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Intracellular aggregates of phosphorylated TDP-43 are a
major component of ubiquitin-positive inclusions in the brains
of patients with frontotemporal lobar degeneration and ALS
and are considered a pathological hallmark. Here, to gain
insight into the mechanism of intracellular TDP-43 accumula-
tion, we examined the relationship between phosphorylation
and aggregation of TDP-43. We found that expression of a
hyperactive form of casein kinase 1 � (CK1�1-317, a C-termi-
nally truncated form) promotes mislocalization and cytoplas-
mic accumulation of phosphorylated TDP-43 (ubiquitin- and
p62-positive) in cultured neuroblastoma SH-SY5Y cells. Insolu-
ble phosphorylated TDP-43 prepared from cells co-expressing
TDP-43 and CK1�1-317 functioned as seeds for TDP-43 aggre-
gation in cultured cells, indicating that CK1�1-317-induced
aggregated TDP-43 has prion-like properties. A striking toxicity
and alterations of TDP-43 were also observed in yeast express-
ing TDP-43 and CK1�1-317. Therefore, abnormal activation of
CK1� causes phosphorylation of TDP-43, leading to the forma-
tion of cytoplasmic TDP-43 aggregates, which, in turn, may trig-
ger neurodegeneration.

Frontotemporal lobar degeneration (FTLD)2 and ALS are
well known neurodegenerative disorders. FTLD is the second
most common form of cortical dementia in the population
below the age of 65 years. ALS is the most common of the motor
neuron diseases and is characterized by progressive weakness
and muscular wasting, resulting in death within a few years.
Abnormal protein aggregates positive for ubiquitin are
observed as a pathological hallmark in the brains of FTLD and

ALS patients. TAR DNA-binding protein of 43 kDa (TDP-43) is
the major component protein of ubiquitin-positive inclusions
observed in the brains of patients with FTLD (FTLD-TDP) and
ALS (1, 2). TDP-43 is expressed ubiquitously mainly in nuclei
and has been reported to be involved in exon splicing, gene
transcription, regulation of mRNA stability and biosynthesis,
and formation of nuclear bodies (3–7). This protein is com-
posed of 414 amino acids and includes two highly conserved
RNA recognition motifs and a glycine-rich region mediating
protein-protein interactions at the C terminus (8 –11).

Intracellular aberrant protein aggregates in affected neurons
are one of the neuropathological features of neurodegenerative
diseases, and the formation of intracellular aggregates is
believed to be associated with neurodegeneration leading to the
onset of disease. Cytoplasmic proteins such as tau in Alzheimer
disease and �-synuclein in Parkinson disease are accumulated
in insoluble inclusions consisting of abnormal filaments with
the fine structure of amyloid (12). In most cases, these proteins
are hyperphosphorylated abnormally and aggregated in neuro-
nal cells. Therefore, abnormal hyperphosphorylation is one of
the characteristic posttranslational modifications of aggregated
proteins in most neurodegenerative diseases, and phosphoryla-
tion is thought to be a key event in the formation of toxic intra-
cellular protein aggregates. Various changes of TDP-43, includ-
ing cytoplasmic localization, cleavage to produce C-terminal
fragments, aggregation, and phosphorylation at the Ser-379,
Ser-403/404, and Ser-409/410 residues of TDP-43 (1, 13) have
been linked with TDP-43 proteinopathies, including FTLD-
TDP and ALS. Cytoplasmic translocation and cleavage of
TDP-43 have been reported to elicit intracellular TDP-43 accu-
mulation (14 –19). Regarding phosphorylation, various kinases
have been suggested to be involved in the phosphorylation of
TDP-43 (13, 20 –24), but it is not clear whether any of them
induce mislocalization and aggregate formation of TDP-43.

In this study, we examined which kinase is mainly involved in
the formation of intracellular phosphorylated TDP-43 aggre-
gates in cultured cells and yeast. We found that the hyperactive
form of casein kinase 1 � (CK1�1-317, a C-terminally truncated
form of CK1�) promotes not only phosphorylation but also
cytoplasmic localization and aggregation of TDP-43 most
effectively among the tested kinases. CK1�1-317-induced
intracellular phosphorylated TDP-43 aggregates were found to
serve as seeds for TDP-43 aggregation in cells. Significant tox-
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icity and alterations of TDP-43 were also observed in yeast
expressing TDP-43 and CK1�1-317. Our results clearly show
that phosphorylation of TDP-43 by abnormally activated CK1�
causes both cytoplasmic aggregation of TDP-43 and cytotoxic-
ity in vitro and in vivo, establishing a novel mechanism of neu-
rodegeneration that is likely to be relevant to the pathogenesis
of diseases such as FTLD and ALS.

