) = 1, T = 0} − P{D = 1|A(Y ) = 1, T = 1} − c] × P{A(Y ) = 1}
− [ρ0 − ρ1 − c]+. (3.7)
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The IPWE estimator (3.3) is an empirical estimator for estimating EB as represented in (3.6), whereas an
alternative empirical estimator for estimating EB as represented in (3.7) can be constructed by maximizing
δ over{∑N

i=1 Di × I (�̂i > δ) × (1 − Ti )∑N
i=1 I (�̂i > δ) × (1 − Ti )

−
∑N

i=1 Di × I (�̂i > δ) × Ti∑N
i=1 I (�̂i > δ) × Ti

− c

}
× 1

N

N∑
i=1

I (�̂i > δ)

−
[∑N

i=1 Di × (1 − Ti )∑N
i=1(1 − Ti )

−
∑N

i=1 Di × (Ti )∑N
i=1 Ti

− c

]
+

. (3.8)

The empirical estimator (3.8) uses data more efficiently compared with the IPWE estimator (3.3) by taking
into account the condition: P{A(Y ) = 1|T = 0} = P{A(Y ) = 1|T = 1} = P{A(Y ) = 1}, ensured by ran-
domization. We use this estimator together with the augmented estimator in our simulation study and data
example for identifying δ based on �̂(Y ).

Expected benefits of these “robust treatment rules” can be estimated using cross-validation. These
robust methods target scenarios where the model for risk and/or risk difference is prone to misspecification.
The bounds for PEB in (2.4) and (2.5) rely heavily on correct specification of the risk model. Therefore,
we do not consider robust estimation techniques for the bounds.

3.3 Asymptotic theory for the model-based estimator of expected benefit

When ρ0 − ρ1 |= c, the following theorem holds as proved in supplementary material available at Biostatis-
tics online, Appendix D.

THEOREM 1 Under the regularity conditions specified in supplementary material available at Biostatis-

tics online, Appendix D, ÊB(c), P̂EB
l
(c), P̂EB

u
(c), ŜEB

l
(c), and ŜEB

u
(c) as defined in Section 3.1 are

asymptotically normal as N → ∞ for c |= ρ0 − ρ1.

When c = ρ0 − ρ1,
√

N {(∑N
i=1 �̂i/N − c)+ − (ρ0 − ρ1 − c)+} converges to a mixture of 0 and a trun-

cated normal distribution (supplementary material available at Biostatistics online, Appendix E). As a
result, asymptotic normality of ÊB(c), P̂EB(c), or ŜEB(c) does not hold. Even when asymptotic nor-
mality of these estimators does hold, we recommend the bootstrap for constructing confidence intervals
since computation of the asymptotic variance of these estimators requires numerical differentiation. When
c ≈ ρ0 − ρ1, the standard bootstrap percentile confidence interval (CI) can lead to undercoverage. There-
fore, we adopt an adaptive bootstrap CI following the ideas of Berger and Boos (1994), Laber and Murphy
(2011), and Robins (2004). Specifically, the proposed interval is equivalent to the standard bootstrap per-
centile CI when c is far from ρ0 − ρ1 and is equivalent to a projection interval otherwise, which is the
union of bootstrap intervals as described below. Because the behavior of the CI is automatically dictated
by the data, we term it “adaptive.”

Let b = 1, . . . , B index bootstrap samples drawn from the original data with replacement. We add a
superscript b, to indicate that a statistic has been computed using a bootstrap sample. For any r ∈ R defines

ÊB
b

r (c) = ∑N
i=1(�̂

b
i − c)+/N − (

∑N
i=1 �̂b

i /N − c) × I (r > 0), P̂EB
lb

r (c) = ∑N
i=1(�̂

b
i )+ × (1 − c)

− (
∑N

i=1 �̂b
i /N − c)+ × I (r > 0), and P̂EB

ub

r (c) = ∑N
i=1{R̂isk

b

0i − (R̂isk
b

0i + R̂isk
b

1i − 1)+} × (1 − c)/
N − (

∑N
i=1 �̂b

i /N − c) × I (r > 0). Let ζEB(c),η(r), ζPEBl (c),η(r), and ζPEBu(c),η(r) denote (1 − η) × 100%

percentile bootstrap CIs formed by taking empirical percentiles of ÊB
b

r (c), P̂EB
lb

r (c), and P̂EB
ub

r (c)
over bootstrap samples, respectively. Let 
α(c) denote an asymptotically valid (1 − α) × 100% CI for
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ρ0 − ρ1 − c. The (1 − η − α) × 100% projection intervals for EB(c), PEBl(c), and PEBu(c) are given
by

