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The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENSs,
and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any
genomic locus of interest. A complementary set of design tools has been developed to aid researchers with
nuclease design, target site selection, and experimental validation. Here, we review the various tools available
for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity,
including web-based search tools and experimental methods. We also elucidate challenges in target selection,
especially in predicting off-target effects, and discuss future directions in precision genome editing and its

applications.
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Targeted genome-editing technology continues to create intense
excitement with each new technological advance.'* The develop-
ment of tools to generate DNA breaks, activate,* repress or label
genomic loci,>® and remodel chromatin’ in a controlled, targeted
manner will greatly aid the studies of a wide range of biologi-
cal issues, including gene and genomic functions. The ability to
specifically modify the genome also holds great promise for tar-
geted gene therapies. Early work with meganucleases and zinc
finger nucleases (ZFNs) showed that targeted site-specific DNA
breaks could greatly increase the rate of homology-directed repair
(HDR) at the specified locus.>* More recent developments include
TAL effector nucleases (TALENs)'*!" and CRISPR/Cas9 systems
(Figure 1).">"* ZFNs consist of zinc finger motifs, which bind to
DNA triplets, and the FokI nuclease domain which cleaves DNA
upon dimerization."'® TALENs are composed of TAL effectors
fused to the Fokl nuclease domain and recognize DNA bases via
conserved repeats that differ by two residues known as the repeat
variable diresidue (RVD), which confers specificity to individual
bases.!”!s Unlike ZFNs and TALENS that use protein domains to
recognize target DNA sequences, the widely used CRISPR/Cas9
system adapted from Streptococcus pyogenes (Spy) uses both RNA
and protein-based DNA recognition. These RNA-guided nucle-
ases (RGENSs) use a short guide RNA strand (gRNA), which tar-
gets a 20-nucleotide sequence, and the CRISPR associated (Cas)
endonuclease Cas9, which binds to the fixed protospacer adjacent
motif (PAM) NGG.">"* Although there is a strict adherence to
PAM recognition, due to the short length of the PAM the speci-
ficity of RGENS is largely controlled by gRNA-DNA interaction.
With these engineered nucleases, we now have efficient molecular
scissors that can cut genomic DNA in cells at preselected locations

and introduce mutagenic errors via the nonhomologous end join-
ing (NHE]) DNA repair pathway for targeted gene knockout or
targeted deletion of large chromosomal segments. Alternatively, if
an exogenous DNA donor template is introduced in concert with
the nuclease, DNA cleavage (DNA double strand breaks or nicks)
may trigger endogenous HDR with the supplied DNA donor tem-
plate, resulting in precise DNA modifications (Figure 1). These
abilities have led to the emerging field of genome editing, a new
field in engineering and life sciences focusing on precisely modi-
fying genomes using engineered nucleases.

With the rapid advancement of genome-editing research, a
suite of nuclease design and validation tools has been developed,
significantly facilitating nuclease target site selection and experi-
mental validation in terms of on-target and off-target activities.
For most of the biological and medical applications of genome
editing, high efficiency and high specificity of engineered nucle-
ases are among the most important functional requirements; both
are closely related to target site selection. For each endogenous
genomic locus, the efficiency of DNA cleavage, both on-target
and oft-target, depends not only on the intrinsic nuclease activ-
ity (such as that of Fokl domains and Cas9 protein) but also on
target site accessibility and the affinity of DNA binding domain(s)
(such as Tal effector domains and gRNA) to the target sequence.
The specificity of engineered nucleases is significantly affected
by the affinity of nuclease-DNA binding, such as zinc finger—
DNA binding (ZFNs), Tal effector—DNA binding (TALENSs) and
gRNA—DNA hybridization (CRISPR), although the dimerization
of FokI domains (ZFNs and TALENs) and the Cas9-PAM inter-
actions may also play important roles. There is a lack of under-
standing on the behavior and functions of engineered nucleases
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Figure 1 Classes of designer nucleases and gene-editing outcomes. Targeted double-strand breaks can be induced using ZFNs, TALENs, or
CRISPR/Cas9. DNA breaks are repaired via endogenous repair pathways such as non-homologous end joining (NHE]) and homologous recombination
(HR). The NHE] pathway results in short deletions or insertions at the target site that can result in a targeted gene knock-out. The HR pathway is a high
fidelity pathway that uses the sister chromatid as a template to correct the DNA break. An exogenous DNA template may be provided for homology
directed repair (HDR). This pathway can be exploited to repair mutations or modify DNA at the resolution of a single nucleotide.

in living cells, especially the dynamics of their interactions with
DNA, and the cell cycle-dependent cleavage activity. Due to the
limited biological knowledge and understanding of the structure
and dynamics of the cell nucleus, especially chromatin structure,
prediction of nuclease target accessibility and cleavage rates in
living cells remains difficult. Further, the efficiency of homology
directed repair also depends on the design, accessibility, and bind-
ing affinity of the donor templates as well. Therefore, experimental
validation of target site selection is necessary. Herein, we use “true
off-target sites” to indicate the off-target sites that are experimen-
tally confirmed using polymerase chain reaction, sequencing or
other methods.

In this article, we review some of the web-based tools avail-
able for target selection in designing engineered nucleases, and
selected experimental methods for quantifying nuclease activity
and specificity. Due to space limitations and the rapid develop-
ment of the genome-editing field, only a subset of available tools
will be discussed, rather than having a comprehensive review.
Challenges in target selection, especially in predicting off-target
effects, and future directions in precision genome editing will also
be discussed.