Experimental Procedures

Antibodies—Monoclonal and polyclonal (anti-Ser(P)-409/
410) antibodies against a synthetic phosphopeptide of TDP-43
have been reported previously (13, 25). The following antibod-
ies and reagents were commercial products: anti-TDP-43
monoclonal antibody (ProteinTech), monoclonal anti-HA
clone HA-7, polyclonal anti-HA antibody, anti-FLAG M2
monoclonal antibody and anti-tubulin � antibody (Sigma),
anti-ubiquitin antibody (MAB1510, Chemicon), anti-Myc tag
monoclonal antibody (MBL), and anti-p62 monoclonal anti-
body (BD Transduction Laboratories).

Cell Culture and Transfection of Expression Vectors—Human
neuroblastoma SH-SY5Y cells obtained from the ATCC
(Manassas, VA) were cultured in DMEM/F12 medium (Sigma)
supplemented with 10% (v/v) fetal calf serum, penicillin-strep-
tomycin-glutamine (Life Technologies), and MEM non-essen-
tial amino acid solution (Life Technologies). The cells were
maintained at 37 °C under a humidified atmosphere of 5% (v/v)
CO2 in air. They were grown to 50% confluence in 6-well cul-
ture dishes for transient expression and then transfected with
each expression vector (usually 1 �g) using XtreamGENE9
(Roche) according to the instructions of the manufacturer.
Under our conditions, the efficiency of transfection using the
pEGFP-C1 vector was 20�30%.

The expression vectors for the SH-SY5Y cells used in this
study were as follows: pcDNA3.1-TDP-43 WT, pcDNA3.1-
TDP-43 lacking a nuclear localization signal (78 – 84 residues,
�NLS), pCS2-Myc-CK1�1, pCS2-Myc-CK1�2, pCS2-Myc-
CK1�, pCS2-Myc-CK1�, pcDNA3.1-FLAG-CK1�1-317,
pcDNA3.1-HA-CK2, pME18S-Cdc7-HA, and pME18S-ASK-
FLAG. The pCS2-Myc vectors were provided by Drs. Cheong
Jit Kong and David M. Virshup (Duke-NUS Graduate Medical
School Singapore).

Fractionation of Cellular Proteins and Immunoblotting—
SH-SY5Y cells grown in a 6-well plate were transfected with
several expression vectors. After incubation for 1�3 days, the
cells were harvested and lysed in 300 �l of homogenization
buffer (HB buffer: 10 mM Tris-HCl (pH 7.5) containing 0.8 M

NaCl, 1 mM EGTA, 1 mM DTT, and 1% N-lauroylsarcosine
sodium salt (Sarkosyl)) by brief sonication. The lysates were
centrifuged at 100,000 � g for 20 min at room temperature. The
supernatant was recovered as Sarkosyl (Sar)-soluble fraction
(Sar-sup). The pellet was suspended in 100 �l SDS-sample
buffer and sonicated. The resulting samples were used as the
Sar-insoluble fraction (Sar-ppt). Each sample was separated by
SDS-PAGE and immunoblotted with the indicated antibodies
as described previously (26).

Immunofluorescence Analysis—SH-SY5Y cells were grown
on coverslips and transfected as described above. After incuba-
tion for the indicated times, cells were fixed with 4% parafor-

maldehyde and stained with primary antibody at 1:500�1000
dilution. The cells were washed and incubated further with
anti-mouse IgG-conjugated Alexa Fluor 488 (1:1000) or anti-
rabbit IgG-conjugated Alexa Fluor 568 (1:1000) and then with
Hoechst 33342 (Life Technologies) to counterstain nuclear
DNA. The samples were analyzed using a LSM780 confocal
laser microscope (Carl Zeiss).

Cystic Fibrosis Transmembrane Conductance Regulator
(CFTR) Exon 9 Skipping Assay—SH-SY5Y cells grown in 6-well
plates were transfected with 0.5 �g of reporter plasmid pSPL3-
CFTR exon 9, including the repeat sequence of TG11T7 (16),
pcDNA3.1-TDP-43, and/or pcDNA3.1-CK1�1-317 (total 1.5
�g of plasmids), using XtreamGENE9 (Roche). The cells were
harvested 48 h after transfection, and total RNA was extracted
with TRIzol (Invitrogen). The cDNA was synthesized from 1 �g
of total RNA using the Superscript II system (Invitrogen).
Primary and secondary PCRs were carried out according to
the instruction manual of the exon-trapping system (Life
Technologies).