⋃
r∈
α(c) ζEB(c),η(r),

⋃
r∈
α(c) ζPEBl (c),η(r), and

⋃
r∈
α(c) ζPEBu(c),η(r), respectively. Let Pb denotes

probability taken with respect to the bootstrap sampling algorithm, conditional on the observed data. The
following Theorem 2 is proved in supplementary material available at Biostatistics online, Appendix F.

THEOREM 2 Let τN be a sequence of positive random variables satisfying τN → 0 and
√

NτN → ∞
almost surely as N → ∞. Define A(c) = 
α(c) if |ρ̂0 − ρ̂1 − c| � τN and {∑N

i=1 �̂i/N − c} otherwise.
The (1 − η − α) × 100% adaptive bootstrap CIs for EB(c), PEBl(c), and PEBu(c) based on pre-specified
τN are given by

⋃
r∈A(c)(c) ζEB(c),η(r),

⋃
r∈A(c) ζPEBl (c),η(r), and

⋃
r∈A(c) ζPEBu(c),η(r), respectively. Assume

�(Y ) has a continuous and bounded density function. For α, η ∈ (0, 1), we have

1. Pb(EB(c) ∈ ⋃
r∈A(c) ζEB(c),η(r)) � 1 − α − η + op(1);

2. Pb(PEBl(c) ∈ ⋃
r∈A(c) ζPEBl (c),η(r)) � 1 − α − η + op(1);

3. Pb(PEBu(c) ∈ ⋃
r∈A(c) ζPEBu(c),η(r)) � 1 − α − η + op(1).

If E�(Y ) |= c, then the right-hand side of the foregoing inequalities can be replaced with equalities.

REMARK 1 Berger and Boos (1994) recommend choosing α to quite small in which case 1 − η ≈ 1 −
η − α. Consequently, the proposed projection CI is nearly exact in large samples provided E{�(Y )} |= c,
but potentially conservative otherwise. However, Theorem 2 suggests a procedure which provides exact
coverage when E{�(Y )} |= c and is thus both adaptive and less conservative than the projection interval.
For these reasons, it is recommended in practice.

REMARK 2 The conditions of the preceding theorem can be relaxed at the expense of a possibly more
conservative confidence interval. In supplementary material available at Biostatistics online, Appendix G,
we provide a locally consistent projection confidence interval that does not require �(Y ) to have smooth
bounded density. However, this interval requires taking a union over a larger set and is thus potentially
more conservative in some settings. We defer the detailed investigation of this CI to future work.

4. SIMULATION STUDIES

Consider a two-arm 1 : 1 randomized trial where a biomarker Y following a standard normal distribution is
measured. Suppose the risk of a binary disease D conditional on Y and T follows a linear logistic model:
logit{P(D = 1|Y, T )} = −0.158 + 3.385T − 0.5Y − 4Y T, with disease prevalences ρ0 = 0.25 and
ρ1 = 0.125. We consider cost ratios c =0, 0.105, 0.125, 0.145, and 0.175, which correspond to expected
benefit values of 0.043, 0.059, 0.063, 0.048, and 0.029. The pairs of lower and upper bounds for expected
benefit from perfect treatment selection are {0.043, 0.098}, {0.130, 0.180}, {0.147, 0.196}, {0.144, 0.191},
and {0.139, 0.184}, respectively.

Tables 1 and 2 show performance of the model-based estimators for EB(c), PEB(c), and SEB(c) for
sample sizes 200, 500, and 2000 based on 5000 simulations and 1000 bootstrap samples. At N = 200,
model-based estimators have minimal bias for each measure. Coverage of 95% percentile bootstrap CI
is close to the nominal level when c is away from ρ0 − ρ1, whereas undercoverage is observed when
c = ρ0 − ρ1, which is not alleviated with an increase in sample size. The adaptive bootstrap CI fixes the
undercoverage where we adopt the projection interval (with α = 0.01) when ρ0 − ρ1 is close to c (defined
as |ρ̂0 − ρ̂1 − c| � max{N 0.05, ˆSE(ρ̂0 − ρ̂1) × �−1(0.95)} in the simulation study and data example).

