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Abstract

This paper represents a methodological-substantive synergy. A new model, the Mixed Effects 

Structural Equations (MESE) model which combines structural equations modeling and item 

response theory is introduced to attend to measurement error bias when using several latent 

variables as predictors in generalized linear models. The paper investigates racial and gender 

disparities in STEM retention in higher education. Using the MESE model with 1997 National 

Longitudinal Survey of Youth data, I find prior mathematics proficiency and personality have 

been previously underestimated in the STEM retention literature. Pre-college mathematics 

proficiency and personality explain large portions of the racial and gender gaps. The findings have 

implications for those who design interventions aimed at increasing the rates of STEM persistence 

among women and under-represented minorities.
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1. Introduction

Researchers across diverse disciplines in the social sciences rely on latent variables 

(Borsboom, Mellenbergh and van Heerden, 2003) as predictors of an outcome of interest. 

For example, cognitive proficiencies and non-cognitive personality traits (e.g., motivation 

and self-esteem), developed when individuals are young, are key to later-life outcomes, 

including labor market, health, and educational decisions (Heckman, Stixrud and Urzua, 

2006).

Of particular interest for this paper is the role that cognitive proficiencies and personality 

measures play in the racial and gender gaps that exist in college students’ choices to major 

in one of the science, technology, engineering, or mathematical (STEM) disciplines (Riegle-

Crumb et al, 2012; Xie and Shauman 2003). Despite ongoing work by many colleges and 

universities, women and under-represented minorities (URMs) are still far less likely to 
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major in the STEM disciplines (NCES, 2009). Using generalized linear models (e.g., linear 

probability models, logistic regressions, or probit analyses), researchers model the racial and 

gender STEM retention gaps after controlling for a set of covariates, which often include 

some latent variable(s) such as e.g., academic achievement (Maltese and Tai, 2011), or 

personality traits (Korpershoek, Kuyper, and van der Werf, 2012).

Because latent variables are hypothetical constructs, they are not observed directly and are 

difficult to measure accurately. Typically, latent variables are measured by a set of observed 

test or survey items in which a “test score” (often released by the survey institution) is the 

estimate of the latent trait. Survey institutions use modern psychometric models such as item 

response theory (IRT; van der Linden and Hambleton, 1997) to construct and design the test 

and estimate the test score. Researchers throughout the social sciences often use the test 

scores as known constants in further statistical analyses. However, the measurement error 

present in the test score poses an obstacle to accurate estimation of the relationships among 

the latent construct(s), other covariates in the model, and the outcome of interest. It is well 

known that analyses which ignore measurement error in covariates are prone to biased 

results (Fuller, 2006, Stefanski, 2000).

Consider a multiple linear regression,

(1)

where Y is the response variable, Z is a 0/1 indicator variable intended to test for a 

“treatment” effect, and X is a test or survey score intended to measure a latent trait, θ. If X is 

measured with classical error, (e.g., Xi = θi + νi and νi ~ N(0, τ)), then  will be 

attenuated due to the increased variability in X from the measurement error.  will also 

be biased if Z is correlated with θ. The direction and strength of the bias of  will 

depend on the direction and strength of the correlations among θ, Z and Y (Fuller, 2006). 

Similar results are seen in logistic and probit regression. When the measurement error is not 

classical, (as is often the case for latent variables, as I show in Section 3.1), the bias can be 

in any direction.

When θ is estimated precisely by X the biases in the regression coefficients may not be 

significant, but when θ is not well-proxied by X, serious misunderstandings that are both 

statistically and practically significant can occur. The use of noisy measures of latent 

variables can cause researchers to misestimate the effects of the latent variables on the 

outcome of interest and the effects of other correlated covariates in the analysis. These kinds 

of biases are most likely to be significant with short tests or surveys, because shorter tests 

lead to larger measurement error which in turn leads to larger bias. Given the serious 

problems with estimates of θ that do not model the measurement error, it is useful to 

consider more recent methodological advances for modeling the error.