Real-time PCR—SH-SY5Y cells grown in 6-well plates
were transfected with 1 �g of pcDNA3.1-TDP-43 and/or
pcDNA3.1-CK1�1-317 (total 2 �g of plasmids), using Xtream-
GENE9 (Roche). Cells were harvested 48 h after transfection,
and total RNA was isolated with TRIzol (Invitrogen). First-
strand cDNA was synthesized with SuperScript II reverse tran-
scriptase (Invitrogen). PCR reactions for Homo sapiens histone
deacetylase 6 (HDAC6, NM_006044.2, 5�-CCCATTTGGTG-
GCAGTATG-3� (forward) and 5�-CACAAGGTTGGGTCAC-
GTC-3� (reverse)) and hypoxanthine-guanine phosphoribosyl-
transferase (internal standard, NM_000194.2, 5�-TGACCTT-
GATTTATTTTGCATACC-3� (forward) and 5�-CGAGC-
AAGACGTTCAGTCCT-3� (reverse)) were performed with
Thunderbird SYBR quantitative PCR mixture (Toyobo) and
CFX96 (Bio-Rad). The PCR reactions were carried out as fol-
lows: 1 min at 95 °C for the initial denaturation followed by 40
cycles of amplification at 95 °C for 15 s and 60 °C for 60 s.

Mutagenesis—Site-directed mutagenesis of the CK1�1-317
gene was performed to switch Lys-38 to alanine and arginine by
using a site-directed mutagenesis kit (Agilent Technologies).
All constructs were verified by DNA sequencing.

Mass Spectrometric Analysis of Phosphorylation Sites of
Intracellular TDP-43 Aggregates—Sarkosyl-insoluble fraction
prepared from cells expressing TDP-43 and CK1�1-317 was
subjected to 12% SDS-PAGE. After electrophoresis, the pS409/
410-positive, �46-kDa bands were dissected and digested in-
gel with trypsin. The digests were applied to a DiNa HPLC
system fitted with an automatic sampler (KYA Technology
Corp., Tokyo, Japan). A packed nanocapillary column (catalog
no. NTCC-360/75-3-123; 0.075-mm inner diameter � 125 mm
length; particle diameter, 3 �m; Nikkyo Technos Co. Ltd.,
Tokyo, Japan) was used at a flow rate of 200 nl/min with a
2– 80% linear gradient of acetonitrile in 0.1% formic acid.
Eluted peptides were detected directly with an ion trap mass
spectrometer (Velos Pro, Thermo Fisher Scientific). The
obtained spectra were analyzed with Proteome Discoverer
(Thermo Fisher Scientific) and Mascot software (Matrix
Science).
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Introduction of Protein Aggregates as Seeds into Cultured
Cells—Cells co-expressing TDP-43 and CK1�1-317 were incu-
bated for 3 days and then harvested. The Sar-ppt was prepared
as described above and used as seeds. The Sar-ppt was resus-
pended in 100 �l of PBS and sonicated briefly. The resulting
suspension (10 �l) was mixed with 120 �l of Opti-MEM (Life
Technologies) and 62.5 �l of Multifectam reagent (Promega).
After incubation for 30 min at room temperature, 62.5 �l of
Opti-MEM was added, and the incubation continued for 5 min
at room temperature. Then the mixtures were added to cells
expressing TDP-43, and incubation continued for 6 h in a CO2
incubator. After incubation, the medium was replaced with
fresh DMEM/F12, and culture continued for the indicated
period in each case. The cells were prepared for immunofluo-
rescence and/or immunoblotting analyses as described above.
Under our conditions, the efficiency of introduction of Sar-ppt
seeds was �10%.