Table 3 presents performance of various robust estimators of treatment-selection rules and robust esti-
mators of expected benefit. These simulations explore performance of various treatment-selection rules
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Table 1. Performance of the model-based estimator of EB with ρ0 − ρ1 = 0.125

Cost ratio c 0.000 0.105 0.125 0.145 0.175
EB(c) 0.043 0.059 0.063 0.048 0.029

N Bias×1000

200 2.02 −7.90 −15.55 −6.33 2.17
500 1.22 −3.26 −10.72 −3.00 1.50
2000 0.24 −0.33 −5.62 −0.15 0.66

SD×√
N

200 0.29 0.27 0.27 0.29 0.29
500 0.29 0.28 0.29 0.33 0.35
2000 0.29 0.31 0.31 0.40 0.38

SE×√
N

200 0.28 0.27 0.27 0.27 0.26
500 0.29 0.29 0.30 0.32 0.32
2000 0.29 0.31 0.32 0.39 0.38

Coverage of 95% percentile bootstrap CI

200 95.10 91.80 83.80 95.20 96.90
500 95.10 94.90 84.60 96.30 95.80
2000 94.50 96.40 85.10 96.80 95.50

Coverage of 95% adaptive bootstrap CI

200 95.22 97.04 95.56 96.48 97.02
500 95.12 97.42 95.88 96.82 95.98
2000 94.62 96.68 95.88 96.72 95.78

under the correctly specified risk model, so that one can examine the penalty associated with the use
of the robust methods in terms of increased variability and suboptimal expected benefit. For each rule
derived from a simulated dataset, expected benefit in the population is computed through numerical inte-
gration. With A(Y ) = I {�̂(Y ) > δ}, estimating the optimal δ rather than using δ = c leads to smaller
expected benefit and larger variability for the small sample size of 200, but the difference is minimal when
the sample size is as large as 2000. Performance of the treatment-selection rule derived by minimizing
weighted classification errors through a grid search is comparable with that based on �̂(Y ) and estimated δ.
In general, using the augmented version for δ estimation or for weight computation leads to a small increase
in expected benefit and decreased variability. Between the two algorithms for weighted classification,
the grid search in general does better than weighted logistic regression, especially for large cost ratio;
the latter has performance worse than the optimal strategy absent the marker at cost ratio 0.175. Note
that the advantage of the robust approaches is expected to become apparent when the model of risk differ-
ence is misspecified (an example is presented in supplementary material available at Biostatistics online,
Table S3).

In Table 3, we also compare naive estimates of expected benefit using the same data where a treatment-
selection rule is derived, and estimates based on random cross-validation. For the latter, we randomly
split the data into 2/3 training and 1/3 test, estimate a treatment-selection rule from the training set, then
compute the expected benefit for this rule using the test set; an average of expected benefit estimates is
computed over 500 splits. From Table 3, we see that naive estimates of expected benefit can have severe
overestimation even with a sample size as large as 2000, for all estimators. An exception is the model-based
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Table 2. Performance of the model-based estimator for bounds of PEB(c) and SEB(c)

Cost ratio c 0.000 0.105 0.125 0.145 0.175 0.000 0.105 0.125 0.145 0.175

PEBu(c) PEBl(c)

0.098 0.180 0.196 0.191 0.184 0.043 0.130 0.147 0.144 0.139

N Bias × 1000

200 −0.10 −11.73 −20.31 −12.08 −4.93 2.02 −9.82 −18.45 −10.27 −3.18
500 −0.53 −5.53 −13.37 −6.04 −2.00 1.22 −3.97 −11.84 −4.55 −0.56
2000 −0.28 −0.98 −6.38 −1.02 −0.32 0.24 −0.51 −5.92 −0.57 0.11

SD × √
N

200 0.33 0.29 0.31 0.34 0.39 0.29 0.25 0.28 0.32 0.38
500 0.33 0.30 0.32 0.37 0.44 0.29 0.26 0.29 0.36 0.43
2000 0.34 0.32 0.32 0.43 0.45 0.29 0.28 0.30 0.42 0.45

SE × √
N

200 0.32 0.31 0.32 0.34 0.38 0.28 0.27 0.29 0.32 0.37
500 0.33 0.31 0.32 0.37 0.42 0.29 0.28 0.29 0.36 0.42
2000 0.33 0.32 0.33 0.43 0.45 0.29 0.29 0.30 0.42 0.45

