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The dorsal root ganglion (DRG) is a highly vulnerable site in
diabetic neuropathy. Under diabetic conditions, the DRG is sub-
jected to tissue ischemia or lower ambient oxygen tension that
leads to aberrant metabolic functions. Metabolic dysfunctions
have been documented to play a crucial role in the pathogenesis
of diverse pain hypersensitivities. However, the contribution of
diabetes-induced metabolic dysfunctions in the DRG to the
pathogenesis of painful diabetic neuropathy remains ill-ex-
plored. In this study, we report that pyruvate dehydrogenase
kinases (PDK2 and PDK4), key regulatory enzymes in glucose
metabolism, mediate glycolytic metabolic shift in the DRG lead-
ing to painful diabetic neuropathy. Streptozotocin-induced dia-
betes substantially enhanced the expression and activity of the
PDKs in the DRG, and the genetic ablation of Pdk2 and Pdk4
attenuated the hyperglycemia-induced pain hypersensitivity.
Mechanistically, Pdk2/4 deficiency inhibited the diabetes-in-
duced lactate surge, expression of pain-related ion channels,
activation of satellite glial cells, and infiltration of macrophages
in the DRG, in addition to reducing central sensitization and
neuroinflammation hallmarks in the spinal cord, which proba-
bly accounts for the attenuated pain hypersensitivity. Pdk2/4-
deficient mice were partly resistant to the diabetes-induced loss
of peripheral nerve structure and function. Furthermore, in the
experiments using DRG neuron cultures, lactic acid treatment
enhanced the expression of the ion channels and compromised
cell viability. Finally, the pharmacological inhibition of DRG
PDKs or lactic acid production substantially attenuated diabe-
tes-induced pain hypersensitivity. Taken together, PDK2/4
induction and the subsequent lactate surge induce the meta-
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bolic shift in the diabetic DRG, thereby contributing to the
pathogenesis of painful diabetic neuropathy.

Painful neuropathy is one of the most common complica-
tions of diabetes. Patients with diabetes frequently exhibit a
variety of aberrant sensations, including pain hypersensitivity
(1, 2). Interrelation and mutual perpetuation of distinct aberra-
tions of specific metabolic pathways cause painful diabetic neu-
ropathy. Furthermore, painful diabetic neuropathy probably
results from a combination of metabolic and immune factors (3,
4). Metabolic aberrations are thought to be early events in pain-
ful diabetic neuropathy, leading to biochemical, structural, and
functional changes in the dorsal root ganglion (DRG)? and its
nerve trunk (5, 6). Likewise, hyperglycemia-induced immune
activation creates an inflammatory microenvironment sur-
rounding the influenced nerves (7).

The DRG is pathologically important in diabetes presenting
with painful neuropathic states, which patients with early poly-
neuropathy commonly experience (8). Ganglionic sensory neu-
rons are devoid of any special protection by the blood-brain or
blood-nerve barrier and have higher metabolic requirements
than the nerve trunk, which makes the ganglion a vulnerable
site in the pathogenesis of diabetic neuropathy (9, 10). Further-
more, the diabetic DRG, compared with the nerve trunk or
ending, is highly prone to metabolic abnormalities (11) and is
subjected to lower ambient oxygen tensions during hyperglyce-
mia, which may lead to aberrant metabolic functions (12).
Emerging evidence indicates that vacuolar degeneration, sen-
sory neuronal apoptosis (13), nerve demyelination (11), inflam-
matory infiltration (14), and activation of satellite glial cells
(SGCs) (15) in the DRG are common presentations in diabetes

3 The abbreviations used are: DRG, dorsal root ganglion; PDH, pyruvate dehy-
drogenase; PDK, PDH kinase; STZ, streptozotocin; DKO, double knock-out;
SGC, satellite glial cell; PWT, paw withdrawal threshold; GFAP, glial fibrillary
acidic protein; MAP2, microtubule-associated protein 2; MTT, 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NCV, nerve con-
duction velocity; TRPV, transient receptor potential vanilloid; ASIC, acid-
sensing ion channel; p-ERK, phosphorylated ERK; ANOVA, analysis of
variance; DCA, dichloroacetate; FX11, 2,3-dihydroxy-6-methyl-7-(phenyl-
methyl)-4-propyl-1-naphthalenecarboxylic acid.
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and are considered as crucial prerequisites for the onset of pain-
ful diabetic neuropathy (16). Diabetes-induced DRG tissue
ischemia may also lead to metabolic dysfunctions (17). Mito-
chondrial dysfunction-associated outcomes have been sug-
gested to play a crucial role in the pathogenesis of pain hyper-
sensitivities (18). However, the contribution of hyperglycemia-
induced metabolic aberrations to the pathogenesis of painful
diabetic neuropathy remains elusive.

The pyruvate dehydrogenase (PDH) kinases (PDKs) are key
regulators of the mitochondrial gatekeeping enzyme PDH com-
plex that plays a central role in glucose metabolism. PDH plays
an important role in glucose metabolism by linking the citric
acid cycle and oxidative phosphorylation with glycolysis and
gluconeogenesis (19, 20). In addition, the reversible phosphor-
ylation of PDH by PDKs and dephosphorylation by PDH phos-
phatases is primarily responsible for the regulation of PDH
complex activity (21). PDH complex activity is inhibited by the
phosphorylation of PDH-E1 by four different PDK isoforms
(PDK1-4) that are expressed in diverse peripheral and central
tissues (22). PDK-mediated phosphorylation and subsequent
inactivation of PDH result in a metabolic shift toward glycolysis
and produce lactate as an end product (23). This glycolytic met-
abolic shift has been outlined in diverse pathological condi-
tions, including cancer (24), obesity (25), cardiovascular disease
(26), liver disease (27), and most importantly diabetes (28).
Although lactate is the foremost energy source for neurons
(29), augmented lactate accumulation or lactic acidosis has
been implicated in neuronal damage and cytotoxic brain edema
(30, 31). An acidic microenvironment due to accumulation of
lactic acid has been documented to contribute to the develop-
ment of pathological pain, including tactile allodynia, via noci-
ceptor activation (32). However, the role of the DRG PDKs and
glycolytic metabolic shift in the pathogenesis of painful diabetic
neuropathy remains to be explored. In the present study, we
investigated PDK expression in the streptozotocin (STZ)-in-
duced diabetic DRG. We also compared the characteristics of
the DRG, histopathological features of peripheral nerves, nerve
conduction velocities, and nociceptive behaviors in wild-type
and Pdk2/4-deficient mice. Role of the PDK-lactic acid axis was
further investigated by pharmacological inhibition of PDKs and
lactic acid production. Cultured DRG neurons were employed
to investigate the mechanistic relationship among hyperglyce-
mia, PDK, and lactic acid in the pathogenesis of painful
neuropathy.

Experimental Procedures

Mouse Breeding and Maintenance—All experiments were
conducted in accordance with approved animal protocols and
guidelines established by the Animal Care Committee of
Kyungpook National University (Approval KNU-2012-73/66).
All efforts were made to minimize the number of animals used
and animal suffering. Male wild-type (WT, Pdk2*'" Pdk4™'™)
and Pdk2/4 double knock-out (DKO, Pdk2~'~ Pdk4~'~) mice
aged 8 —10 weeks were used. Pdk2 KO and Pdk4 KO mice were
generated as described previously (33). Pdk2 KO mice were
crossed with Pdk4 KO mice to produce Pdk2/4 DKO mice. Age-
matched WT mice were produced from the C57BL/6] mice
(Jackson Laboratory, Bar Harbor, ME), which were used to sta-
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bilize the genetic backgrounds of the Pdk2 KO and Pdk4 KO
mice. Genotypes were confirmed by PCR of the genomic DNA
as described previously (34). Animals were housed under a 12-h
light/dark cycle (lights on 07:00-19:00) at a constant ambient
temperature of 23 *= 2°C with food and water provided ad
libitum. Each individual animal was used for a single experi-
mental purpose.