Yeast Experiments—Standard yeast medium and transforma-
tion technology were used. Yeast cells were grown at 30 °C. The
human TDP-43 gene with or without GFP was inserted into a
pYES2/CT expression vector (Life Technologies). The human
full-length CK1� and CK1�1-317 genes were inserted into a
pRS315 vector under the GAL1 promoter. The wild-type yeast
strain BY4741 was transformed with these plasmids and plated
on SD (synthetic complete containing dextrose)-Ura-Leu
plates to isolate double-transfected yeast cells. For the cell tox-
icity assay, these cells were cultured in SD-Ura-Leu medium,
washed, plated on SD-Ura-Leu (expression off) or SG (synthetic
complete containing galactose)-Ura-Leu (expression on) plates

and incubated for 2 days. For Western blotting, these cells were
cultured in SD-Ura-Leu medium, washed, and then cultured in
SG-Ura-Leu medium for 2 days. Cells were collected and bro-
ken with glass beads in HB buffer using a bead shocker. The
lysates were centrifuged at 100,000 � g for 20 min at room
temperature. The supernatant was recovered as the Sar-sup.
The pellet was suspended in 100 �l of SDS-sample buffer and
sonicated. The resulting samples were used as the Sar-ppt. For
microscopic analysis, cells were cultured in SD-Ura-Leu
medium, washed, and then cultured in SG-Ura-Leu medium
for 10 h. Cells were fixed and mounted on slide glasses with
Hoechst 33342 (Life Technologies) and observed with a fluo-
rescence microscope (BZ-X710, Keyence).

Statistical Analysis—Statistical analyses were performed
using GraphPad Prism 6 software (GraphPad Software). Data
were analyzed statistically using unpaired two-tailed Student’s t
test. A p value of 0.05 or less was considered to be statistically
significant.

Results

Expression of Truncated CK1� Causes Mislocalization and
Aggregation of TDP-43 in Cultured Cells—Although recent
studies have shown that several protein kinases, including
CK1�, CK2, and Cdc7, are involved in phosphorylation of
TDP-43 in vitro, in cultured cells, fly or Caenorhabditis elegans
(13, 20 –24), it remains unknown whether phosphorylation of
TDP-43 is associated with intracellular aggregation of itself or
whether a kinase elicits the formation of phosphorylated
TDP-43 inclusions.
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FIGURE 1. Biochemical evidence of phosphorylated TDP-43 aggregation by CK1�1-317. Shown are immunoblot analyses of proteins extracted from
SH-SY5Y cells co-expressing both TDP-43 and either empty vector, Myc-tagged CK1�1, Myc-tagged CK1�2, Myc-tagged CK1�, Myc-tagged CK1�, FLAG-tagged
CK1�1-317, HA-tagged CK2, HA-tagged Cdc-7, or FLAG-tagged ASK. Proteins were extracted from cells with 1% Sarkosyl, and the Sar-sup and Sar-ppt were
subjected to immunoblot analyses. The blots were probed using anti-phosphorylated TDP-43 (anti-pS409/410) polyclonal and anti-TDP-43 monoclonal
(anti-TDP mono) antibodies, a mixture of anti-Myc monoclonal and anti-FLAG monoclonal antibodies, a mixture of anti-HA monoclonal and anti-FLAG mono-
clonal antibodies, and anti-tubulin � antibody. Because FLAG-CK1�1-317 is predicted to be �35 kDa, the band of �43 kDa may correspond to its ubiquitinated
form. Note that the band of phosphorylated TDP-43 is observed in the Sar-sup and Sar-ppt of cells expressing CK1�1-317 (arrowheads).
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To address these questions, we co-expressed each kinase and
TDP-43 in cultured neuroblastoma SH-SY5Y cells. The cells
were transiently transfected with each expression vector for
2�3 days and then harvested. The cells were lysed, and the
lysates were fractionated and subjected to immunoblot analy-
sis. As shown in Fig. 1, intracellular expression of each kinase
and TDP-43 was confirmed. In cells transfected with both the
hyperactive form of CK1� (CK1�1-317), which lacks the C-ter-
minal domain (27, 28), and TDP-43, a band of phosphorylated
TDP-43 (Fig. 1, red arrowheads) was detected in the Sar-ppt
using anti-phosphorylated TDP-43 antibody (Ser(P)-409/410),
clearly indicating that expression of CK1�1-317 induces intra-
cellular aggregation of TDP-43 in cultured cells. On the other
hand, in cells transfected with TDP-43 and any one of CK1�,
CK1�, CK2, and Cdc7/ASK (Dbf4/activator of S phase kinase,
known as the activator of Cdc7 (29, 30)), phosphorylated
TDP-43 was not found in the Sar-ppt (Fig. 1), indicating that
none of these kinases other than CK1�1-317 can elicit phos-
phorylated TDP-43 aggregation.