Coverage of 95% percentile bootstrap CI

200 94.90 88.20 77.80 90.70 95.90 95.10 89.60 78.70 92.70 96.70
500 94.50 91.50 77.70 93.80 95.50 95.10 94.20 80.70 96.10 95.50
2000 94.50 95.80 80.10 96.50 95.00 94.50 96.40 82.20 96.70 95.20

Coverage of 95% adaptive bootstrap CI

200 94.94 95.98 94.54 94.98 95.86 95.22 96.26 94.22 95.72 96.62
500 94.52 96.08 94.34 95.42 95.50 95.12 97.04 94.86 96.56 95.64
2000 94.82 96.64 95.06 96.42 95.18 94.62 96.74 95.14 96.72 95.58

SEBl(c) SEBu(c)

0.436 0.327 0.323 0.253 0.156 1.000 0.452 0.429 0.336 0.207

N Bias × 1000

200 9.12 −30.47 −58.66 −27.63 4.30 0.00 −42.79 −74.27 −39.34 −0.86
500 10.19 −10.73 −38.06 −12.60 3.42 0.00 −17.01 −47.53 −19.03 0.24
2000 2.66 −0.74 −19.51 −0.96 2.05 0.00 −2.30 −23.24 −2.43 1.36

SD × √
N

200 2.02 1.23 1.24 1.31 1.36 0.00 1.41 1.46 1.57 1.65
500 2.12 1.25 1.27 1.45 1.60 0.00 1.38 1.44 1.71 1.94
2000 2.21 1.35 1.29 1.66 1.70 0.00 1.45 1.39 1.89 2.06

SE × √
N

200 1.92 1.26 1.25 1.25 1.22 0.00 1.50 1.51 1.53 1.49
500 2.06 1.31 1.31 1.45 1.49 0.00 1.48 1.50 1.70 1.82
2000 2.15 1.34 1.31 1.66 1.70 0.00 1.45 1.44 1.90 2.06

Coverage of 95% percentile bootstrap CI

200 95.10 95.80 91.40 96.80 97.30 100.00 94.10 88.80 96.50 97.40
500 95.10 96.70 90.80 96.90 95.60 100.00 95.50 87.80 96.60 95.80
2000 94.20 96.20 89.40 96.80 95.60 100.00 96.40 87.20 97.00 95.40

continued.
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Table 2. continued.

Cost ratio c 0.000 0.105 0.125 0.145 0.175 0.000 0.105 0.125 0.145 0.175

Coverage of 95% adaptive bootstrap CI

200 95.12 97.82 95.88 97.24 97.20 100.00 97.02 94.86 97.02 97.40
500 95.10 97.94 95.72 97.28 95.74 100.00 97.04 94.80 96.88 95.86
2000 94.16 96.18 97.82 96.68 95.58 100.00 96.44 97.28 96.84 95.42

estimator whose overfitting bias is minimal for sample sizes >500. The overfitting bias is corrected by
cross-validation.

Bootstrap standard errors and CI coverage for robust estimates of EB are presented in supplementary
material available at Biostatistics online, Table 1. Undercoverage of ordinary bootstrap CIs happens in
some cases when the cost ratio equals ρ0 − ρ1; the adaptive bootstrap CI alleviates the problem.

5. DATA EXAMPLE

In this section, we illustrate the approaches using the Diabetes Control and Complications Trial (DCCT)
(DCCTRG, 1993), a large-scale randomized controlled trial designed to compare intensive and conven-
tional diabetes therapy with respect to their effects on the development and progression of early vascular
and neurologic complications of diabetes. Overall, 1441 patients with insulin-dependent diabetes melli-
tus were enrolled beginning in 1983 and followed through 1999. One outcome significantly impacted by
intensive therapy in DCCT is microalbuminuria, a sign of kidney damage, defined as albumin excretion
rate >40 mg/24 h. Our analysis here consists of 579 subjects in the secondary prevention cohort of DCCT,
defined as patients with mild preexisting retinopathy or other complications, who did not have microalbu-
minuria and neuropathy at baseline. We consider baseline hemoglobin A1C (HBA1C) as a biomarker for
selecting treatment: a linear logistic regression model of microalbuminuria developed during the study ver-
sus treatment and baseline HBA1C and their interaction shows a significant interaction between treatment
and HBA1C.