WEB-BASED DESIGN TOOLS FOR NUCLEASE TARGET
SELECTION

A range of bioinformatics and experimental-based nuclease
design tools have been developed that aid the target site selec-
tion of engineered nucleases. These tools fall into the following
three main categories: (i) choice of target sites/design of nucle-
ases, (ii) genomic searches for possible off-target sites, and (iii)
determining the level of on- and off-target cleavage rates. A list of
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the available design tools is given in Table 1, together with a brief
description of the functionality for each tool. Most of the tools
listed in Table 1 are for the design of CRISPR/Cas9 systems, with
a few for ZFNs and TALENS.

ZFN design tools

Zinc finger proteins (ZFPs) can be designed to target many novel
sequences based on the 3bp specificity of individual fingers.!**
Phage display-based selections and rational design techniques
have been used by certain companies and research labs to generate
high-affinity ZFPs and ZFNs.*'-* However, zinc finger (ZF) design
remains difficult due to positional effects and a lack of straightfor-
ward ZFP design principles—a number of amino acid sequences
in a given finger can specify a given triplet, but the activity of any
given zinc finger is strongly dependent on its position in the ZFP
and the nature of the neighboring zinc fingers.”’-* Tools such as
ZiFit were developed to address this issue by taking the context
dependence into account. However, designing a highly active and
specific ZFN pair remains challenging.***' Alternatively, a bacteria
two-hybrid screening platform is also available for custom ZFP
production.®> However, the substantial amount of work required
has limited its use outside of a small number of dedicated labs.

TALEN design tools

For designing TALENSs, the DNA-targeting specificity of TAL
effector RVDs is more straightforward than that of ZFs, allowing
easier design of TALENS. There are four main RVDs, one for each
DNA base.'”'® Based on this simple 1 to 1 recognition code and
the requirement for a flanking 5’ thymine base, first-generation
design programs output many potential target sites.!®!3¢
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Figure 2 Comparison of off-target analysis by different methods. (a) The 38 heterodimeric bona fide off-target sites for CCR5 ZFNs*? found by
four different experiment-based prediction methods and the refined “ZFN v2.0” PROGNOS algorithm. The PROGNOS sites are drawn from the top
rankings spanning 3x the number of predictions by the Bayesian abstraction of the in vitro cleavage profile. (**) Note that only six of the sites found
using ChlIP-Seq were described,* so the full degree of overlap of all ChIP-Seq sites with sites found by other methods remains unknown. Adopted
from Fine et al.*¢. (b) A comparison of the off-target predictions by the MIT CRISPR Design Tool (solely bioinformatics-based) to the bona fide off-
target sites found for nine different RGENs by the GUIDE-Seq method (experimental-based). (¢) A comparison analogous to (b) but using the E-CRISP
bioinformatics-based prediction tool. GUIDE-Seq figures adopted from Tsai et al.**.

Despite the ability of well-designed nucleases to target defined
loci with high efficiency, the widespread use of TALENS has been
hampered by poor performance of some TALEN pairs designed,
thereby necessitating the screening of a large number of candi-
dates to find a validated TALEN pair with a high level of activity.
For example, a high-throughput study that looked at the activ-
ity of 96 TALEN pairs determined that 12 pairs had no activity
and 43 pairs had activities below 20% in a model cell line.”” Some
TALEN design tools incorporate ranking of TALEN pairs. The
E-TALEN webtool incorporates a scoring algorithm for rank-
ing potential TALENS, but this scoring system was not experi-
mentally validated.”® The second-generation TALEN design tool
SAPTA (Scoring Algorithm for Predicting TALEN Activity) uses
improved guidelines for TALEN design based on rules derived
from experimentally testing 205 individual TALEN monomers.*
The SAPTA algorithm was designed to identify target sites for
highly active TALENs* that use the NK (Asparagine-Lysine)
RVD which displays higher specificity for guanines compared to
the standard NN (Asparagine-Asparagine) RVD.* It was clear in
constructing SAPTA that affinity plays an important role in hav-
ing high cleavage activity, especially when the G-C content of the
target site is high.® However, the current version of SAPTA is
based on experimental results from TALENs with NK RVD, and
issues with target accessibility may render the predicted activity
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inaccurate. Therefore, further improvements to SAPTA are being
conducted to make it a more useful design tool.

RGEN design tools

The ability of the Spy CRISPR/Cas9 system to target any 20 nucle-
otide sequence that is adjacent to an NGG PAM simplifies the
design of gRNAs, since it is easy to locate PAM sequences in a
gene or region of interest using a bioinformatics tool (Table 1).
Although in general the CRISPR/Cas9 systems may have a much
higher DNA cleavage rate when compared to ZFNs and TALENS,
it is still desirable to identify optimal target sites in silico. Efforts
have been made recently to develop web-based tools to predict
high nuclease activity sites in a genomic region of interest. For
example, sgRNA Designer* (Table 1) attempts to predict the
optimal sequence composition for high CRISPR/Cas9 activity.
However, although the algorithm was validated with a previous
CRISPR knockout library screen in human and mouse cells, it
was not tested for designing a gRNA for a given input sequence.
Similarly, sgRNA Scorer* (Table 1) ranks gRNAs for high activity
based on an algorithm generated using data from gRNAs tested
in HEK293T cells. This study noted some correlation between
site accessibility and gRNA activity, but it is unknown whether
the predicted scores are valid for other cell types. The ranking
from sgRNA Designer and sgRNA Scorer were shown to have a
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Table 2 Comparison of COSMID with other available tools in predicting off-target sites?