To monitor the localization and aggregation of TDP-43, we
performed immunofluorescence analyses of these transfected
cells. In confocal microscopic analyses of cells transfected with

FLAG-taggedCK1�1-317alone,endogenousTDP-43wasphos-
phorylated and aggregated in the cytoplasm (Fig. 2). In cells
expressing both FLAG-tagged CK1�1-317 and TDP-43, cyto-
plasmic inclusions composed of phosphorylated TDP-43 were
observed, and these inclusions were also stained with anti-ubiq-
uitin and anti-p62 antibodies. Therefore, their characteristics
are very similar to those of the phosphorylated TDP-43 inclu-
sions positive for ubiquitin and p62 seen in the brains of
patients with TDP-43 proteinopathy.

Next we performed time course experiments with cells
expressing TDP-43 and FLAG-tagged CK1�1-317. Cells were
transfected with plasmids expressing TDP-43, FLAG-tagged
CK1�1-317, or both, followed by immunoblotting analysis. In
cells expressing TDP-43 alone, phosphorylated TDP-43 was
not observed in the Sar-sup or Sar-ppt (Fig. 3). In cells trans-
fected with FLAG-tagged CK1�1-317 alone, endogenous
TDP-43 was phosphorylated and aggregated on days 2 and 3.
The level of FLAG-tagged CK1�1-317 in the Sar-ppt was
slightly greater than that in the Sar-sup, indicating that FLAG-
tagged CK1�1-317 is aggregation-prone (Fig. 3). We also
observed that phosphorylation and aggregation of full-length
TDP-43 preceded the fragmentation of phosphorylated

FIGURE 2. Microscopic analyses of phosphorylated TDP-43 inclusions by CK1�1-317. Shown are confocal microscopic analyses of cells expressing TDP-43
alone, FLAG-CK1�1-317 alone, or both. These cells were immunostained with anti-phosphorylated TDP-43 (pS409/410) polyclonal, anti-FLAG monoclonal,
anti-ubiquitin (Ub) monoclonal, and anti-p62 monoclonal antibodies and counterstained with Hoechst 33342. Scale bars � 20 nm.
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TDP-43 in cells expressing both TDP-43 and FLAG-tagged
CK1�1-317 (Fig. 3). Taken together, these results clearly indi-
cate that expression of CK1�1-317 induces phosphorylation
and mislocalization of TDP-43 and the formation of intracellu-
lar TDP-43 aggregates similar to those found in the brains of
FTLD-TDP or ALS patients.

Physiological Activities of TDP-43 Are Suppressed in Cells
Co-expressing TDP-43 and CK1�1-317—To investigate
whether the phosphorylation and induced aggregation of
TDP-43 by CK1�1-317 are accompanied by changes in the bio-
logical properties of TDP-43, we first performed an exon skip-
ping assay of CFTR, which is a well known target of TDP-43
(31). As shown in Fig. 4A, CFTR exon 9 skipping activity was
decreased significantly in cells expressing both TDP-43 and
CK1�1-317 compared with cells expressing TDP-43 alone. Fur-
thermore, we evaluated the mRNA levels of endogenous
HDAC6, which has also been reported to be a target of TDP-43
(32), in these cells. Real-time PCR analyses confirmed that
endogenous HDAC6 mRNA levels were reduced in cells trans-
fected with both TDP-43 and CK1�1-317 compared with cells
transfected with TDP-43 alone (Fig. 4B). These results suggest
that the levels of soluble and functional TDP-43 are reduced in
cells expressing TDP-43 and CK1�1-317 and, consequently,
that physiological activities of TDP-43 are suppressed in these
cells compared with normal cells.

CK1�1-317 Kinase Activity Is Essential for Intracellular
TDP-43 Aggregation—We tested whether kinase activity of
CK1�1-317 is necessary for induction of intracellular aggre-
gates of TDP-43. It has been reported that CK1� exon 2 encodes
a portion of the ATP-binding domain essential for kinase activ-
ity and that the K38R and K38A mutants of CK1� have no
kinase activity (33). We constructed inactive K38R and K38A
mutants of CK1�1-317 and transfected one of these mutants
and TDP-43 into SH-SY5Y cells. After 2 days of incubation,
cells were harvested, and cell lysates were prepared for immu-
noblot analyses. As shown in Fig. 5, Sar-insoluble TDP-43 was
detected in cells expressing wild-type CK1�1-317 alone, indi-
cating that endogenous TDP-43 is phosphorylated and aggre-
gated by expression of the WT. In cells transfected with both
the WT and TDP-43, a strong band of phosphorylated TDP-43
was detected in the Sar-ppt. On the other hand, we hardly
observed phosphorylated TDP-43 in the Sar-ppt of cells
expressing either the K38R or K38A mutant of CK1�1-317
together with TDP-43. These results show that kinase activity
of CK1�1-317 is required to elicit intracellular aggregate forma-
tion of phosphorylated TDP-43.