We estimate the (standardized) expected benefit of HBA1C. The curve of model-based estimator of
EB(c) versus c is presented in Figure 1(a), together with estimated lower and upper bounds of PEB.
Corresponding bounds for standardized expected benefit of HBA1C are displayed in Figure 1(b). For a
set of chosen cost ratios, the model-based estimates and their 95% CI are shown in Table 4. For exam-
ple, at cost ratio c = 0, i.e. equal treatment cost between the two diabetes therapies, HBA1C has an EB
of 0.005, while the PEB can range from 0.005 to 0.206, implying that standardized EB of HBA1C is
>2.3%. If c = 0.05, i.e. the additional cost by intensive therapy compared with conventional therapy is
5% the cost of developing microalbuminuria, HB1AC has an EB of 0.019, which corresponds to 8–38.8%
of PEB. Supplementary material available at Biostatistics online, Table 2 presents cross-validated EB for
the model-based estimator and robust estimators. In general, we see a reduction in EB resulted from CV.
Treatment-selection rules based on �̂(Y ) and the estimated threshold δ or based on linear marker com-
binations that minimize weighted classification errors using augmented weights have slightly better CV
estimates of EB compared with the model-based estimator.

6. DISCUSSION

We developed an expected benefit measure for characterizing the capacity of biomarkers for treatment
selection, and developed the concept of a perfect treatment-selection rule that correctly identifies subjects
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Table 3. MEAN (SD) of expected benefit of a derived treatment-selection rule in the population and MEAN(SD) of naive and cross-validated
estimate of corresponding expected benefit

N TYPE PAR NPAR1 NPAR2 WLOGIS1 WLOGIS2 WCLASS1 WCLASS2

Cost ratio c = 0

200 True 0.0406 (0.0035) 0.0337 (0.011) 0.0363 (0.0084) 0.0329 (0.0105) 0.0362 (0.0085) 0.0335 (0.0122) 0.0377 (0.0072)
Naive 0.0454 (0.0208) 0.0586 (0.0299) 0.0552 (0.0298) 0.0404 (0.0368) 0.0432 (0.0339) 0.0602 (0.0331) 0.0559 (0.033)
CV 0.0391 (0.0325) 0.0303 (0.0329) 0.0328 (0.031) 0.0316 (0.036) 0.0336 (0.0336) 0.0307 (0.0381) 0.0358 (0.0351)

500 True 0.042 (0.0012) 0.0385 (0.006) 0.0398 (0.004) 0.0345 (0.0069) 0.0401 (0.004) 0.038 (0.0071) 0.04 (0.0038)
Naive 0.0439 (0.0133) 0.0513 (0.0198) 0.0499 (0.019) 0.0374 (0.0244) 0.0426 (0.0218) 0.0524 (0.0218) 0.0499 (0.0211)
CV 0.041 (0.0209) 0.0364 (0.022) 0.0381 (0.0198) 0.0336 (0.0239) 0.0382 (0.0217) 0.0357 (0.0251) 0.0383 (0.0222)

2000 True 0.0427 (3e−04) 0.0415 (0.002) 0.0418 (0.0015) 0.0359 (0.0034) 0.0422 (0.001) 0.0412 (0.0025) 0.0417 (0.0016)
Naive 0.0433 (0.0065) 0.0468 (0.0102) 0.0463 (0.0095) 0.0368 (0.0125) 0.0432 (0.0109) 0.0472 (0.0114) 0.0462 (0.0106)
CV 0.0428 (0.0105) 0.0413 (0.0108) 0.0417 (0.0099) 0.0359 (0.0124) 0.0421 (0.0109) 0.0409 (0.0123) 0.0416 (0.0111)

Cost ratio c = 0.105

200 True 0.0542 (0.0067) 0.0474 (0.0136) 0.049 (0.0119) 0.0366 (0.0221) 0.0403 (0.0173) 0.0472 (0.0181) 0.0515 (0.0119)
Naive 0.0518 (0.0194) 0.0653 (0.0273) 0.0629 (0.0262) 0.0398 (0.0322) 0.0374 (0.0298) 0.064 (0.0294) 0.0598 (0.0287)
CV 0.0379 (0.0306) 0.0299 (0.031) 0.0318 (0.0287) 0.0178 (0.0344) 0.0217 (0.0314) 0.0287 (0.0383) 0.0343 (0.0333)