Off-ta # of Bulge % Cas- CROP- CHOP  CRISPR ety
Smur%“ Sequence ml.:l:c.h Bulge poaigon activity® CosmID Offinder IT CHOP design 'II:::::F
RO1_OT2 AOGAACATGGATGAAGTTGGAGG 2 n.a. n.a. 43.63 v v v . w
RO1_OT11  GTGAACGTGGATG: AGTTGGTGG 1 na. na 27.00 "l v v v y
RO1_OT10  GTGARAATGGATGAAGTTGGAGG 2 na. na. 2339 N | y 2 =
RO1_OT1 AIGAMCATGGATGAAGTTGGAGG 2 na. na 21 .76 N | |
RO1_OTS GOGAACATGGATGARGTTGGAGE 1l na. na 1593 | o o = 3
RO1_OT7 MIGAACGTGGATGOAGTTGGAGS ] n.a. n.a. 12.90 + = N o =
RO1_OT4 GUGAACATGGATGAAGTTGGAGG 2 na na. 10.84 3| v ¥ " o
RO1_OT8 \IGAACGTGGATGARG TGGAGG 2 na. na. 6.65 i v ¥V - -
RO1_OT6 MIGAACGTGGATGIAGTTGGAGG 3 na. na. 2.70 A 3 ¥ « i
' Alternate protospacer
R30_Ins9 GAAGAGUGGAGGCAGGAGGICAGG 2 DNA 4/3/2 12 N \': - - v adjacent ot
R30_Del1 LA - AGCGGAGGCAGGAGGCTGE 2 RNA 17 0.62 | b | N - A
R30_Ins8 GAAGAGAGGAGGCAGGAGGHCTGS 2 DNA 41312 1.99 A v - - -
RO1_Del1 GGGAAT - TGGATGAAGTTGGGGG 2 RNA 15/14 0.7 i v H " "
R30_Ins14  GOAGAGCGGCGGCAGGAGGCITAG 2 DNA 1 0.4 v - - - -
R30_Ins7 GAAGAGTGGAGGCAGGIAGGCTES 2 DNA 71615 0.25 v v - - -
R30_Ins10  GCAGAGCUGAGAGCAGGAGGCGAG 2 DNA 10 019 v - - -
R30_Ins4 GUAGAGCGGIGEC AGGAGGCCEE ] DNA w8 017 i v - - #
R30_Del10  AGAGAGAGGA-GCAGGAGGCTGG 3 RNA 10/9 0.08 4 A - " .
RO1_Ins1 AIGAACGTGGATGAACTTGGAAGG 3 DNA 1 0.06 v v - - -

*Data adapted from Lin et al.* and Cradick et al.“® for guide strands R-01 and R30. Off-target sites found by a particular tool are indicated with a \ and those not
identified by that tool are indicated with a dash in a gray box. *Groups of sites with matching sequences (at positions 1-19) have their names in bold with matching

colors. Indel activity for off-target sites containing a DNA or RNA bulge was measured using deep sequencing. ‘The cleavage rates at R-01 on-target site and off-
target sites OT1-OT11 are listed by decreasing T7El activity. OT3 and OT9 had activities below T7E1 detection limit.

Table 3 gRNA design overview

Step

Design tool or experimental method

Identify all potential gRNA binding sites at the target locus
Screen all gRNAs for potential off-target sites using in silico prediction tools

Test short list of gRNAs in an appropriate cell line

Further screen top candidates for off-target activity using an appropriate method

Benchling, CRISPR SCAN, CRISPR-Plant
Cas-OFFinder, COSMID, DESKGEN
T7El, TIDE, RELP

BLESS, Guide-Seq (cell line dependent), targeted deep sequencing
(Cas-OFFinder, COSMID, DESKGEN)

weak correlation. The web-based tool CRISPR Scan®® (Table 1)
more accurately predicts gRNA activity in zebrafish than sgRNA
Designer. Although this is likely due to a more accurate algorithm
in CRISPR Scan, it could also be a consequence of using data from
zebrafish in constructing the algorithm, resulting in a somewhat
biased comparison. However, unlike sgRNA Designer and sgRNA
Scorer (both with algorithms based on library screens), to date
CRISPR Scan is the only tool with demonstrated ability to cor-
relate gRNA activities with predicted scores. Although CRISPR
Scan could also identify highly active gRNAs in Xenopus tropica-
lis, it remains to be seen if it can predict sgRNA activity in human
cells.