Identification of Phosphorylation Sites of Aggregated TDP-43
by CK1�1-317—To investigate whether phosphorylation of
TDP-43 by CK1�1-317 is a key modification for intracellular
accumulation, we attempted to identify phosphorylation sites
of aggregated TDP-43 by CK1�1-317. The Sar-ppt from cells
expressing TDP-43 and CK1�1-317 was prepared and sub-
jected to mass spectrometric analyses. Finally, we identified
Ser-92, Ser-292, Ser-305, Ser-317, Ser-333, Ser-389, Ser-393,
Ser-395, Ser-403, Ser-404, Ser-409 and Ser-410 as phosphory-
lation sites of aggregated TDP-43 by CK1�1-317, as shown in
Fig. 6A. Then, to evaluate the effects of phosphorylation of
TDP-43 on its intracellular accumulation in cells, we prepared
several Ser-to-Ala mutants of these TDP-43 phosphorylation
sites and transfected them together with CK1�1-317 into
SH-SY5Y cells. After incubation for 3 days, Sar-ppt fractions
were prepared and subjected to immunoblot analyses. We
observed that the band intensities of phosphorylated TDP-43 in
the Sar-ppt of cells expressing S393A/S395A (Fig. 6, B, lane 4,
and C, column 4), S403A/S404A (Fig. 6, B, lane 5, and C, column
5) and S393A/S395A/S403A/S404A (Fig. 6, B, lane 6, and C,
column 6) were decreased compared with cells expressing
TDP-43 wild-type (Fig. 6, B, lane 3, and C, column 3) using not
only anti-Ser(P)-409/410 but also anti-TDP-43 monoclonal
antibody (Fig. 6, B and C). On the other hand, the level of phos-
phorylated TDP-43 in the Sar-ppt of cells expressing S393A/
S395A (Fig. 6, B, lane 4, and C, column 4) was not significantly
different from that of cells expressing only CK1�1-317 (Fig. 6, B,
lane 2, and C, column 2). In other words, the level of phosphor-
ylated TDP-43 in the Sar-ppt of cells expressing S393A/S395A
was reduced to a level similar to that of endogenous phosphor-
ylated TDP-43, suggesting that phosphorylation of TDP-43 at
Ser-393/Ser-395 by CK1�1-317 facilitates its accumulation. In
the case of cells expressing S403A/S404A, the level of phosphor-
ylated TDP-43 in the Sar-ppt (Fig. 6, B, lane 5, and C, column 5)
was significantly higher than that in cells expressing only
CK1�1-317 (Fig. 6, B, lane 2, and C, column 2), which exhibit
the background phosphorylation level of the endogenous TDP-
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43. These results suggest that phosphorylation of TDP-43 at
Ser-393/Ser-395 and, to a lesser extent, at Ser-403/Ser-404
facilitates TDP-43 accumulation.

Prion-like Seeding Activity of Insoluble Phosphorylated
TDP-43 Aggregates—We examined whether insoluble phosphor-
ylated TDP-43 prepared from cultured cells has a prion-like
seeding function. The Sarkosyl-insoluble fraction was prepared
from cells expressing TDP-43 and CK1�1-317 as seeds (Sar-ppt
seeds) and introduced into cells expressing TDP-43 wild-type
or �NLS. After incubation for 2 days, these cells were stained
with anti-Ser(P)-409/410 antibody and analyzed by confocal
microscopy. In cells expressing TDP-43 wild-type treated with
Sar-ppt seeds, no aggregates positive for anti-Ser(P)-409/410
were observed (data not shown). In contrast, we found phos-
phorylated TDP-43 inclusions in cells expressing TDP-43
�NLS treated with Sar-ppt seeds, as shown in Fig. 7. No aggre-
gates were detected in cells expressing TDP-43 �NLS alone or
cells treated with Sar-ppt seeds alone (Fig. 7). These results
indicate that insoluble phosphorylated TDP-43 aggregates can
serve as seeds for the transformation of soluble TDP-43 into
insoluble aggregates in cultured cells, suggesting that phosphor-
ylated TDP-43 aggregates induced by CK1�1-317 have prion-
like seeding properties.