500 True 0.0572 (0.002) 0.0536 (0.0066) 0.0543 (0.0055) 0.0477 (0.0127) 0.0471 (0.0092) 0.0538 (0.007) 0.0553 (0.0045)
Naive 0.0559 (0.0127) 0.0633 (0.0185) 0.0623 (0.0175) 0.0474 (0.0224) 0.0442 (0.0188) 0.0627 (0.0202) 0.0606 (0.019)
CV 0.0501 (0.0197) 0.0454 (0.0206) 0.0464 (0.0186) 0.0373 (0.0241) 0.0387 (0.0193) 0.0455 (0.0238) 0.0478 (0.0205)

2000 True 0.0585 (5e−04) 0.0571 (0.0022) 0.0573 (0.002) 0.0543 (0.0044) 0.0487 (0.0049) 0.0569 (0.0024) 0.0573 (0.0017)
Naive 0.0588 (0.0069) 0.0622 (0.0103) 0.0619 (0.0096) 0.0547 (0.0106) 0.0488 (0.0097) 0.0618 (0.0114) 0.061 (0.0104)
CV 0.0575 (0.0106) 0.0557 (0.0109) 0.056 (0.0099) 0.0524 (0.0111) 0.0478 (0.0096) 0.0555 (0.0122) 0.0561 (0.0109)

Cost ratio c = 0.125

200 True 0.0577 (0.0072) 0.0514 (0.0136) 0.0529 (0.0119) 0.0356 (0.0233) 0.0397 (0.0185) 0.0489 (0.0203) 0.0535 (0.0143)
Naive 0.0485 (0.0197) 0.0625 (0.0265) 0.0605 (0.0255) 0.0318 (0.0309) 0.0293 (0.0294) 0.0595 (0.0284) 0.0552 (0.0278)
CV 0.0327 (0.0298) 0.0257 (0.0302) 0.0275 (0.0282) 0.009 (0.0328) 0.0131 (0.0306) 0.0214 (0.0379) 0.0275 (0.0334)

500 True 0.0611 (0.0022) 0.0577 (0.0067) 0.0583 (0.0056) 0.0465 (0.0148) 0.0457 (0.011) 0.0569 (0.0079) 0.0584 (0.0051)
Naive 0.0531 (0.013) 0.0608 (0.0177) 0.06 (0.0169) 0.0389 (0.0224) 0.0355 (0.02) 0.0587 (0.0194) 0.0567 (0.0183)
CV 0.0463 (0.0191) 0.0419 (0.0199) 0.0428 (0.0186) 0.0285 (0.0238) 0.03 (0.0201) 0.0406 (0.0235) 0.0432 (0.0204)

2000 True 0.0626 (6e−04) 0.0611 (0.0024) 0.0613 (0.0021) 0.052 (0.0069) 0.047 (0.0057) 0.0602 (0.0024) 0.0606 (0.0018)
Naive 0.0575 (0.0068) 0.0607 (0.0094) 0.0604 (0.0089) 0.0464 (0.0114) 0.0411 (0.0105) 0.0592 (0.0102) 0.0585 (0.0095)
CV 0.0555 (0.0096) 0.0537 (0.01) 0.0539 (0.0094) 0.0445 (0.0114) 0.0401 (0.0104) 0.0528 (0.011) 0.0534 (0.01)

continued.
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Table 3. continued.

N TYPE PAR NPAR1 NPAR2 WLOGIS1 WLOGIS2 WCLASS1 WCLASS2

Cost ratio c = 0.145

200 True 0.042 (0.008) 0.0368 (0.0127) 0.038 (0.0111) 0.0164 (0.0221) 0.0205 (0.0171) 0.0309 (0.021) 0.0356 (0.0152)
Naive 0.0429 (0.0205) 0.058 (0.0261) 0.0562 (0.0254) 0.0227 (0.0293) 0.0199 (0.0287) 0.0529 (0.0277) 0.0484 (0.0272)
CV 0.0255 (0.0293) 0.0199 (0.0294) 0.0217 (0.028) −3e−04 (0.0301) 0.0038 (0.0286) 0.0121 (0.0372) 0.018 (0.0337)