Diabetes Induction—Age-matched Pdk2/4 DKO and WT
mice of the same background strain (C57BL/6]) were used for
the induction of diabetes. The mouse model of diabetes was
generated as described previously (35). Briefly, type-1 diabetes
was induced by an intraperitoneal injection of STZ (Sigma-
Aldrich; 150 mg/kg body weight) in 0.1 M citrate buffer (pH 4.5).
For pharmacological studies, type-1 diabetes was induced in
male Sprague-Dawley rats (8 weeks old) by intraperitoneal
injection of the STZ (65 mg/kg body weight). Blood samples
were collected from the tail vein after 3 days of the injection,
and glycemia was determined by using an SD CodeFree™ glu-
cometer (SD Biosensor Inc., Suwon, Korea). Animals with fast-
ing blood glucose values of >260 mg/dl were considered dia-
betic. In this study, all STZ-injected animals of both genotypes
were confirmed to be diabetic.

Behavioral Testing—After arrival in the animal care unit,
mice were allowed to acclimate to the testing room, equipment,
and experimenter for 1 week and before the actual testing on
the same testing day. One experimenter, who was unaware of
the animal genotypes or treatment conditions, handled and
tested all of the animals. Before the assessment of any pain
behavior, we performed the open field test as described previ-
ously (36) and confirmed that the deletion of Pdk2/4 genes did
not cause motor impairment, which is an important prerequi-
site for proper pain behavioral testing. Mechanical allodynia
associated with painful diabetic neuropathy was assessed by
measuring the paw withdrawal threshold (PWT). PWT was
evaluated before STZ injection and at different time points
afterward. The mechanical sensitivity was tested using cali-
brated Von Frey filaments (Bioseb™, Chaville, France), as
described previously (37). In brief, mice were acclimated for 20
min in inverted individual acrylic boxes with wire mesh floors
to provide access to the ventral side of hind paws. Von Frey
filaments were presented perpendicularly to the plantar surface
and held in position for ~5 s with enough force to cause a slight
bend. Two trials per paw were conducted with an interval of at
least 3 min. A positive response was defined as abrupt paw
withdrawal. When there was a positive response, the next lower
filament was applied, and when there was no response, the next
higher filament was used. PWT was quantified from five con-
secutive responses using Dixon’s up-down method (38).

Measurement of Nerve Conduction Velocity—The measure-
ment of nerve conduction velocity (NCV) was performed as
described previously (39, 40). Briefly, mice were anesthetized
with ketamine. Animals’ body temperature was automatically
maintained at a mean rectal temperature of 37 * 0.5 °C with a
heated water circulating system (T/Pump, model TP500, Gay-
mar, Orchard Park, NY). For motor NCV, the sciatic nerve was
stimulated (5-10 mA, 0.05-ms single square-wave pulses with
low and high filter settings of 0.3 and 3 kHz) proximally at the
level of the sciatic notch and distally at the level of the ankle
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with bipolar electrodes. Compound muscle action potentials
were recorded from the first interosseous muscle (between dig-
its 1 and 2) of the hind paw, amplified (16-channel microelec-
trode amplifier, model 3600, A-M Systems Inc.), stored, dis-
played, and digitized by a personal computer using AxoScope
software (Axon Instruments, Inc., Foster City, CA). Motor
latencies were measured from the stimulus to the onset of the
negative M-wave deflection of the compound muscle action
potentials. Distal and proximal motor latencies from 20 sepa-
rate recordings were averaged. Motor NCV (in m/s) was calcu-
lated by dividing the distance between stimulating electrodes
by the average latency difference. Similarly, for sensory NCV,
the digital nerve was stimulated with a square-wave pulse of
0.05-ms duration. The compound muscle action potentials
were recorded distally at the level of the ankle and proximally at
the level of the knee. Distal and proximal sensory latencies from
20 separate recordings were averaged. Sensory NCV (in m/s)
was calculated by dividing the distance between recording elec-
trodes by the average latency difference.
Immunohistochemistry and Histopathology—Mice were
deeply anesthetized and then perfused through the aorta with
0.1 M phosphate-buffered saline (PBS) followed by 4% parafor-
maldehyde fixative. The lumbar spinal cord segments and
DRGs from the level of L4, L5, and L6 and 1 cm of sciatic nerve
were dissected out, post-fixed in the same paraformaldehyde
fixative overnight, and cryo-protected in 30% sucrose in 0.1 M
PBS overnight at 4 °C. A cryostat was used to prepare 30-um-
thick sections for the spinal cord tissue and 10-um-thick sec-
tions for the DRG tissue. The sectioned DRG tissues were
mounted on gelatin-coated slides, and spinal cord sections were
placed in 0.1 M PBS. Sections were then blocked with 4% normal
serum in 0.3% Triton X-100 for 90 min at room temperature.
For immunofluorescence staining, sections were incubated
with primary antibodies against PDK2 (rabbit, 1:200; Acris
Antibodies, San Diego, CA), PDK4 (rabbit, 1:200; Atlas Anti-
bodies AB, Stockholm, Sweden), phospho-Ser***-PDH-Ela
(pyruvate dehydrogenase Elw) (rabbit, 1:200; Calbiochem),
phospho-Ser®*°-PDH-E1« (pyruvate dehydrogenase E1a) (rab-
bit, 1:200; Calbiochem), MAP2 (mouse, 1:200; Sigma-Aldrich),
Iba-1 (goat, 1:200; Novus Biologicals, Littleton, CO), or GFAP
(mouse, 1:500; BD Biosciences), overnight at 4 °C, and then
incubated with FITC- or Cy3-conjugated secondary antibodies
(1:200; Jackson ImmunoResearch, West Grove, PA). Slides
were washed, coverslipped with Vectashield mounting medium
(Vector Laboratories, Burlingame, CA), and visualized under a
fluorescence microscope. DRG and sciatic nerve tissues for
hematoxylin and eosin (H&E) staining and sciatic nerve tissues
for toluidine blue staining were dehydrated and embedded in
paraffin after fixation in 4% paraformaldehyde overnight; a
rotary slicer (LEICA RM2135, Wetzlar, Germany) was used to
prepare 3-um thick sections. H&E and toluidine blue staining
were performed and analyzed under a light microscope (DP70,
Olympus, Tokyo, Japan). The total number of normal or vacu-
olated DRG neurons was manually counted in six randomly
selected microscopic fields captured at high magnification. For
quantitative assessment, the percentage of the vacuolated DRG
neurons relative to the total number of cells was presented (41).