One might argue for the use of instrumental variables (IV, Staiger and Stock, 1997) or 

nonparametric bounds (e.g., Klepper and Leamer, 1984) to solve the measurement error 

problem. Each latent variable is obtained from a well-designed cognitive or non-cognitive 
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assessment constructed with an IRT model. The existence of this IRT model as a direct 

model eliminates the need for refining nonparametric bounds or searching for suitable 

instruments to adjust for the measurement error in test scores (Junker, Schofield and Taylor, 

2012). Schofield (2014) discusses the kinds of problems that arise when trying to implement 

IV or errors in variables (EIV) models using psychometric data and notes the error structure 

implied by many IRT models violates several assumptions used in IV.

Richardson and Gilks (1993) provide a unifying Bayesian framework in which to estimate 

models with covariate measurement error. Their framework involves specifying three sub-

models: 1) the structural equation (or an outcome model) relating the outcome of interest Y 

to the latent variable(s) θ, and any other covariates Z; 2) a measurement model relating the 

test score(s) and/or item responses X to θ; and 3) a prior or conditioning model for θ. Their 

approach is based on an assumption of conditional independence relationships between 

several subsets of variables.

Several researchers have adapted Richard and Gilks’s (1993) framework to study issues in 

epidemiology. For example Dominici and Zeger (2000) use a time series model to study 

how measurement error in the estimates of exposure to air pollution affects estimates on 

mortality. More recently, Haining et al (2010) use a Bayesian structural equations model to 

study the risk of stroke from air pollution. Skrondal and Rabe-Hesketh (2004) extend the 

general structural equations model to provide several applications outside of epidemiology 

but few have considered Richardson and Gilks’s framework for research in educational 

policy.

Junker, Schofield, and Taylor (2012) develop a structural equations model called the Mixed 

Effects Structural Equations (MESE) model. The MESE model was rediscovered 

independently from Richard and Gilks’s (1993) framework and extends the general SEM 

framework for psychometric data. In the MESE model, the latent variable’s measurement 

model is defined to be the IRT model used by the survey institution to construct, design and 

score θ. Unlike other SEM models (such as MIMIC models (Joreskog and Goldberger, 1975 

and Krishnakumar and Nagar, 2008) or Fox and Glas’s (2001) MLIRT model), the MESE 

model includes a conditioning (or prior) model on θ which conditions on the other covariates 

in the structural model. Junker, Schofield, and Taylor (2012) use the MESE model to study 

black-white wage gaps after controlling for the effect of literacy skills and find substantial 

differences in the black-which wage gap when the measurement error of literacy is modeled 

versus when it is not.

This paper builds on the framework of Richardson and Gilks (1993) and Rabe-Hesketh, 

Skrondal, and Pickles (2004) to extend Junker, Schofield, and Taylor’s (2012) MESE 

model. I evaluate the merits of the common practice of treating statistics such as test scores 

or personality scale scores as if they were simply predetermined data in analyses of STEM 

retention gaps for females and under-represented minorities (URMs). Using an extended 

MESE model, I present an alternative model to examining STEM retention that properly 

accounts for the error in the latent variables. I find significant differences in the gender and 

racial gaps in STEM retention conditional on math proficiency and personality traits when I 

model the measurement error in these latent variables versus when I do not. The MESE 
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model extensions are novel in two ways. First, several latent variables are used as predictors 

and they are allowed to correlate given the other covariates in the structural model. Second, 

each latent variable is modeled with a different item response theory (IRT) measurement 

model to estimate the heteroskedastic error structure.

The question of whether STEM retention gaps are predictable by latent traits such as 

academic achievement or personality traits is not an arcane decomposition. Whether the gap 

occurs because of deprivation in the latent constructs before entry into college, or whether 

the gap is due to college teaching practices that unintentionally discriminate against women 

or URMs results in fundamentally different institutional policies and interventions to address 

the issue. The hope is that if researchers determine what predicts STEM retention, 

institutions can develop interventions to empower students with what they need to complete 

the necessary requirements. Any research that mis-models the effect of the latent traits on 

STEM retention may lead to inappropriate uses of limited institutional resources.

2. The Mixed Effects Structural Equations Model

Consider the case in which a researcher is interested in estimating the linear regression 

model,

(2)

where Yi represents some outcome of interest for individual i, θ is the (possibly vector-

valued) latent trait(s), and Z are some additional covariates of interest measured accurately. 