500 True 0.0459 (0.0025) 0.0426 (0.0071) 0.0432 (0.0061) 0.0246 (0.0151) 0.0245 (0.0113) 0.0399 (0.0092) 0.0415 (0.0063)
Naive 0.0462 (0.0148) 0.0549 (0.018) 0.0542 (0.0176) 0.0253 (0.0236) 0.0227 (0.0218) 0.0504 (0.0199) 0.0485 (0.019)
CV 0.0389 (0.0195) 0.0348 (0.0202) 0.0357 (0.0194) 0.0155 (0.0235) 0.0174 (0.0211) 0.0307 (0.0248) 0.0336 (0.0221)

2000 True 0.0476 (7e−04) 0.0463 (0.0024) 0.0464 (0.0022) 0.0275 (0.0081) 0.0251 (0.0059) 0.0437 (0.0024) 0.0441 (0.0019)
Naive 0.048 (0.009) 0.0519 (0.0104) 0.0516 (0.0104) 0.0277 (0.0147) 0.025 (0.0128) 0.0485 (0.0112) 0.0477 (0.0109)
CV 0.0462 (0.0107) 0.0444 (0.011) 0.0446 (0.011) 0.0262 (0.0144) 0.024 (0.0127) 0.042 (0.0119) 0.0425 (0.0114)

Cost ratio c = 0.175
200 True 0.0214 (0.0075) 0.0179 (0.0106) 0.0191 (0.009) −0.0044 (0.0183) −8e−04 (0.012) 0.0054 (0.0194) 0.01 (0.0139)

Naive 0.0318 (0.0209) 0.0489 (0.0257) 0.0474 (0.0254) 0.0094 (0.0247) 0.007 (0.0242) 0.0404 (0.0261) 0.0354 (0.0259)
CV 0.013 (0.0274) 0.0097 (0.0275) 0.0113 (0.0272) −0.0117 (0.0242) −0.0079 (0.0231) −0.004 (0.0341) 0.0014 (0.0318)

500 True 0.0257 (0.0035) 0.0227 (0.007) 0.023 (0.0067) −0.0011 (0.0094) −8e−04 (0.0065) 0.0135 (0.0107) 0.0154 (0.0077)
Naive 0.0313 (0.0158) 0.0417 (0.0184) 0.0412 (0.0184) 0.0052 (0.0191) 0.0032 (0.0183) 0.0326 (0.0201) 0.0305 (0.0197)
CV 0.0234 (0.0198) 0.0204 (0.0202) 0.0211 (0.0201) −0.0029 (0.0177) −0.0015 (0.0172) 0.0093 (0.0254) 0.0124 (0.0237)

2000 True 0.028 (8e−04) 0.0266 (0.0032) 0.0266 (0.0031) −0.003 (0.0041) −0.0024 (0.0035) 0.0189 (0.0038) 0.0193 (0.0034)
Naive 0.0293 (0.0085) 0.0339 (0.0103) 0.0337 (0.0104) −0.0014 (0.0107) −0.0012 (0.0103) 0.0254 (0.0116) 0.0246 (0.0114)
CV 0.0274 (0.0106) 0.0257 (0.0111) 0.0258 (0.0112) −0.0025 (0.0101) −0.0022 (0.01) 0.0177 (0.0133) 0.0183 (0.0129)

PAR: corresponds to the rule A(Y ) = I (�̂ > c), where �̂ is the estimated risk difference based on the GLM risk model
NPAR1, NPAR2: correspond to A(Y ) = I (�̂ > δ) with δ chosen to maximize the empirical or augmented estimate of EB;
WLOGIS1, WLOGIS2: correspond to rule A(Y ) = I (α0 + α1Y > 0), where α0 and α1 are estimated based on converting the problem to a weighted classification problem, which
is solved using weighted logistic regression with empirical weight or augmented weight, respectively;
WCLASS1, WCLASS2: correspond to rule A(Y ) = I (α0 + α1Y > 0), where α0 and α1 are estimated based on converting the problem to a weighted classification problem, which
is solved using a grid search with empirical weight or augmented weight, respectively;
True: indicates population performance of a treatment-selection rule derived from a training data.
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Table 4. Estimate and 95% adaptive CI of model-based estimator of expected benefit in DCCT example