SASBMB

MARCH 11, 2016+VOLUME 291-NUMBER 11

DRG PDKs in Painful Diabetic Neuropathy

Quantitative Real-time Reverse Transcription-PCR—Deeply
anesthetized mice were perfused through the aorta with 0.1 m
PBS to remove the blood, and the lumbar spinal cord and DRG
tissues were rapidly dissected. Samples were then immediately
frozen in liquid nitrogen and instantly homogenized in TRIzol
reagent (Life Technologies, Inc.) for total RNA isolation. Total
RNA (2 pg) from each sample was reverse-transcribed into
¢DNA using a first strand cDNA synthesis kit (MBI Fermentas,
Hanover, Germany). Real-time RT-PCR was performed using
the one-step SYBR®PrimeScript ™ RT-PCR kit (Perfect Real-
Time; Takara Bio Inc., Tokyo, Japan) and the ABI Prism® 7000
sequence detection system (Applied Biosystems, Foster City,
CA), according to the manufacturer’s instructions. The 2~ 44¢7
method was used to calculate the relative changes in gene
expression (42), and Gapdh was used as an internal control. The
nucleotide sequences of the primers used in the real-time RT-
PCR were as follows: Pdkl, 5'-CAC CAC GCG GAC AAA
GG-3' (forward) and 5'-GCC CAG CGT GAC GTG AA-3’
(reverse); Pdk2, 5'-CCC CGT CCC CGT TGT C-3' (forward)
and 5'-TCG CAG GCA TTG CTG GAT-3’ (reverse); Pdk3,
5'-GGA GCA ATC CCA GCA GTG AA-3' (forward) and
5'-TGA TCT TGT CCT GTT TAG CCT TGT-3' (reverse);
Pdk4, 5'-CCA TGA GAA GAG CCC AGA AGA-3’ (forward)
and 5'-GAA CTT TGA CCA GCG TGT CTA CAA-3’
(reverse); TNF-a,5'-ATGGCCTCCTCATCAGTT C-3’ (for-
ward) and 5'-TTG GTT TGC TAC GAC GTG-3' (reverse);
IL-1B, 5'-AAG TTG ACG GAC CCC AAA AGA T-3' (for-
ward) and 5'-TGT TGA TGT GCT GCT GCG A-3' (reverse);
IL-6,5"-AGT TGC CTT CTT GGG ACT GA-3' (forward) and
5'-TCC ACG ATT TCC CAG AGA AC-3’ (reverse); Trpvl,
5'-ACC ACG GCT GCT TAC TAT CG-3' (forward) and 5'-
TCC CCA ACG GTG TTA TTC AG-3' (reverse); Asic3,
5-ACA TTG GGG GAC AGA TGG-3' (forward) and 5'-CAC
TGG GAG CGG TAG GAG-3' (reverse); Gapdh, 5'-TGG GCT
ACA CTGAGC ACCAG-3' (forward) and 5'-GGG TGT CGC
TGT TGA AGT CA-3’ (reverse).

Western Blotting Analysis—DRGs (L4 —L6) were isolated and
washed in ice-cold PBS and placed in 300 pl of lysis buffer (150
mM sodium chloride, 1% Triton X-100, 1% sodium deoxy-
cholate, 0.1% SDS, 50 mm Tris-HCI (pH 7.5), 2 mm EDTA)
(GenDEPOT, Barker, TX) containing Halt™ protease inhibi-
tor (1X) and phosphatase protease inhibitor mixtures (1X)
(Thermo Scientific). Specimens were individually homoge-
nized and then centrifuged at 13,400 X g at 4 °C for 15 min.
Protein concentration was determined with a Bio-Rad protein
assay kit using bovine serum albumin as a standard. Proteins
(20-30 ug) from each sample were separated on 8 or 15% SDS-
polyacrylamide gels and transferred to PVDF membranes (Bio-
Rad) by the semidry electroblotting method. The membranes
were blocked with 5% skim milk and sequentially incubated
with primary antibodies against PDK2 (rabbit, 1:1000 monoclo-
nal antibody; Acris Antibodies), PDK4 (rabbit, 1:1000; Atlas
Antibodies AB), phospho-Ser***>-PDH-Ela (pyruvate dehydro-
genase Ela) (rabbit monoclonal antibody, 1:1000; Calbi-
ochem), phospho-Ser**°-PDH-Ela (pyruvate dehydrogenase
Ela) (rabbit monoclonal antibody, 1:1000; Calbiochem),
PDH-E1 (rabbit monoclonal antibody, 1:1000; Cell Signaling),
or a-tubulin (mouse monoclonal antibody, 1:2000; Sigma-
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Aldrich) and horseradish peroxidase-conjugated secondary
antibodies (anti-rabbit and anti-mouse IgG antibody; Amer-
sham Biosciences, Buckinghamshire, UK), followed by en-
hanced chemiluminescence detection (Amersham Biosci-
ences). Western blotting was repeated three times (n = 3) for
each condition.

Lactate Measurement—Mice were sacrificed by cervical dis-
location, and the DRGs (L4 —-L6) were isolated quickly. All of
the tissue samples were snap-frozen in liquid nitrogen. On the
day of the experiment, tissues were homogenized into 300 ul of
lactate assay buffer (Lactate Colorimetric kit, Abcam) and cen-
trifuged at 4 °C at 10,000 X g for 4 min. Supernatants were
filtered through a molecular weight 10,000 spin filter to remove
all proteins. Samples were tested according to the manufactu-
rer’s protocol. Lactate levels were normalized to controls.

Collection and Culture of DRG Neurons—DRG neurons were
prepared from adult mice as described previously (43). Briefly,
the DRGs from all spinal levels were collected in ice-cooled
DMEM (Gibco/Life Technologies, Darmstadt, Germany) and
treated with enzyme solution containing 4 mg/ml collagenase,
60 units of papain, and 5 mg/ml dispase (Sigma-Aldrich) for 10
min at 37 °C. Following trituration and centrifugation, the dis-
persed cells were resuspended in DMEM/F-12 culture media
(Sigma-Aldrich) containing 10% FBS (nerve growth factor or
glial cell line-derived neurotropic factor was not included in the
culture medium) and were plated in 35-mm poly-p-lysine-
coated glass-bottomed dishes. Cultures were maintained at
37 °Cin a 5% CO, incubator and assayed after 16 —20 h.

Evaluation of DRG Neuronal Viability and Survival—DRG
neurons were plated into poly-p-lysine-coated 96-well plate
with a density of 5 X 10* cells/well. After 24 h of incubation at
different experimental conditions, DRG neurons were treated
with glucose (25 mm) for 24 and 48 h and lactic acid (1, 6, 10, and
15 mMm with pH7.38,7.19, 6.89, and 6.73 media, respectively) for
24 h and were processed for quantification of cell viability by a
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT, 0.5 mg/ml; Sigma-Aldrich) assay (44). Briefly, MTT was
added to each well and incubated at 37 °C for 2 h in a 5% CO,
incubator. Insoluble formazan crystals were completely dis-
solved in DMSO, and absorbance at 570 nm was measured
using a microplate reader (VersaMax, Molecular Devices,
Sunnyvale, CA). Similarly, the same culture conditions were
used to perform trypan blue staining. Briefly, DRG neurons
plated in 35-mm poly-D-lysine-coated glass-bottomed dishes
were exposed to lactic acid (6, 10, and 15 mm) for 24 h. Medium
was removed, and cells were stained with 0.2% trypan blue solu-
tion for 1 min. Cell survival was quantified and expressed as a
percentage relative to the control cells.

Intraganglionic Injection—T o ascertain the effect of the phar-
macological inhibition of the DRG PDKs and lactic acid pro-
duction on painful diabetic neuropathy, dichloroacetate (DCA;
a PDK inhibitor, 10 mg/kg DRG weight, 5 ul) or vehicle (saline,
5 ul) and 2,3-dihydroxy-6-methyl-7-(phenylmethyl)-4-propyl-
1-naphthalenecarboxylic acid (FX11; a small molecule inhibi-
tor of lactate dehydrogenase A, 2, 5, or 10 mg/kg DRG weight, 5
wul) or vehicle (2% (v/v) DMSO, 5 ul) were delivered into the
right side L5 DRG of rats using methods similar to those
described previously for the intraganglionic injection in rats
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(45, 46). Briefly, an incision was made along the midline of the
back to expose the right para-vertebral region. The right para-
spinal muscles were separated from the transverse process at
the L5 spinal level, and connective tissues and muscles were
removed by iris scissors until the right L5 intervertebral fora-
men was identified. The L5 DRG was exposed using a micro
bone rongeur. A 29-gauge needle with a slightly bent beveled tip
was then advanced 2—4 mm into the L5 DRG to deliver the
DCA or FX11 using a microinjector. The intraganglionic injec-
tion was performed at an angle of 60° relative to the spinal cord.
Rats were used for the intraganglionic injection experiments
due to the large size of the DRG and surgical convenience com-
pared with mice. Employment of rats in this study also offered
an opportunity to validate our findings in another species. It is
worthy of mention that DCA at a dose of 25 mg/kg/day has been
found to exert peripheral nerve toxicity (47), which is the com-
mon side effect during chronic DCA treatment (48). Several
previous studies have advocated that 10 mg/kg/day of DCA is
non-toxic to nerve directly at least for short term application
(49, 50). Lactate dehydrogenase A kinetically favors the conver-
sion of pyruvate to lactate coupled with the recycling of NAD ™"
(32, 51). Nonetheless, it should be noted that the inhibition of
lactate dehydrogenase A also inhibits the production of pyru-
vate by indirectly suppressing glycolysis at the level of glyceral-
dehyde-3-phosphate dehydrogenase.