WEB-BASED TOOLS FOR NUCLEASE OFF-TARGET
SITE PREDICTION

The advancement of ZFN and TALEN technology sparked a
growing concern for potential off-target cleavage that may occur
throughout the genome. Nuclease specificity was often measured
indirectly by cellular toxicity levels.***> More sophisticated tech-
niques aim to directly measure nuclease activity at predefined
genomic loci or screen libraries of sequences to identify poten-
tial off-target sites."*” Large genome size and the large number
of potential nuclease cleavage sites have made determining the
most likely off-target sites very difficult, especially as genomic
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context can greatly influence the cleavage of identical sites at dif-
ferent loci.*® A number of tools have been developed that search
genomes for possible off-target sites for engineered nucleases,
including scripts that systematically scan genomes and web-based
bioinformatics tools that aid in the determination of potential
off-target sites.® Some of these tools are well validated using
other existing approaches and/or experimental methods, includ-
ing next-generation sequencing (NGS) of targeted amplicons.
One example of using true off-target sites of a well characterized
ZFN pair for establishing a bioinformatics tool is PROGNOS
(Predicted Report Of Genome-wide Nuclease Off-target Sites)
(Figure 2a), which was validated using results from different
methods and comparisons of the level of overlap and the number
of sites identified by each method are shown in Figure 2a*474-51
Interestingly, PROGNOS, an exhaustive search tool, identified a
true off-target site that was not found with experimental based
methods.* However, highly active off-target sites may not be
ranked highly by PROGNOS, suggesting that there are unknown
factors influencing ZFN and TALEN off-target activity but not yet
accounted for in PROGNOS. Therefore, further improvements of
PROGNOS are needed based on unbiased genome-wide analysis
of off-target activity of ZFNs and TALENS.

Compared with ZFNs and TALENSs, the CRISPR/Cas9 systems
are easier to use, more efficient, and can readily target multiple
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genes. The potential drawback of using CRISPR/Cas9 systems to
target genomic loci is possible off-target effects, since their target
specificity relies on Watson-Crick base pairing, thus a gRNA can
hybridize to sequences containing base mismatches, resulting in
off-target cleavage.”* Although many web-based tools have been
developed to identify off-target sites (Table 1), none can predict
off-target sites with high accuracy, as discussed below. For example,
a recent comparison of off-target predictions by the MIT CRISPR
Design and E-CRISP tools for nine different gRNA designs dem-
onstrated that in predicting CRISPR/Cas9 off-target sites these
tools performed poorly, indicating that off-target activity can-
not be accurately identified when predictions are solely based on
sequence homology (Figure 2b,c).> Further, it was revealed that
CRISPR/Cas9 systems could tolerate DNA bulges and RNA bulges
at the cleavage site, in addition to base mismatches.” Consequently,
a more sophisticated program, COSMID (CRISPR Off-target Sites
with Mismatches, Insertions and Deletions) was developed that
ranks potential off-target sites by considering base mismatches,
insertions and deletions between gRNA and DNA sequences,*
and some other search tools have since incorporated insertions
and deletions as an additional search option.””

A comparison of existing web-based tools for predicting
CRISPR/Cas9 off-target sites revealed a wide range of agreements
and discrepancies (Table 2). The inability of some tools to iden-
tify off-target sites containing only mismatches suggests that these
tools use a repeat masker (Table 2). With DNA or RNA bulges,
tools with the ability to search for bulge-containing sites per-
form better than those without, although some tools can identify
bulge-containing sites that can be modeled as base mismatches
(Table 2). However, they failed to identify true off-target sites
with bulges that cannot be modeled by base mismatches alone
(Table 2). Since there is still a lack of understanding about target
site accessibility and RGEN binding to DNA in living cells, the
existing CRISPR design tools may not predict off-target effects
(sites and cleavage rates) with high accuracy, therefore readers are
advised to consider using several tools (Table 1) to compare out-
puts for initial design of gRNAs and perform experimental valida-
tion to determine true off-target sites.

The CROP-IT web tool integrates whole-genome information
from existing Cas9 off-target binding and cutting data sets in an
effort to improve off-target identification and prediction.”® Even
though this tool makes use of experimental data and outperforms
some other search algorithms, it still performed poorly when
compared to the results obtained using the Guide-Seq method,
since only ~60% of the true off-target sites were identified for
three gRNAs even when the top 500 predicted sites were consid-
ered. This high level of false positive hits demonstrates a major
drawback of current in silico algorithms for RGEN off-target
identification.

The tools for ZFN, TALEN, and RGEN oft-target predictions
differ in their input parameters, search features, degree of exhaus-
tive search, accuracy, and the amount of information in output. In
some cases, a number of sequence-validated off-target sites could
be identified only by a single tool;** in some other cases, predic-
tions from several tools overlap.”® As shown in Table 3, although
not perfect, in silico off-target search tools can be very helpful
in quickly establishing a nuclease design, synthesis and testing
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Figure 3 Gross chromosomal rearrangements as a consequence of
genome editing. Multiplex gene targeting can result in targeted large
deletions, inversions, or translocations. However, these gross chro-
mosomal rearrangements can also occur between nuclease on- and
off-target sites. Cut sites represented by red arrows.

Inversion

workflow. For example, the current web-based tools are useful in
screening potential gRNA designs for identifying closely matched
sites, and tools that do not contain a repeat masker can help iden-
tify gRNAs that have perfectly matched off-target sites or that tar-
get repetitive elements.

Unlike PROGNOS which has algorithms built upon molecu-
lar information of protein-DNA interactions for both zinc finger
motifs and TAL effector RVDs, existing web-based tools for the
prediction of RGEN off-target sites®*>*52 rely heavily on sequence
homology between the gRNA and potential cleavage sites. This
often renders the prediction and ranking of potential off-target
sites inaccurate. There is an unmet need to establish broadly
applicable “in silico” rules for searching and ranking RGEN off-
target sites due to the fundamental challenges, including the lack
of detailed molecular information on Cas9, gRNA, and DNA
interactions, the quantitative measurements of affinity between
gRNA and DNA target, and target accessibility. To improve the
first-generation search algorithms, a better understanding of
gRNA-DNA interaction, nuclease-DNA binding and cleavage
dynamics, as well as target accessibility is required. With newer
genome-wide methods for determining nuclease off-target cleav-
age,”>*-°! it is likely that more true off-target sites for engineered
nucleases (especially CRISPR/Cas9 systems) will be confirmed
and a better understanding of nuclease off-target effects emerge,
which will help to improve the bioinformatics based off-target
search and prediction tools.