Cost ratio c 0 0.05 0.10 0.12

EB(c) 0.005 (0, 0.166) 0.019 (0, 0.123) 0.035 (0.001, 0.102) 0.028 (0, 0.119)
PEBl(c) 0.005 (0, 0.166) 0.05 (0.031, 0.157) 0.086 (0.029, 0.149) 0.084 (0.029, 0.149)
PEBu(c) 0.206 (0.157, 0.352) 0.242 (0.192, 0.335) 0.267 (0.216, 0.329) 0.261 (0.211, 0.343)
SEBl(c) 0.023 (0, 0.498) 0.08 (0, 0.382) 0.131 (0.003, 0.334) 0.107 (0.001, 0.366)
SEBu(c) 1 (1, 1) 0.388 (0, 0.802) 0.408 (0.026, 0.809) 0.333 (0.005, 0.823)

Note: the adaptive CI was constructed using α = 0.01; the optimal treatment-selection rule at cost ratio c is to recommend intensive
treatment if {1 + exp(8.779 − 3.589 × log(HBA1C)}−1 − {1 + exp(2.942 − 0.727 × log(HBA1C)}−1 > c.

who will benefit from treatment. Expected benefit of the latter is in general not identifiable and we devel-
oped bounds for it based on disease risk model. The idea of generating bounds can be readily applied to
other summary measures such as the reduction in the population disease rate under marker-based treat-
ment (Song and Pepe, 2004). An interesting observation regarding the model-based bounds is that their
width depends on how well the risk model used to construct the bounds can identify the percent of sub-
jects “benefited” by treatment. A model that better predicts heterogeneity in treatment benefit in terms of
larger variability in �(Y ) tends to move up the lower bound for PEB by increasing E{�(Y )}+. When we
have several risk models in a population, e.g. risk given Y1 and risk given Y1 and Y2, tighter bounds can be
constructed combining bounds derived from individual risk models. Specifically, at a given cost ratio, the
lower bound of PEB can be constructed as the maximum among individual lower bounds, and the upper
bound can be constructed as the minimum among individual upper bounds. However, the variance may be
difficult to calculate in this case and will require further investigation.

We developed a GLM model-based approach for deriving treatment-selection rules to maximize the
expected benefit. In addition, we considered robust approaches that combine the risk difference from the
GLM model and an estimated threshold, or that find marker combinations that directly maximize the esti-
mate of expected benefit. The latter can be computationally intensive if a grid search is used to identify
model parameters; the GLM model, in contrast, can be easily implemented with standard statistical soft-
ware. The model-based approach can lead to treatment-selection rules with better performance as well as
increased efficiency in estimating the expected benefit when the risk model is correctly specified, while
the robust approaches are less affected by misspecification of the working risk model and can be used for
sensitivity analysis.

For inference about expected benefit, we proposed an adaptive bootstrap procedure to handle non-
regularity when the cost ratio is close to the average treatment effect. This idea of using data to adaptively
construct a bootstrap CI has great potential to be used in other types of biomarker evaluation and compar-
ison problems where non-regularity can occur at some point in the parameter space.

In this paper, we consider the treatment–disease cost ratio c to be constant in the population, and vary c
using a sensitivity analysis. In practice, one needs to put the burdens of disease and treatment on the same
scale to determine the value of c. For example, Gail (2009) evaluated the benefit of using the Gail model for
recommending tamoxifen for breast cancer prevention. Tamoxifen has been shown to increase the risk of
“secondary” events such as stroke and endometrial cancer. Gail (2009) assumed that burden per secondary
event is the same as the burden per breast cancer event, and chose c to be the increased rate of having any
secondary event due to tamoxifen. Alternatively, if one can associate a monetary cost with each disease
event, and a monetary cost with treatment (potentially including the cost of the treatment itself and the cost
due to secondary events), then c can be computed as the rate of the latter relative to that of the former. In
some settings, the cost ratio might be a function of the biomarker. For example, the cost of mammography
use for breast cancer prevention might depend on women’s age (Gail, 2009). It is straightforward to extend
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the concept of expected benefit to allow c = C(Y ) to be a function of the biomarker in scenarios where
information is available for modeling C(Y ) as proposed in Janes and others (2013).

Finally, while the concepts of perfect and/or standardized expected benefits are restricted to binary
disease outcomes, the concept of expect benefit itself and the estimation and inference methods developed
here can be readily generalized to handle continuous outcomes.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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