Quantification and Statistical Analysis—For the immuno-
histochemical analysis, microscopic images of the DRG were
obtained (using a X40 objective lens) in 3—4 tissue sections/
animal. Similarly, microscopic images of the dorsal horn of the
spinal cord from the L4 -L6 region were obtained in 3—4 sec-
tions/animal (using a X20 objective lens). Images of the immu-
nostained tissues were captured with an Olympus DP70 camera
and DP Controller software (Olympus). At least three micro-
scopic images were selected randomly for statistical analysis to
obtain a better representation of the whole tissue. For the deter-
mination of immunofluorescence intensity, the area of the
whole image was selected, and the mean intensity was mea-
sured using Image] software (National Institutes of Health,
Bethesda, MD). Likewise, intensities of bands obtained by
Western blotting were also quantified using Image]J. The back-
ground intensity of the band was also determined and deducted
from the values obtained. The graphs represent the average of
all images. All of the results are presented as the means * S.E.
Statistical comparisons were performed by either Student’s ¢
test or one-way analysis of variance (ANOVA) with Dunnett’s
multiple-comparison or two-way ANOVA test by using SPSS
version 22.0K (SPSS Inc., Chicago, IL). The Mann-Whitney test
and the one-way ANOVA with Dunnett’s multiple-comparison
tests were used to compare the PWTs measured by the von Frey
filaments with the up-down paradigm at a single interval. Dif-
ferences in the probability values of less than 0.05 (»p < 0.05)
were considered statistically significant.

Results

Enhanced Expression and Activity of PDK2 and PDK4 in the
Diabetic DRG—To investigate the role of PDKs in the patho-
genesis of diabetic neuropathic pain, we first examined the
expression and activity of PDK isoforms (PDK1-4) in the DRG
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FIGURE 1. Expression of PDK2, PDK4, and phosphorylated PDH in the DRG post-STZ injection. The expression of Pdk2 and Pdk4 mRNAs in the DRG at 1, 2,
3, and 6 weeks following STZ injection was assessed by real-time RT-PCR (A). Results were obtained from three different animals for each condition. Protein
levels of PDK2 and PDK4 at 3 weeks post-STZ injection (B) and phosphorylated PDH (p-S?°*>-PDH and p-S°?°-PDH) at 1 week (C) and 3 weeks (D) after STZ injection
in the DRG were assessed by Western blotting analysis. Quantification of the band intensities is shown in the adjacent graphs. *, p < 0.05 versus the
vehicle-treated control animals. Quantification was based on normalization to PDH-E1 for C and D, Student’s t test, n = 3; mean = S.E. (error bars). w, week(s).

tissues following STZ injection by using real-time RT-PCR,
Western blotting analysis, and immunostaining. A substantially
increased expression of Pdk2 mRNA at 3 weeks and Pdk4
mRNA at 2, 3, and 6 weeks (Fig. 14), but not Pdkl or Pdk3
mRNA (data not shown), was found in the DRG tissues follow-
ing STZ injection. The expression of Pdk2 and Pdk4 mRNAs
peaked at 3 weeks post-STZ injection. Similarly, the levels of
PDK2 and PDK4 proteins (Fig. 1B) and phosphorylated PDH
proteins (p-$*°*-PDH and p-S°°°-PDH) (Fig. 1, C and D) were
markedly increased in the DRG tissues at 1-3 weeks post-STZ
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injection compared with those of vehicle-injected control animals.
Next, we conducted immunostaining to identity the cell types in
the DRG that express PDKs (Fig. 2). Double immunostaining of
PDK2/4 and MAP2 (a neuronal marker) in the DRG at 3 weeks
after STZ injection showed that PDK2 and PDK4 were primarily
co-localized with the ganglionic neurons (Fig. 24), indicating that
neurons are the major cell type expressing PDKs in the DRG from
diabetic animals. Furthermore, increased immunoreactivities for
Iba-1 (a macrophage marker in the periphery (52)) (Fig. 2B) and
GFAP (a SGC marker in the DRG (15)) (Fig. 2C) were observed in
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FIGURE 2. Expression of PDK2 and PDK4 in neurons, infiltrated macro-
phages, and activated satellite glial cells in the diabetic DRG. Immunofluo-
rescence analyses show the expression of PDK2 and PDK4 in neurons (A), infil-
trated macrophages (B), and activated SGCs (C) in the DRG at 3 weeks post-STZ
injection. PDK2 and PDK4 co-localized with MAP2 (a neuronal marker), Iba-1 (a
macrophage marker), and GFAP (a SGC marker). Arrows indicate the representa-
tive double-labeled cells. Scale bars, 100 um. The number of cells expressing
PDK2 or PDK4 is presented in adjacent graphs. Images show the representative
results of at least three independent experiments. *, p < 0.05 versus the vehicle-
treated control animals, Student’s t test, n = 3; mean = S.E. (error bars). ND, not
detected; MAP2, microtubule-associated protein 2.

the DRG tissues at 3 weeks post-STZ injection, which is the time
point representing the maximal expression of PDK2 and PDK4
mRNAs and proteins. PDK2 and PDK4 were also found to be par-
tially co-localized with macrophages and SGCs. No considerable
immunoreactivities for Iba-1 or GFAP were observed in the vehi-
cle-injected control animals (Fig. 2). These data suggest that
hyperglycemia enhanced the expression and activity of PDKs,
especially PDK2 and PDK4, in the ganglionic neurons, SGCs, and
infiltrated macrophages.

Attenuation of Diabetes-induced Pain Hypersensitivity in
Pdk2/4-deficient Animals—Based on the enhanced expression
and activity of PDK2 and PDK4 in the DRG, we hypothesized that
PDK2 and PDK4 up-regulation in the DRG may play an important
role in the pathogenesis of painful diabetic neuropathy. This
hypothesis was tested using Pdk2/4 DKO mice. We compared the
pain responses of WT and Pdk2/4 DKO mice before and up to 15
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FIGURE 3. Pdk2/4 DKO mice display attenuated pain response following
diabetes induction. STZ injection reduced paw withdrawal threshold to
force. The STZ-induced mechanical hypersensitivity is attenuated in Pdk2/4
DKO mice compared with WT animals up to 4 weeks. *, p < 0.05 versus the WT
animals with diabetes, Mann-Whitney and one-way ANOVA with Dunnett’s
multiple-comparison tests for paw withdrawal threshold, n = 10 (up to 6
weeks) or n = 4 (after 6 weeks); mean = S.E. (error bars). w, week(s).

weeks after STZ injection (Fig. 3). Pain hypersensitivity (mechan-
ical allodynia) was induced from 1 to 4 weeks post-STZ injection.
The diabetes-induced pain hypersensitivity was substantially
attenuated by Pdk2/4 deficiency. Mechanical hypersensitivity was
observed in diabetic mice at an early phase (1—4 weeks post-STZ
injection). However, diabetes-induced mechanical allodynia was
not seen after 4 weeks post-STZ injection. This finding suggests
that PDK2/4 play a crucial role in the pathogenesis of diabetes-
induced pain hypersensitivity.