METHODS FOR EXPERIMENTAL EVALUATION OF
TARGET SITE SELECTION

Many experimental methods have been developed to quantify
the activity of engineered nucleases, including enzyme-based

481



Nuclease Target Site Selection in Genome Editing

Official journal of the American Society of Gene & Cell Therapy

5|
In silico \:l @ OT Prediction
! NGS Indel
predicton = — > quantification
Guide Seq \
/ 3 LTR 3 LTR
IDLV trapping = OHEER-Em»-0 = —>
DSB capture pe i, rapping ngs  Orsite NGS Indel
/'4_4—_ mappin quantification
# > Translocation > PPing
\ mapping
BLESS 4 —
! L - NGS  OTsite  NGS Indel
ChlIP Seq 4 “  mapping quantification
, 4Z WGS  OTsite  NGS Indel
Digenome Seq = —— — mapping > quantification

Figure 4 Outline of various methods for off-target site identification and validation. In silico prediction tools identify potential off-target (OT) sites
that can be analyzed by next-generation sequencing (NGS). There are various experimental methods designed to identify OT sites in an unbiased
manner. After OT site identification, a second round of NGS at these sites is required to verify if they are bona fide OT sites.

assays®>®® and sequencing-based assays.®* Most of these meth-
ods detect small insertions and/or deletions (indels) that arise
from imperfect NHE]J-mediated repair of DNA double-strand
breaks (DSBs). The most widely used enzyme-based methods
rely on mismatch-sensitive enzymes such as CEL-I nuclease and
T7 endonuclease I (T7EI).*>%¢ They work by detecting hetero-
duplexes formed by hybridizing wild-type and mutant DNA
sequences or hybridizing two different mutant sequences together,
and the relative intensity of cleavage products resolved by agarose
gel electrophoresis provides a measure of mutation frequency in a
population of cells. Alternatively, if the nuclease cut site is within
a unique restriction enzyme motif, a restriction fragment length
polymorphism (RFLP)-based assay can be used in place of CEL-I
or T7EL In this assay, nuclease-induced indels destroy the restric-
tion site. When these cleavage products are resolved on a gel, the
band corresponding to the uncut DNA represents the mutant
population.®® Although these enzyme-based assays are quick and
cost effective, they have a detection limit of 1-5% and are sensitive
to endogenous mismatches (such as heterozygous SNPs) leading
to potential false positive results.

Sanger sequencing of DNA from individual clones has been
the gold standard for confirming nuclease induced indels, but
this method is time consuming and not cost-effective due to the
high number of samples that need to be analyzed.® Alternatively,
Sanger sequencing of a bulk population can be used in conjunc-
tion with the recently developed web tool tracking of indels by
decomposition (TIDE).** TIDE deconvolutes the mixed chro-
matogram signals from nuclease-treated cells to accurately deter-
mine the mutation frequency in the population. The TIDE tool
also outputs the frequency of each deletion and insertion size in
the population and is insensitive to endogenous SNPs. However,
as with the enzyme-based methods, TIDE analysis has a lower
limit of detection of 1-5%. To accurately detect rare cleavage
events, high-throughput sequencing approaches enable accurate
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measurement of mutation rates as low as 0.1%, although careful
consideration should be made to discard false positives due to
polymerase chain reaction or sequencing error.”

Single-molecule real-time (SMRT) sequencing is an alterna-
tive platform that has been demonstrated to perform as well as
sanger sequencing of single cell clones but with higher through-
put, and it is possible to use SMRT sequencing to measure HDR
and NHE] events simultaneously due to the longer read length.®
Other less common protocols available for detecting nuclease
induced indel rates include fluorescent polymerase chain reac-
tion,” DNA melting analysis,”> and CRISPR/Cas9 restriction
fragment length polymorphism 7 that can distinguish between
mono and biallelic mutagenesis in clones. These methods indi-
rectly measure nuclease activity as they depend on the mutagenic
susceptibility of the endogenous repair machinery in the cell
type employed. One method that directly measures the levels of
DNA DSBs is BLESS (direct in situ breaks labeling, enrichment
on streptavidin and next-generation sequencing).”* Although
this method detects free DNA DSB ends, it cannot detect any
alleles that have undergone NHE] repair. As the price of NGS has
dropped markedly, it is now possible to very precisely measure the
percentage of alleles that are wild-type, mis-repaired or have cor-
rectly undergone HDR.® Many laboratories use internal pipelines
for the analysis of sequencing results; though several web-based
tools have been recently developed, including CRISPR-GA” and
CRISPResso (Table 1).