Researchers use such models both when they are interested in estimates of β1, the effect of 

the latent variable(s) θ on the outcome of interest and when they are interested in estimates 

of β2, the relationship between two (or more) variables after “controlling for” θ. The overall 

goal is to estimate β = (β0, β1, β2) the vector of the regression coefficients.

If θ is not measured with error, one could either maximize the likelihood, f(Y|β, θ, Z) with 

respect to β or choose a prior for β and calculate the posterior p(β|Y, θ, Z). However, because 

θ is a latent variable, it is unobserved and instead X, a proxy test score or a set of item 

responses is observed. This leaves the likelihood

(3)

where Z is known, Y and X are observed, and β is the vector of unknown parameter(s) we 

wish to estimate. It is clear (3) is a marginal distribution of a more general model in which 

the unknown θ is integrated out and which can be factored by the Law of Total Probability,

(4)

(5)
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This more general model (5) implies a form of the Mixed Effects Structural Equations 

Model (MESE; Schofield, 2008; Junker, Schofield, and Taylor, 2012), which suggests three 

general models corresponding to the structural, measurement, and prior submodels of 

Richard and Gilks (1993).

2.1. Conditional Independence Assumptions

Following Richardson and Gilks (1993), I will make several conditional independence 

assumptions to simplify the MESE model. First, I assume Y depends only on θ and Z and 

that Y ⫫ X|θ such that X provides no additional information about Y once θ is known. 

Second, I assume θ ⫫ β|Z. Finally, as I show in Section 3.1, good measurement practice and 

modern psychometric theory allows the assumption that X ⫫ Z, β|θ. I can now write the 

MESE model in hierarchical form,

(6)

(7)

(8)

where γj are the parameters in the measurement model, α are the parameters in the 

population model for θ|Z, and β, θ, Y, X, and Z are defined as before. In MESE, the latent 

variables and the regression coefficients are estimated simultaneously.

The MESE model follows the structural approach advocated in Richardson et al (2002) and 

can easily be shown to be a general structural equations model (Bollen, 1989). The MESE 

model is in the spirit of MIMIC models (Joreskog and Goldberger, 1975 and Krishnakumar 

and Nagar, 2008) which examine the causes of a posited latent variable(s) with multiple 

observed indicators. The interest in MIMIC models is often in the theoretical explanation of 

the latent variable or in the relations between the latent variable and some observed 

variables. The MESE model extends the MIMIC model to cases where the interest is in the 

effect of the covariates after controlling for the latent variables. Fox and Glas (2001) 

proposed MLIRT, a similar model to MESE, in which they attempt to control for a latent 

variable (e.g., IQ) to predict how student performance on a test may be different for schools 

under different treatments. In MLIRT, the only predictor variables are psychometric latent 

variables and they do not include a prior model on θ that conditions on the other covariates 

in the model. MESE extends the MLIRT model to include other fixed effect predictors. 

Rabe-Hesketh, Skrondal, and Pickles (2004) provide a unifying framework for multilevel 

structural equations into which the MESE model fits.

2.2. Estimating the MESE model

To estimate the coefficients of interest from (6), the latent variables must be integrated out 

of the full likelihood, (5). One can either integrate using numerical integration and Newton-

Raphson or E-M algorithms (using software such as the gllamm model in Stata (Rabe-

Hesketh, S., Skrondal, A. and Pickles, A., 2004 and Rabe-Hesketh, S., Skrondal, A. and 
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Pickles, A., 2005) or Mplus (Muthén and Muthén, 2007)), or through a computational 

Bayesian approach in which priors are assigned to parameters and a Markov Chain Monte 

Carlo (MCMC) algorithm is applied to sample directly from the joint posterior distribution 

and any marginal posterior distributions of interest (using software such as WinBUGS 

(Spiegelhalter, Thomas and Best, 2000) or JAGS (Plummer, 2003)).

In this paper, I take the Bayesian approach to estimation. The reasons for this are threefold. 