Pdk2/4 Deficiency Diminished Macrophage Infiltration, Acti-
vation of Satellite Glial Cells, Proinflammatory Cytokine Re-
lease, Lactate Surge, and Expression of Pain-related Ion Chan-
nels in the Diabetic DRG—Immunofluorescence analyses
showed the infiltration of macrophages and activation of SGCs
in the DRG at 3 weeks post-STZ injection. Infiltration of Iba-1-
positive macrophages in the diabetic DRG was significantly
reduced in the Pdk2/4-deficient mice (Fig. 4A4). Similarly, the
DRGs from diabetic mice showed activation of SGCs, defined
by increased immunoreactivity for GFAP and structural hyper-
trophy, compared with that of vehicle-injected control animals.
Interestingly, these hallmarks of activated SGCs were reduced
in the DRG from Pdk2/4-deficient diabetic mice (Fig. 4A). Fur-
thermore, diabetes-induced expression of proinflammatory
cytokines, such as TNF-q, IL-18, and IL-6, in the DRGs was
substantially diminished by Pdk2/4 deficiency (Fig. 4B). The
fact that the diabetic DRG is subjected to lower ambient oxygen
tensions during hyperglycemia (12), which favors the conver-
sion of pyruvate to lactate, encouraged us to assess the produc-
tion of lactic acid in the diabetic DRGs. As expected, the lactate
production was substantially augmented in the DRGs of dia-
betic animals compared with that of control animals. In this
study, DRG lactate concentration in control animals has been
found to be 0.74 mmol/liter, which is consistent with the pre-
vious study showing a lactate level of less than 2 mmol/liter in
normal hind paw tissue (53). Pdk2/4 deficiency lessened the
hyperglycemia-induced lactate surge (Fig. 4C). The results are
consistent with the up-regulation of PDK2 and PDK4 in the
diabetic DRG (Fig. 1, A and B). Up-regulated PDKs may inhibit
PDH, thereby inducing a metabolic shift toward lactic acid pro-
duction. It is well documented that the acidic microenviron-
ment favors the expression of the transient receptor potential
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FIGURE 4. Pdk2/4 deficiency attenuates macrophage infiltration, activation of satellite glial cells, proinflammatory cytokines expression, lactate
surge, and expression of Trpv1 and Asic3 in the diabetic DRG. A, Iba-1(a macrophage marker) and GFAP (an SGC marker) immunostainings reveal their
increased immunoreactivity in the DRG of WT animals at 3 weeks post-STZ injection, whereas Pdk2/4 deficiency significantly attenuates such an increase in
immunoreactivities. Quantifications and statistical analyses of stained images are presented in adjacent graphs. Scale bars, 100 um. *, p < 0.05 versus the
vehicle-treated control animals; #, p < 0.05 between the indicated groups, Student’s t test, n = 6; mean = S.E. IR, immunoreactivity. B, the relative expression
of TNF-q, IL-1B8, and IL-6 mRNAs in the DRGs after 3 weeks of STZ injection as evaluated by real-time RT-PCR. C, lactate assay was performed to measure the
lactate accumulation in the DRG at 3 weeks after STZ injection. Results of lactate levels are presented as the -fold change relative to control. D, the expression
of Trpv1 and Asic3 mRNAs in the DRGs at 3 weeks after STZ injection was assessed by real-time RT-PCR. Results for mRNA expression are displayed as the -fold
increase of gene expression normalized to GAPDH. *, p < 0.05 versus the vehicle-treated control animals; #, p < 0.05 between the indicated groups, Student’s
ttest, n = 6 (for Band D) or n = 3 (for C); mean = S.E. (error bars).

vanilloid (TRPV) (54) and acid-sensing ion channel (ASIC) (55). transduction. Taken together, these findings suggest that
TRPV1, which is widely distributed in the peripheral nervous PDK2/4 in the diabetic DRG play a crucial role in the induction
system, has been reported to play a crucial role in the detection, of inflammatory infiltration, activation of SGCs, augmented
transduction/transmission, and regulation of pain in diverse lactate production, and ultimately the induction of peripheral
pathologies (56, 57). Similarly, ASIC3, which is widely distrib-  sensitization, a prerequisite for the development of pain
uted in the ganglionic sensory neurons, is highly sensitive to  hypersensitivity.

acidic pH and is activated by extracellular acidosis, causing pain Effect of Hyperglycemia and Lactic Acid on Cultured DRG
under several pathological conditions (58). Thus, we next Neurons—Enhanced expression of PDK2/4, augmented pro-
assessed the expression of TRPV1 and ASIC3 in the diabetic  duction of lactic acid, and up-regulated expression of TrpvI as
DRGs and found their substantial up-regulation at the level of well as Asic3 in the diabetic DRGs led us to investigate the
mRNAs (Fig. 4D). Genetic deletion of Pdk2/4 significantly less- mechanistic relationship among hyperglycemia, PDKs, lactic
ened the up-regulation of TrpvI and Asic3 mRNAs expression acid, ion channels, and viability of sensory neurons in the devel-
in the DRGs (Fig. 4D), indicating a mechanistic role played by opment of pain hypersensitivity using cultured DRG neurons.
PDK2/4 in the peripheral sensitization and the subsequent pain ~ Exposure of cultured DRG neurons to glucose (25 mm), but not
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FIGURE 5. Effect of glucose and lactic acid on DRG neurons. Cultured DRG neurons were treated with glucose (25 mwm), lactic acid (10 mm), or recombinant
mouse TNF-a protein (rmTNF-«; 100 ng/ml) for 24 h. The expression of Pdk2 and Pdk4 (A) and Trpv1 and Asic3 (B) mRNAs was assessed by real-time RT-PCR.

Cultured DRG neurons were treated with 25 mm glucose for 24-48 h (C) or with

1,6, 10, and 15 mm lactic acid for 24 h (D). An MTT assay (left) or trypan blue

staining (right) were performed to assess the neuronal viability at the specified time points following the treatment. For trypan blue staining, the number of
neurons in the whole image was counted. The average number of neurons in control conditions was 400.33 = 6.23. The experiment was done in duplicate. E,

H&E staining of paraffin sections of the DRG was performed to assess diabetes-i

nduced alterations in the DRG tissue integrity at 3 weeks post-STZ injection.

Quantification of vacuolated DRG neurons (in percent) is presented in the adjacent graph. Scale bar, 50 um. *, p < 0.05 versus the untreated controls; #, p < 0.05

between the indicated groups, one-way ANOVA with Dunnett’s multiple-comparison test (for A, B, and D); two-way ANOVA (for C). NS, not significant; n =

A-D) or n = 6 (for E); mean = S.E. (error bars).