METHODS FOR DETERMINING OFF-TARGET EFFECTS
Although engineered nucleases are designed to cleave at a pre-
defined genomic locus, off-target effects at similar sequences
have been observed.***”® ZFNs and TALENSs display promiscu-
ity due to the ability of ZFPs and TAL effectors to bind to sites
in the genome that have high degrees of homology to on-target
sites. RGEN induced DSBs can be caused by binding promiscuity
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Figure 5 Strategies to reduce off-target events. (a) Modification of the Fokl domain to prevent homodimerization of ZFN or TALEN monomers.
(b) Modification of the Cas9 nuclease to generate a nicking version of Cas9 (Cas9N). Cas9N can generate single-stranded DNA breaks. (c) Inactivation
of the Cas9 endonuclease to create a dead Cas9. Fusion of the Fokl domain creates a dCas9-Fokl enzyme that requires a pair of dCas9-Fokl to achieve
dimerization of the Fokl domain for DNA cleavage. (d) Cas9 orthologs with longer protospacer adjacent motif sequences can result in less potential

off-target sites in the genome.

of both the gRNA and the Cas9 endonuclease. The optimal PAM
for Spy Cas9 is NGG, although active off-target sites with NAG,
NGA, NCG, NGC, NGT, NTG, and NAA PAM sequences have
been identified.”>** Mismatches as well as base insertions or dele-
tions that form bulges between the gRNA and the target DNA
strand may also be tolerated.”>*>** The functional consequence
of the off-target activity of engineered nucleases is still largely
unclear and the off-target effects (both sites and cleavage rates)
are likely to vary within the major classes of nucleases due to the
requirement for homology with the on-target site, and between
the major classes of nucleases due to the nature of nuclease-DNA
binding. However, any active off-target site in an exonic or regula-
tory sequence in a genome would likely have detrimental effects
on gene expression and could possibly lead to aberrant cellular
function. In addition to nuclease-induced small indels, there is the
possibility of a chromosomal deletion,””” inversion,” or translo-
cation between the on-target and off-target sites (Figure 3).”
Indeed, the potential for chromosomal translocations is a real
concern in the use of multiplex gene targeting for therapeutic pur-
poses, although it presents a novel system for modeling oncogenic
translocations in vivo.®

Given the potentially dire consequences of nuclease off-tar-
get activity, it is pertinent to identify and characterize potential
off-target effects when using genome editing for therapeutic appli-
cations. Experimental determination of active off-target sites is a
laborious task due to the size of the genome and the large number
of potential off-target sites. Early studies of nuclease specificity
focused on experimental methods, such as in vitro SELEX,*8!%
integrase-defective lentiviral vector (IDLV) capture,” in vitro cleav-
age,”” and bacteria one-hybrid screening® to determine potential
off-target sites and provide a shortlist of candidate sites for test-
ing. All of these methods are laborious, costly and require highly
specialized protocols which have prevented their widespread use.
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It is therefore very beneficial to use bioinformatics-based tools to
identify potential nuclease off-target sites, as discussed above. The
fact that PROGNOS* has identified bona fide oft-target sites for
more ZFNs and TALENs constructed than available experimental
based methods such as SELEX and IDLV capture is a clear demon-
stration of the power of in silico prediction methods.*

As for the CRISPR/Cas9 systems, issues with target sequence
accessibility and the tolerance of base mismatches and DNA/RNA
bulges make accurate prediction of true off-target sites difficult. For
example, existing web-based tools for RGEN off-target prediction
may identify hundreds or even thousands of potential off-target
sites,” but the scoring/ranking of these sites is usually inaccurate
or even misleading, since typically few of the top-ranked sites are
true off-target sites as revealed by experimental evaluation. The
most widely used algorithm for scoring potential off-target sites
predominantly relies on data from four gRNAs targeting a sin-
gle gene and determines the likelihood of cleavage at a given site
based on the total number of mismatches (up to four), mismatch
position, and distance between mismatches.” However, given the
high number of false positive hits and the failure of many tools to
identify true off-target sites, it is likely that there are other factors
apart from sequence homology that influence off-target cleavage.
Neither experimentally testing all the potential off-target sites nor
relying on rudimentary ranking of these sites is ideal for confirm-
ing the true off-target sites.

Recently, several new experimental methods have been
described that attempt to capture the genome-wide activity of
RGENSs in an “unbiased” manner (Figure 4). These methods use
different strategies to detect DNA DSBs with the ultimate goal of
identifying RGEN induced DSBs. Cas9 ChIP assays use a catalyti-
cally dead version of Cas9 (dCas9) to determine the genome-wide
binding profile of dCas9 when combined with a specific gRNA.
For all gRNAs tested, ChIP-seq identified the on-target site and
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hundreds of genome-wide Cas9 binding sites."**%> However, Wu
et al® reported that only 1 out of 295 ChIP-seq identified sites
had off-target activity as confirmed by deep sequencing, whereas
Kuscu et al. reported Cas9 cleavage activity at 7 ChIP-seq pre-
dicted sites for a single gRNA.®' Independent reanalysis of these
seven sites found no evidence for RGEN activity and suggested
that the indels observed were due to Illumina sequencing errors
in processing homopolymer stretches close to the expected cut
sites.”® The lack of overlap between dCas9 binding and Cas9
cleavage activities from these ChIP-seq studies demonstrates that
Cas9 binding does not necessarily serve as a marker for RGEN
activity. In the absence of gRNA molecules, dCas9 favored DNA
regions with open chromatin, raising the possibility that RGEN
activity or site preference could be influenced by site accessibil-
ity. An alternative approach, Digenome-seq has been developed in
which potential off-target sites are identified via in vitro digestion
of intact genomic DNA-RGEN complexes coupled with whole
genome sequencing.” This method identifies RGEN off-target
sites based on the ability of the nuclease to recognize and cleave
genomic off-target sites in vitro.®® When gRNAs targeting HBB
and VEGFA were tested using this method, only 4 out of 37 and
8 out of 34 off-target loci identified respectively for the two genes
were found to have detectable levels of activity when interrogated
by deep sequencing. It is possible that the rest of the sites were
false positives or had activity levels below the limit of detection.
This discrepancy suggests that cellular or genomic context plays
an important role in off-target cleavage.