Alterations of TDP-43 Caused by Expression of CK1�1-317
Induce Toxicity in Yeast—To examine cytotoxicity in cells
expressing TDP-43, CK1�1-317, or both, cell viability was eval-
uated using the trypan blue exclusion method 2 days after the
transfection of plasmids. Viability rates were as follows (n � 5):
non-transfected cells, 89.6% � 1.4%; cells expressing TDP-43,
85.6% � 8.3%; cells expressing CK1�1-317, 92.2% � 4.0%; cells
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expressing TDP-43 and CK1�1-317, 93.2% � 2.3%. Therefore,
no obvious toxicity was found in cells having phosphorylated
TDP-43 aggregates.

Next we tried to develop a yeast model expressing human
TDP-43 and CK1� to examine whether alterations of TDP-43,
such as mislocalization and intracellular aggregation, resulting
in neurodegeneration are caused by expression of CK1�1-317
in vivo. We performed spotting assays to compare growth
defects elicited by full-length CK1� or CK1�1-317 in the pres-
ence or absence of TDP-43. As shown in Fig. 8A, co-expression
of TDP-43 and CK1�1-317 resulted in the greatest toxicity. Co-
expression of TDP-43 and CK1� also showed considerably
more toxicity than single expression of TDP-43, CK1�, or
CK1�1-317.

To test whether intracellular phosphorylated TDP-43 aggre-
gation is caused by CK1�1-317 in yeast, we performed immu-
noblot analyses of yeast cells expressing TDP-43 with CK1� or
CK1�1-317. Yeast lysates were fractionated with 1% Sar, and
Sar-sup and Sar-ppt were subjected to immunoblot analyses.
As shown in Fig. 8B, the band corresponding to phosphorylated

TDP-43 was detected not only in the Sar-sup but also the Sar-
ppt of yeast cells co-expressing TDP-43 and CK1�1-317, clearly
confirming that the formation of intracellular phosphorylated
TDP-43 aggregates is induced by CK1�1-317 in yeast. Further
more, immunofluorescence analyses of cells expressing TDP-43
and CK1�1-317 were carried out. When GFP-tagged TDP-43
(TDP-43-GFP) alone was transfected into yeast cells, TDP-43-
GFP was expressed in nuclei (Fig. 8C). On the other hand, in cells
expressing both TDP-43-GFP and CK1�1-317, we observed that
TDP-43 is mislocalized considerably from the nucleus to the cyto-
sol and is accumulated partly into dot-like inclusions, as shown in
Fig. 8C (arrowheads). Taken together, these data show that, in
yeast, CK1�1-317 can also induce mislocalization and aggregate
formation of TDP-43, resulting in cytotoxicity.

Discussion

Several kinases, such as CK1�, CK2, and Cdc7, have been
reported to be involved in phosphorylation of TDP-43 in vitro and
in vivo (13, 20–24). Among these kinases, we report here that the
truncated and hyperactive form of CK1� (CK1�1-317) has the
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most striking ability to hyperphosphorylate TDP-43, leading to its
accumulation in SH-SY5Y cells. However, we could not reproduce
phosphorylation of TDP-43 by CK1�, CK2, or Cdc7 in SH-SY5Y
cells. A possible reason for this apparent discrepancy would be
species or cell type differences between this cultured human neu-
roblastoma cell line and cells from fly and C. elegans.

Our results demonstrate that hyperactive CK1�1-317 causes
TDP-43 mislocalization and accumulation of intracellular phos-
phorylated TDP-43 in cultured cells. We also found that
expression of CK1�1-317 and TDP-43 causes mislocalization
and aggregation of phosphorylated TDP-43 in yeast cells, ulti-
mately resulting in cell death. It is particularly striking that mis-
localization of TDP-43 from nuclei to the cytosol was induced
in yeast cells expressing CK1�1-317 (Fig. 8C). Furthermore, we
showed that physiological activities of TDP-43 were suppressed
in cells including phosphorylated TDP-43 aggregates (Fig. 4).
These observations suggest that loss of normal TDP-43 func-
tion is a causative factor of cytotoxicity, although further inves-
tigation is needed to elucidate the molecular mechanisms of
cytotoxicity because of aggregation of phosphorylated TDP-43.