lactic acid (10 mm) and recombinant mouse TNF-« protein
(rmTNF-o; 100 ng/ml), for 24 h substantially enhanced the
expression of Pdk2 and Pdk4 mRNAs (Fig. 5A). These results
are consistent with a previous study reporting that treatment of
primary islet cells with a high concentration of glucose substan-
tially increased the expression of Pdk2 and Pdk4 mRNAs (59).
However, the expression of Pdk1 and Pdk3 mRNAs was unal-
tered compared with those in untreated control neurons (data
not shown). These findings suggest that hyperglycemia directly
enhances the expression of PDK2 and PDK4 in the DRG. More-
over, following 24-h exposure to lactic acid, but not glucose,
cultured DRG neurons showed enhanced expression of TrpvI
and Asic3 mRNAs (Fig. 5B). In addition, rmTNF-a-stimulated
cultured neurons revealed significantly enhanced expression of
Trpv1 but not Asic3. In a separate set of experiments, hypergly-
cemic exposure for 24 and 48 h induced a small but significant
decrease in the viability of DRG neuron cultures, which was not
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observed in the DRG neurons isolated from Pdk2/4-deficient
mice (Fig. 5C). Furthermore, following 24 h of exposure to lactic
acid at concentrations of 10 and 15 mm, but not of 1 or 6 mym,
cultured DRG neurons exhibited slightly but significantly com-
promised viability (Fig. 5D). These findings outline the role of
hyperglycemia as a direct enhancer of PDK2/4 expression in the
DRG, the role of lactic acid as an inducer of pain-related ion
channel expression, and the neurotoxic effect of glucose-lactic
acid in the diabetic DRG. These results also indicate that the
metabolic aberrations associated with the glucose-PDK-PDH-
lactic acid axis in the diabetic DRG cause neuronal toxicity and
pain sensitization, which ultimately drive the pathogenesis of
painful diabetic neuropathy. This assumption was supported by
histological analysis of DRG. The histological study of DRG
from diabetic animals revealed that the DRG tissues exhibited
loose, disorganized, and vacuolar-like defects along with degen-
erated and dispersed sensory neurons compared with those of
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vehicle-injected control animals; however, such morphological
changes in the diabetic DRG were minimized by the Pdk2/4
deficiency (Fig. 5E). These results suggest that PDK2/4 are
closely involved in the progression of diabetes-induced histo-
pathological alterations in the DRG and subsequent develop-
ment of pain hypersensitivity.

Pharmacological Inhibition of DRG PDKs and Lactic Acid
Production Attenuated Diabetes-induced Pain Hypersensi-
tivity—The crucial contribution of PDKs and lactic acid pro-
duction in the DRG to the pathogenesis of painful diabetic neu-
ropathy was ascertained by pharmacological inhibition of DRG
PDKs and lactate dehydrogenase A. Intraganglionic injection of
the pharmacological inhibitors was done in rats, because the
size of mouse DRG is too small for the direct needle injection.
DCA was used to inhibit PDK, whereas lactate dehydrogenase
A inhibitor FX11 was used to suppress lactic acid production.
Single intraganglionic injection of DCA (10 mg/kg DRG
weight) (Fig. 6A) or FX11 (10 mg/kg DRG weight) (Fig. 6B) in
rats having painful diabetic neuropathy (2 weeks after STZ
administration) significantly attenuated the diabetes-induced
mechanical allodynia within 6 h to 1 day following injection.
We also assessed the effect of FX11 on mechanical allodynia at
the doses of 2 and 5 mg/kg DRG weight: FX11 exerted dose-de-
pendent effects on diabetes-induced mechanical allodynia
(data not shown). However, vehicle or surgical operation alone
did not alter the PWTs. We confirmed that STZ-induced dia-
betes in rats was also accompanied by a substantial enhance-
ment of PDK4 expression in the DRG at 3 weeks post-STZ
injection (Fig. 6C).

Pdk2/4 Deficiency Attenuated Diabetes-induced Deficit in
Nerve Conduction Velocity and Loss of Sciatic Nerve Integrity—
The pivotal role of PDK2/4 in diabetes-induced histopatholog-
ical alterations in the DRG encouraged us to investigate the
diabetes-induced functional and structural changes in its nerve
trunk. We first examined the peripheral nerve function by mea-
suring the NCVs. Animals with diabetes exhibited substantial
deficits in the sensory and motor NCVs compared with control
animals. Pdk2/4 deficiency significantly attenuated the diabe-
tes-induced NCV deficit (Fig. 7A). We performed H&E and
toluidine blue staining of the sciatic nerve to further examine
the diabetes-induced histopathological changes in the periph-
eral nerve. Diabetic mice exhibited loose, thin, and disorga-
nized myelinated nerve fibers. Some nerve fibers in the sciatic
nerve appeared demyelinated, lamellar spaces were expanded
and separated from each other, and visible signs of axonal atro-
phy were evident at 3 weeks post-STZ injection compared with
the vehicle-injected control animals. On the other hand, the
sciatic nerve from Pdk2/4-deficient animals was partially resist-
ant to the diabetes-induced structural and functional altera-
tions (Fig. 7B). These findings suggest that PDK2/4 are impli-
cated in the structural and functional alterations of the diabetic
nerve trunk that originates from the DRG and thereby contrib-
ute to the pathogenesis of painful diabetic neuropathy.

Role of PDK2/4 in Spinal Glial Activation, Expression of Pro-
inflammatory Cytokines, and Induction of Central Sensiti-
zation—We next examined the expression and role of PDK2/4
in the spinal cord at 3 weeks post-STZ injection. Although
STZ-induced hyperglycemia did not cause any significant
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FIGURE 6. Effect of the pharmacological inhibition of the DRG PDKs and
lactic acid production on diabetes-induced mechanical allodynia. To
determine the role of the DRG PDKs and lactic acid in the diabetes-induced
pain hypersensitivity, DCA (10 mg/kg DRG, 5 ul) or vehicle (A) and FX11 (10
mg/kg DRG weight, 5 ul) or vehicle (B) were administered to rats via the
intraganglionic route after 2 weeks of STZ injection. Paw withdrawal thresh-
old toforce was assessed at6 h, 1 day, 2 days, 3 days, and 5 days following DCA
and FX11 administration. Arrows, time points of STZ, DCA, FX11, or vehicle
administration. C, immunofluorescence analysis shows the expression of
PDK4 in rat DRG tissues at 3 weeks post-STZ injection. *, p < 0.05 versus the
animals with diabetes, Mann-Whitney and one-way ANOVA with Dunnett’s
multiple-comparison tests for paw withdrawal thresholds, n = 4 (for A and B)
or n = 3 (for C); mean = S.E. (error bars). d, day(s).

change in the expression of PdkI-4 mRNAs in the lumbar seg-
ment of the spinal cord (data not shown), a significant increase
in the number of Iba-1-positive microglial cells (60) was
observed in its dorsal horn, where microglia displayed en-
hanced Iba-1 immunoreactivity with reactive morphological
changes. However, the Iba-1 immunoreactivity and microglial
morphological changes were attenuated in the DKO mice (Fig.
8A). Likewise, the number of GFAP-positive astrocytes (61) was
markedly increased in the spinal cord dorsal horn of WT mice,
which was accompanied by the increase of GFAP immunoreac-
tivity and hypertrophic morphology with thick processes. On
the other hand, DKO animals with diabetes showed a signifi-
cantly decreased spinal GFAP immunoreactivity (Fig. 84).
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FIGURE 7. Pdk2/4 deficiency attenuates nerve conduction velocity deficit
and sciatic nerve damage in diabetic mice. A, sensory and motor nerve
conduction velocities (sensory NCV and motor NCV) assessed before and at 3,
6, and 9 weeks after STZ injection. B, H&E and toluidine blue staining of par-
affin-sectioned sciatic nerve performed at 3 weeks post-STZ injection. The
high magnification image (insets in B; original magnification, X400) shows a
single nerve fiber. Scale bar, 50 wm.Images show the representative results of
at least three independent experiments. *, p < 0.05 between WT and DKO
animals with diabetes, Student’s t test, and one-way ANOVA with Dunnett’s
multiple-comparison test. NS, not significant; n = 3; mean = S.E. w, week(s).

Moreover, WT mice with diabetes showed a significantly
increased expression of TNF-q, IL-13, and IL-6 mRNAs in the
lumbar segment of the spinal cord at 3 weeks of post-STZ injec-
tion, but such an increase was substantially lessened in Pdk2/4-
deficient animals (Fig. 8B). Furthermore, we also assessed the
expression of spinal phosphorylated ERK (p-ERK), which is a
dynamic and canonical marker for central sensitization in spi-
nal neurons (62). Phosphorylation of ERK in the spinal cord
dorsal horn, especially in superficial laminas, was strongly
induced in diabetic animals, which was inhibited by Pdk2/4
deficiency (Fig. 8C). These findings indicate that the activation
of glia, enhanced expression of proinflammatory cytokines, and
induction of central sensitization in the spinal cord might be a
direct consequence of PDK2/4-associated pathological altera-
tions in the DRG.