Genome-wide RGEN off-target sites can be determined by
break capture methods, including IDLV capture,® translocation
capture HTGTS (high-throughput, genome-wide translocation
sequencing),® and dsODN capture.” These methods use different
strategies making it difficult to directly compare them. However,
there are some striking differences in the results. In a study using
IDLV capture,® six true off-target sites were not found. Each of
these sites had activity <1% when assayed by deep sequencing,
suggesting that this may be the detection limit of IDLV capture.
HTGTS identifies off-target DSBs that have translocated to the
on-target site.’® In using HTGTS for identifying the off-target
activity of different gRNAs, it was demonstrated that some gRNAs
are more specific than others; however, the translocation loci
were not analyzed by deep sequencing to determine the activ-
ity at identified off-target sites.*® This method is limited by the
requirement for DSBs at the on- and off-target sites to occur
within the same cell simultaneously. Both breaks must also escape
local NHE] repair which may affect the sensitivity of the assay.
The GUIDE-seq method uses a short double stranded oligonu-
cleotide (dsODN) instead of a lentiviral construct to tag DSBs.”®
This study found a large number of previously unknown off-target
sites for 3 gRNAs and identified off-target sites for 10 additional
gRNAs. The GUIDE-seq method is a powerful tool to identify
true genome-wide RGEN off-target sites without the restrictions
of in silico prediction algorithms. This method makes the assump-
tion that all the sites with RGEN-induced DSBs should take up the
blunt ended dsODNs by an NHE]-dependent pathway. Although
this scenario is possible, repair by NHE] without dsODN inser-
tion is more likely, and sequence homology may influence the
integration of dsODNs into certain DSBs. It would be interesting
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to see if genome-wide GUIDE-seq profiles are consistent using
dsODNs of varying sequence. Further, the ability to integrate
dsODNs into DSBs by NHE] may be dependent on the cell type
and the nature of the DSB, for example 5’ overhangs induced by
Fokl cleavage and 5" or 3’ overhangs induced by Cas9 nickase
pairs. The initial study used two cell lines and it remains to be seen
if this method can be successfully applied to other cell lines and
adapted for use in clinically relevant cell types such as hematopoi-
etic stem cells (HSCs). The only method to directly detect DNA
DSBs is BLESS.”*% The drawback of directly detecting DSBs is
that alleles that have undergone NHE] repair cannot be detected,
which makes the assay time sensitive. However, this time sensitiv-
ity could allow genome-wide mapping of the chronological order
of the activity of engineered nucleases at on- and off-target sites.
The BLESS method also outperformed both ChIP-seq and in silico
prediction when directly compared with results using two gRNAs
with two different Cas9 orthologs (four scenarios).*”

A comprehensive comparison of the methods for genome-wide
RGEN off-target detection is difficult since there is little overlap
in the gRNAs used in these studies. However, the small amount
of data that permits direct comparisons shows that GUIDE-seq
identifies more oft-target sites than any other method, although
differences in cell types used in different studies should be taken
into account. The establishment of a unified database of all true
off-target sites of RGENs would facilitate the design of improved
algorithms for in silico prediction of potential off-target sites,
which would provide a quick, cost effective means to prescreen
candidate gRNAs and greatly enhance the analysis of RGEN
genotoxicity.

METHODS FOR MINIMIZING OFF-TARGET EFFECTS

Several approaches have been developed to reduce oft-target activ-
ity of engineered nucleases (Figure 5). Early attempts to block
off-target activity of ZFNs used mutagenesis of the Fokl domain
to create heterodimeric versions to reduce homodimerization of
ZFNs. #5850 These modifications are also applicable to other engi-
neered nucleases, such as TALENs and RGENs. However, these
heterodimeric modifications can also reduce on-target activity
of nucleases, presumably by reducing the binding energy of FokI
dimerization. Fokl mutagenesis has also been used to generate
FokI nickases.”-* For example, ZFNickases can induce HDR at a
lower rate than ZFNs, but have a higher HDR to NHE] ratio. FokI
nickases have also been successfully used with TAL effectors.”*®
The Cas9 endonuclease generates DSBs by cleaving DNA strands
via conserved RuvC and HNH nuclease domains. The RuvC
domain cleaves the non-target DNA strand and the HNH domain
cleaves the target DNA strand. Inactivation of one domain results
in a partially inactivated Cas9 that can generate DNA single
strand breaks.”®” It has been demonstrated that the Cas9 nickases
may have reduced off-target activity while having high on-target
activity. It can also be paired to generate a staggered DSB at the
on-target locus.**”® However, if two adjacent 20-base off-target
sites with appropriate spacing have sufficient sequence homology
to the intended on-target sequence, the Cas9 nickases can bind
and become active, resulting in off-target cleavage.*® This suggests
that the Cas9 nickase system reduces off-target activity largely by
increasing the overall target length from 20 to 40 bases. Further,
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Cas9 nickases may not be fully inactivated and can still induce
DSBs even with a single gRNA.*” The specificity of CRISPR/Cas9
system could be further increased if both of the Cas9 nuclease
domains in a Cas9 nickase pair are mutated to create catalytically
inactive or dead Cas9s (dCas9s) which are then fused to the FokI
nuclease domains respectively, forming a dCas9-FokI pair. In this
case, the targeting of DNA sequence is achieved by two gRNAs
and dCas9s, and the DNA cleavage is generated by the dimerized
FokI domains. Although oft-target activity is reduced to a greater
degree compared to Cas9 nickases, lower on-target activity is also
observed.”'"" dCas9-Fokl pairs also have a more strict spacer
length due to the requirement for FokI dimerization, which limits
the number of potential targets in a genome.