The mechanisms through which phosphorylation of TDP-43
by CK1�1-317 elicits intracellular aggregation of TDP-43 re-
main unclear, but it is interesting that multiple phosphorylation
at Ser-393/395 and/or Ser-403/404 of TDP-43 is likely to trigger
the intracellular accumulation. Autosomal-dominant missense
mutations in the TARDBP gene have been identified in patients
with ALS or FTLD-TDP. Interestingly, most mutations were
reported to be located in the C-terminal portion of TDP-43,
and those that are present in the C-terminal enhance aggrega-
tion of TDP-43 (17). It has also been reported that the C-termi-
nal portion of TDP-43 shows sequence similarity to prion pro-
teins (34). These findings suggest that conformational changes
triggered by mutation in the C-terminal portion of TDP-43 are
related to its aggregation. Therefore, hyperphosphorylation of
the C-terminal portion of TDP-43 (at Ser-393/395 and/or Ser-
403/404) may cause structural changes of full-length TDP-43
that promote intracellular aggregation.

We also observed that endogenous TDP-43 was slightly phos-
phorylated in cells treated with Sar-ppt seeds alone (Fig. 7),
which may indicate that TDP-43 seeds can trigger not only

Hoechst pS409/410 merge

TDP ΔNLS
+

Sar-ppt seeds

none
+

Sar-ppt seeds

TDP ΔNLS
+

none

FIGURE 7. Insoluble phosphorylated TDP-43 functions as seeds for intracellular TDP-43 aggregation. Confocal microscopic analyses of cells expressing
TDP-43 �NLS alone, cells treated with the Sar-ppt prepared from cells expressing TDP-43 and FLAG-CK1�1-317 (Sar-ppt seeds), and cells expressing TDP-43
�NLS and treated with Sar-ppt seeds. These cells were immunostained with anti-phosphorylated TDP-43 (pS409/410) polyclonal antibody and counterstained
with Hoechst 33342. Scale bars � 20 nm.
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aggregation but also phosphorylation of the endogenous pro-
tein. This result also suggests that conformational changes of
TDP-43 leading to aggregation may precede phosphorylation
in the presence of TDP-43 seeds. Alternatively, soluble TDP-43
may be conformationally altered when it is associated with
TDP-43 seeds in cells, and the resulting structurally changed
TDP-43 may be the preferential target of phosphorylation by
some kinase(s). In any case, further study will be needed to
elucidate the molecular relationship between protein aggrega-
tion and phosphorylation.

There is increasing evidence of cell-cell transmission of
aggregated proteins such as tau, �-synuclein, and TDP-43 in
both cell culture and animal models (12, 26, 35– 43). Therefore,
it is a plausible hypothesis that prion-like propagation of aber-
rant protein aggregates is involved in the pathogenesis of most
neurodegenerative diseases. In these models, recombinant pro-
tein aggregates or detergent-insoluble proteins prepared from
diseased brains were used as seeds and introduced into cultured
cells or brains of mice. Transduction of such exogenous seeds is
indispensable for the formation of aggregates in these models.
In the case of human diseased brains, abnormal protein aggre-
gates are likely to be produced in some vulnerable neurons and
then propagate between neuronal cells without such invasive
treatment. However, it remains less well understood how the

first aggregates to serve as seeds are formed in the cells. In this
study, we found that detergent-insoluble phosphorylated TDP-43
prepared from cells expressing TDP-43 and CK1�1-317 worked as
seeds for intracellular TDP-43 aggregation. Our results indicate
that the insoluble hyperphosphorylated TDP-43 aggregates gen-
erated by abnormally hyperactivated CK1� are not artifacts but
have prion-like amyloid features and can propagate from cell to
cell. Therefore, we suggest that aberrant activation of protein
kinases can be a cause of TDP-43 proteinopathy.

In summary, our results show that hyperphosphorylation of
TDP-43 by CK1�1-317 causes pathogenic changes of TDP-43
such as mislocalization and intracellular aggregation, leading to
neurodegeneration. We believe that our cellular and yeast mod-
els will contribute not only to a better understanding of the
mechanisms involved in TDP-43 proteinopathy but also to the
development of novel therapeutic strategies.

Author Contributions—T. N. and H. M. designed the research. T. N.
conducted most of the biochemical and immunofluorescence exper-
iments and wrote the manuscript with input from G. S., Y. T., and
F. K. G. S. performed the yeast experiments. Y. T. carried out the
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