Discussion

The present study demonstrates that PDK2/4-mediated gly-
colytic metabolic shift in the DRG plays an important role in the
pathogenesis of diabetes-induced pain hypersensitivity. STZ-
induced diabetes significantly up-regulated the expression and
activity of PDK2 and PDK4 in the DRG. These PDKs were
found to be expressed in DRG sensory neurons, activated SGCs,
and infiltrated macrophages. Our study employing the Pdk2/4-
deficient mice revealed that the hyperglycemia-induced pain
hypersensitivity was substantially attenuated but not com-
pletely abolished by the genetic ablation of Pdk2/4. Further-
more, hyperglycemia-induced lactate surge, activation of SGCs,
infiltration of macrophages, and expression of pain-related ion
channels in the DRG, prerequisites for peripheral sensitization,
were significantly attenuated in Pdk2/4-deficient mice. Besides,
ablation of Pdk2/4 genes inhibited hyperglycemia-induced spi-
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FIGURE 8. Role of PDK2/4 in glial activation, expression of proinflamma-
tory cytokines, and phosphorylation of ERK in the spinal cord of diabetic
mice. A, Iba-1 (a microglia marker) and GFAP (an astrocyte marker) immuno-
reactivities significantly increased in the dorsal horn of the lumbar segment of
the spinal cord of WT mice at 3 weeks post-STZ injection, whereas these
immunoreactivities significantly diminished in the diabetic DKO mice. Dotted
lines demarcate the white and gray matters in the spinal cord dorsal horn.
Quantifications and statistical analyses of stained images are presented in
adjacent graphs. B, the relative mRNA expression of TNF-q, IL-183, and IL-6 in
the lumbar segment of the spinal cord (L4 -6) at 3 weeks after STZ injection as
assessed by real-time RT-PCR. Results for mRNA expression are displayed as
the -fold increase of gene expression normalized to GAPDH. C, immunofluo-
rescence staining was performed to detect the expression of p-ERK in the
lumbar segment of the spinal cord from vehicle/STZ-injected animals at 3
weeks post-injection. Scale bar, 200 um. Images show the representative
results of at least three independent experiments. *, p < 0.05 versus the vehi-
cle-treated control animals; #, p < 0.05 between the indicated groups,
Student’s t test, n = 6 (for A and B) and n = 3 (for C); mean = S.E. (error bars).

nal glial activation and phosphorylation of ERK, potential
markers for central sensitization. We also found that Pdk2/4
deficiency alleviated the diabetes-induced structural and func-
tional deficits in the peripheral nerve. In addition, cultured
DRG neurons exposed to a high concentration of glucose or
lactic acid showed a reduction in the viability, and the lactic
acid-induced acidic microenvironment favored the enhanced
expression of Trpv1 and Asic3. Moreover, these ganglionic neu-
rons exhibited substantially enhanced expression of Pdk2 and
Pdk4 when exposed to high glucose concentration. Further-
more, the pharmacological inhibition of the DRG PDKs or lac-
tic acid production substantially attenuated the diabetes-in-
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e pathogenesis of painful diabetic neuropathy. Hyperglycemia induces the

expression of PDK2/4 in DRG neurons, SGCs, and infiltrated macrophages. Glucose is thought to directly enhance the expression of the PDKs in DRG sensory
neurons, besides exerting direct neurotoxic effects. Consequently, the hyperglycemia-induced heightened expression of the PDKs facilitates the conversion of

pyruvate into lactic acid via inhibition of PDH. The infiltrated macrophages an
metabolic shift in the DRG and ensuing production of lactic acid induces neuro

d reactive SGCs also participate in the production of lactic acid. The glycolytic
nal damage and lowers pH. The acidic microenvironment favors the enhanced

expression of Trpv1 and Asic3 in the ganglionic sensory neurons, which causes neuronal hyperexcitability (peripheral sensitization). Furthermore, reactive SGCs
and infiltrated macrophages in the DRG also release diverse proalgesic mediators, including inflammatory cytokines. The peripheral nerve trunkis also affected

by hyperglycemia, contributing to the induction of peripheral sensitization. Fi

nally, the glucose-PDK-PDH-lactic acid axis in the DRG induces central sensiti-

zation involving spinal glial activation, up-regulation of proinflammatory cytokines, and neuronal ERK phosphorylation. Thus, PDK2/4 up-regulation in the
diabetic DRG plays a critical role in inducing peripheral as well as central sensitizations, eventually causing diabetic neuropathic pain.

duced pain hypersensitivity. These in vivo and in vitro findings
suggest that hyperglycemia-triggered increase in the expres-
sion and activity of PDK2/4 mediates the glycolytic metabolic
shift in the DRG and drives the pathogenesis of painful diabetic
neuropathy (Fig. 9).

Pain is a manifestation of aberrant function of the nervous
system in patients with diabetes (63, 64). In this study, the
expression and activity of PDK2/4 were found to be substan-
tially increased at 1— 6 weeks and peaking at 3 weeks in the DRG
following diabetes induction. STZ-induced diabetic rodents are
known to display robust mechanical hypersensitivity from the
very beginning of diabetes induction that persists for 4 —5 weeks
(65—67). The STZ-induced hyperglycemia invites alterations in
nerve fibers and subsequent abnormal nerve signals/functions
(68). Further, the hyperglycemia adversely interferes with the
functioning of blood vessels supplying to nerves (69). Hypergly-
cemic conditions in concert with nerve abnormalities and dys-
functional blood supply result in the release of proalgesic medi-
ators and activation of nociceptors, thereby leading to the
development of pain hypersensitivity (70). However, the STZ-
induced alterations, such as axonopathy, deficit in nerve con-
duction velocity, nerve demyelination, and neurodegeneration,
are progressive and irreversible, which results in the attenua-
tion of pain perception (71). The progressive loss of distal fibers
and subsequent lessening of epidermal small fiber density also
suggest the transient nature of the STZ-induced pain hypersen-
sitivity. Moreover, altered pain behavioral responses in the
STZ-induced diabetic rodents might be due to ketoacidosis,
weight loss, and physical decline (72). Expectedly, in the present
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study, the diabetes-induced mechanical hypersensitivity was
observed from 1 to 4 weeks post-STZ injection. In addition,
deficiency of Pdk2/4 substantially inhibited the development of
diabetes-induced mechanical hypersensitivity compared with
WT animals. DCA administration into the DRG attenuated
diabetes-induced pain hypersensitivity, suggesting that the
DRG PDKs play a critical role in the pathogenesis of diabetic
pain hypersensitivity. DCA, a PDK inhibitor, has been well doc-
umented to manage lactic acidosis (73), inhibit activation of
immune cells, and obstruct the inflammatory progression (74).
As discussed previously, neuron is the major cell type that
expresses PDKs. It is worth mentioning that diabetic DRG is
subjected to irreversible nerve damage, which might be related
to the transient expression of PDKs. The diabetic DRGs also
display activation of satellite glial cells, an upsurge of lactic acid,
and an inflammatory microenvironment. Such diabetes-in-
duced pathological changes are key drivers for the ontology of
painful neuropathy in experimental animals and patients. In
line with preclinical studies, patients with painful diabetic neu-
ropathy also experience irreversible nerve damage, lactic acido-
sis, and diminished nerve functions (71), indicating that the
critical role of PDKs found in preclinical models might also be
relevant to patients. Moreover, PDKs are markedly increased in
skeletal muscle of rats exposed to a high fat diet (75, 76). Fur-
thermore, Tao et al. (77) have recently reported that inactiva-
tion of Pdk genes improves hepatic insulin resistance-induced
diabetes. In addition, skeletal muscle expression of PDK4 and
related genes regulating mitochondrial function has reflected
alterations in substrate utilization and clinical features associ-
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ated with type 2 diabetes (78). PDK inhibitors binding at the
pyruvate or lipoyl binding sites have been shown to lower blood
glucose level in insulin-resistant animals (79). Combining our
results with these findings, it is speculated that PDKs might play
a pivotal role in both type 1 and 2 diabetes-driven pain hyper-
sensitivity. These results, taken together, suggest an important
role of PDK2/4 in the pain complication of patients with
diabetes.