RGEN oft-target effects can also be mitigated by modifying
the gRNA, although there is conflicting evidence as to how best
to achieve reduced mutagenic potential. Both gRNA truncation'®
and gRNA elongation® have been shown to reduce the off-target
activity of certain gRNAs and result in better on- to off-target
ratios. More widespread use of these strategies could reveal if
they are broadly applicable to all gRNAs, or to which gRNAs they
are best suited. Cas9 orthologs with different PAM requirements
have been adopted recently for genome editing in mammalian
cells.?193-105 "Three Cas9 orthologs with longer PAM sequences,
Staphylococcus aureus Cas9, Streptococcus thermophilus Cas9 and
Neisseria meningitidis Cas9*7'%%1%” have reduced off-target activity.
Orthologs with longer PAM sequences are expected to have fewer
potential oft-target sites genome-wide although the probability of
finding a PAM sequence in a gene of interest is also reduced. These
orthogonal systems could also be altered to form nickases and
dCas9-FoKI fusions to further increase the specificity of RGENS.

CHALLENGES AND PATH FORWARD
Over the last few years, a new field of precision genome editing
has emerged, thanks to the recent advent of engineered nucleases,
especially TALENs and CRISPR/Cas9 systems. Although preci-
sion genome editing has the potential to revolutionize biology
and medicine, and holds great promise for many applications,
including disease modeling, molecular pathway dissection, syn-
thetic biology, and therapeutics, many challenges remain. For
example, engineered nucleases often generate off-target cleavage,
causing mutations, insertions, deletions, inversions, or transloca-
tions in the genetic sequence, which may result in aberrant gene
expression, cell death, or oncogenesis. Therefore, it is often neces-
sary to maximize the cleavage efficiency of engineered nucleases
and minimize genomic risk by reducing or eliminating off-target
effects; both are closely related to target site selection. Further, in
repairing nuclease-induced DSBs, cells typically favor error-prone
pathways such as NHE] and micro-homology mediated end join-
ing. For therapeutic applications of genome editing where HDR
is required, significantly increasing the HDR rate in both divid-
ing and nondividing cells is a major challenge. Another important
challenge in further advancing genome editing is efficient delivery
of engineered nucleases, activators, repressors and donor mol-
ecules into clinically relevant cell types in vitro and in vivo, and
developing methods for in vivo tissue-specific delivery.

Although many design tools have been developed for engi-
neered nucleases (Table 1), better tools for target selection are still
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needed. Since each target locus in a genome requires that a pair
of TALENS needs to be constructed and tested, it becomes quite
laborious to screen for highly active TALEN pairs. Further, despite
the ease in designing and testing CRISPR/Cas9 systems, there is a
large variability in their cleavage activity. Although attempts have
been made to determine if rational design of highly active gRNAs
is possible,*** when the output of these tools is compared, there
is only a modest or no correlation between them, indicating that
the broad applicability of the scoring algorithms depends on the
experimental results employed in constructing the scoring func-
tions. It remains to be seen if these tools are fully predictive or if
over training of the data or selection bias may have skewed the
parameters.

Off-target activity of engineered nucleases remains a major
concern, especially in therapeutic applications. Off-target DSBs
may induce indels that activate oncogenes, and chromosomal rear-
rangements resulting from on- and off-target DSBs may lead to
a cancerous phenotype in nuclease-treated cells. Although great
advances have been made in recent years in developing methods
for identifying off-target sites, none of the in silico off-target search
tools can accurately predict all possible off-target sites, and a bet-
ter understanding of nuclease-DNA interaction dynamics and tar-
get accessibility is required in order to significantly improve these
in silico off-target search tools. Also, despite the ability of NGS
platforms to identify off-target sites with activity as low as 0.1%,
there may be other off-target sites below this limit that go unde-
tected. Another major concern is the variability in sequencing data
analysis pipelines implemented by different labs when analyzing
NGS data, which makes comparisons between data sets very dif-
ficult. It is certainly desirable to have a small number (e.g., 1-3)
of “standardized” pipelines that are available to, and acceptable by,
the general laboratories in genome editing. Further, the long-term
effects of off-target activity are largely unknown. It is estimated
that on average, each cell has an estimated steady state of 50,000
endogenous DNA lesions,'*® while whole-genome sequencing of
12 individuals revealed over 500,000 indels in each individual with
230-390 occurring in exonic regions.'” Other studies estimate the
mutation rate of radiotherapy is at around 20-40 DSBs/cell/Gy and
up to 1,000 single strand breaks/cell/Gy."® Although it is likely that
the number of DSBs induced by engineered nucleases is relatively
small compared with the endogenous levels of DSB formation and
the accumulation of exonic indels in the cell population, significant
efforts need to be made to analyze genome-wide off-target effects,
develop a database for off-target activities in different cell types,
establish consensus guidelines for selecting optimal target sites,
and define benchmark assays, best practices and unified standards
for determining genotoxicity due to engineered nucleases.
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