Peripheral as well as central glial cells are crucial players in
the maintenance of homeostasis of the nervous system, provid-
ing neuronal metabolic support, pH regulation, and neuronal
survival (80). SGC, a glial cell type in the DRG, has been recently
implicated in pain pathobiology. Emerging evidence has amply
documented the pathological contributions of SGCs in diverse
experimental models of chronic pain, including axotomy,
inflammation, and chemical-induced neuropathy as well as dia-
betic neuropathy (15). Furthermore, SGCs, similar to their cen-
tral counterparts (81), are considered to be activated in many
preclinical pain models, including the painful diabetic neurop-
athy model (15, 82). Activated SGCs produce proinflammatory
mediators, including TNF-« and IL-18, under diverse patho-
logical conditions (83). In this study, Pdk2/4 deficiency remark-
ably lessened the hyperglycemia-induced activation of SGCs,
demonstrating that PDK2/4 play a crucial role in the patholog-
ical alterations of SGCs. Hyperglycemia also drives the inflam-
matory infiltration of macrophages in the DRG, which subse-
quently contributes to nerve demyelination and release of
different proinflammatory mediators having an important role
in the pathogenesis of painful neuropathy (14, 84, 85). Mac-
rophage-derived proinflammatory cytokines, such as TNF-a,
IL-1B, and IL-6, are documented to contribute to the pathogen-
esis of painful diabetic neuropathy (86, 87). In the current study,
Pdk2/4 deficiency markedly attenuated the diabetes-induced
macrophage infiltration and the subsequent expression of pro-
inflammatory cytokines in the DRG. These findings suggest
that the PDKs play a pivotal role in the induction of reactive
SGCs and the creation of proinflammatory microenvironment
in the diabetic DRG, the prerequisites for pain pathogenesis.

Lactate, the end product of glycolysis (23), serves as an oxi-
dative fuel for neurons (88). Glycolytic metabolic shift has been
demonstrated to be a key player in prevalent diseases, including
brain edema, inflammation, tissue injury, ischemic stroke, and
cancer (31, 89, 90). Neurons also produce lactate in pathological
conditions. This lactate is involved in the pathogenesis of
diverse neurodegenerative diseases (91-93). Similarly, aug-
mented lactate accumulation has been identified as one of the
most important deleterious effects of hyperglycemia (94). It has
been well documented that patients with diabetes frequently
exhibit increased blood lactic acid levels with decreased pH
(95, 96). In the present study, STZ-induced hyperglycemia
increased the lactate production in the DRG, which was signif-
icantly diminished in Pdk2/4-deficient animals. Neurons are
reported to be greatly susceptible to swelling at certain non-
physiologic pH levels, and they are found to be more vulnerable
than glial cells (97, 98). Glia and macrophages are also sources
of lactic acid under diverse pathological conditions (99-101). A
lactic acid-induced acidic microenvironment provokes the
activation of glial cells and macrophages and thereby favors the
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release of diverse proinflammatory mediators, suggesting that
the decreased pH due to accumulation of lactic acid might serve
as a potential inducer of proinflammatory cytokine production
(102). In addition, lactic acid influences every cell type that
expresses ASIC. Especially, ASIC3 is of interest, because it is
commonly expressed at extremely high levels in virtually all
DRG sensory neurons (103). Likewise, TRPV1 is a well docu-
mented ion channel associated with the progression of pain
hypersensitivities (104, 105). ASIC3 and TRPV1 are highly sen-
sitive to acidic microenvironment, acting as transducers for
nociceptive responses. Accumulating evidence suggests that
the expression of these ion channels is increased in the DRG of
experimental diabetic animals (106, 107). In this study, the
induction of TrpvI and Asic3 expression was confirmed in the
diabetic DRG, and Pdk2/4 deficiency significantly attenuated
the hyperglycemia-induced heightened expression of the ion
channels. Furthermore, cultured DRG neurons following expo-
sure to lactic acid exhibited enhanced expression of TrpvI and
Asic3 along with a significant degree of irreversible neurotoxic
effects. The crucial role of lactic acid in diabetes-induced noci-
ceptive behavior was confirmed by pharmacological inhibition
of lactic acid production using lactate dehydrogenase A inhib-
itor, which substantially attenuated diabetes-induced pain
hypersensitivity. In addition, electrophysiological and histo-
pathological investigations revealed a substantial difference
between WT and Pdk2/4-deficient diabetic mice in terms of
the structural and functional characteristics of the DRG
nerve trunk. Diabetes-induced NCV deficit and compro-
mised sciatic nerve integrity were significantly attenuated by
Pdk2/4 deficiency. These findings substantiate the crucial
role of PDK/PDH-regulated lactic acid accumulation in the
diabetic DRG in the development of peripheral neuropathy
and pain hypersensitivity.

Neuronal sensitization in the spinal cord dorsal horn is con-
sidered as a central mechanism for the induction and mainte-
nance of pain hypersensitivity (108). The central sensitization
causes substantial prolongation and enhancement of response
to both noxious and innocuous stimuli (hyperalgesia and allo-
dynia, respectively) under diabetic conditions (109, 110).
Although the expression of PDKs in the spinal cord, unlike the
DRG, was not induced in diabetic animals, hyperglycemia-in-
duced pathological alterations in the periphery caused the
activation of spinal microglia and astrocytes, which was signif-
icantly attenuated in the Pdk2/4-deficient mice. Hyperglyce-
mia-induced expression of TNF-q, IL-1, and IL-6 in the lum-
bar segment of the spinal cord was also inhibited by Pdk2/4
deficiency. Furthermore, diabetes-induced expression of
p-ERK in the superficial laminas of the spinal cord dorsal horn
was remarkably lessened by Pdk2/4 deficiency. Previously, the
phosphorylation of ERK within spinal neurons, a potential
marker for central sensitization, has been commonly observed
in diverse experimental chronic pain models (111). Rodents
with diabetic neuropathy also exhibit remarkably increased
expression of p-ERK in the spinal cord dorsal horn (112). These
findings suggest that hyperglycemia-triggered up-regulation
of PDK2/4 expression, the subsequent glycolytic metabolic
shift, and finally, the lactic acid surge, may sequentially lead
to pathophysiological consequences in the diabetic DRGs,
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such as the induction of reactive gliosis, macrophage infil-
tration, acidic and proinflammatory microenvironment, and
neuronal sensitization in the periphery. This in turn triggers
spinal events that ultimately cause central sensitization and
pain hypersensitivities.

In conclusion, our findings suggest that PDK2 and PDK4 are
imperatively involved in the development of painful diabetic
neuropathy. Hyperglycemia-induced expression and activity of
PDK2/41ead to a glycolytic metabolic shift in the diabetic DRG.
The PDK2/4-mediated metabolic dysfunctions, activation of
SGCs, and infiltration of macrophages in the diabetic DRG con-
currently augment the production of lactic acid and other pro-
inflammatory mediators, which favors the sensitization of the
peripheral nociceptive pathway. In addition, the augmented
lactic acid production adversely affects the neuronal viability in
the DRG. Diabetes-induced pathological consequences in the
DRG and its nerve trunk trigger the central sensitization and
thereby contribute to the development of diabetes-induced
pain hypersensitivities. Our findings identify the glucose-
PDK2/4-PDH-lactic acid axis in the DRG as a promising ther-
apeutic target for painful diabetic neuropathy.
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