First, the Bayesian estimation approach becomes comparatively more attractive than 

likelihood-based methods as the dimension of the latent variables grow, because maximizing 

the likelihood requires multivariate numerical integration for each observation and the 

numerical integration becomes computationally prohibitive (Lockwood and McCaffrey, 

2014). Second, as Dunson (2001) notes, the Bayesian MCMC approach allows for a more 

flexible set of submodels, including multilevel correlation structures and different 

measurement scales for different test items. Under these more complicated models, 

maximum likelihood approaches to estimation are difficult to implement because of the high 

dimensional integration required. Third, the Bayesian approach allows for flexibility in 

assigning hyper priors to the parameters in the measurement models and the conditioning 

model when these are unknown or unreliably estimated. In the maximum likelihood 

approach, numerical integration again becomes much more difficult as the number of 

(nuisance) parameters increases.

3. The Submodels of the MESE Model

Richardson et al. (2002) note once a structural model, such as the MESE model, is built, 

researchers must choose functional forms for the distributions of the submodels. I turn now 

to each submodel to describe the appropriate functional forms when the variables measured 

with error are latent psychometric variables.

3.1. The Measurement Model

The latent variable(s) θ are often obtained from a well-designed cognitive or non-cognitive 

assessment(s) constructed, developed and scored using item response theory (IRT) models. 

Thus, it makes sense to use the IRT model as the functional form of (7) in the MESE model. 

The IRT model is efficient and provides a direct model of θ and its measurement error.1

Latent variables, θ are commonly measured by a set of binary or ordinal items (or sometimes 

combinations of both) denoted Xij, which is the ith individual’s response to item j. IRT 

models assume the probability of answering a test or survey item correctly increases as the 

latent trait underlying the performance on a test or survey increases (van der Linden and 

Hambleton, 1997).

A novel feature of the MESE model is its flexibility in using different IRT measurement 

models for different latent constructs. IRT models take on different forms according to the 

1Junker, Schofield, and Taylor (2012) note IRT models are flexible enough to use as a direct model for measurement error even in 
cases in which the test or survey was not constructed using IRT techniques.
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items developed for the test. A common IRT model used for binary items scored right/wrong 

is the three-parameter logistic (3PL) model,

(9)

Samejima’s (1969) graded response model (GRM) is a generalization of (9) used for Likert-

scale survey responses and other ordinal items. It is a type of ordered logit model,

(10)

In each of these models, xij is the response of individual i to item j, aj is the “discrimination” 

item parameter, bj is the “difficulty” item parameter and cj is the “guessing” item parameter 

and  is the probability of individual i with proficiency θ scoring k or above on item j.

IRT models provide a direct estimate of the measurement error for θ̂, which is equivalent to 

the standard error of θ̂. Asymptotically,

(11)

where Ij(θi) is the Fisher information.

A few points about the measurement error are noteworthy. First, as Figure 1 shows, SE(θ) 

varies for different values of θ. In general, SE(θ) is largest for those individuals in the tails of 

the distribution of θ and smallest for those in the middle of the distribution. Second, 

increases in J, the number of test items, increase precision in the estimation of θi. Thus, the 

measurement error tends toward 0 as J → →. Large J is often not possible due to time 

constraints, so θ̂
i can be expected to be imprecise, particularly for short tests. Third, because 

θ is unknown for every individual, so too is the standard error of the estimation. While the 

information function can be estimated using θ̂, Lockwood and McCaffrey (2014) show using 

SE(θ̂) to correct for measurement error leads to bias.

Mis-specification of the IRT model in the MESE model is relatively robust. A simulation 

study conducted in Schofield (2008) suggests unreliable and/or imprecise item parameters 

has little effect on the estimates of the regression coefficients in (6). When item parameters 

are unknown or unreliable, estimation of the MESE model using the Bayesian framework is 

flexible such that priors can be assigned to the item parameters and these can be estimated 

simultaneously with θ and the regression coefficients. (See Patz and Junker, 1999 for more 

on MCMC methods for estimating the item parameters and θ)

Schofield Page 7

Ann Appl Stat. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2. The Conditioning Model

The conditioning model (8) often assumes θ to be multivariate normally distributed and 

allows for possible differences in the distribution of θ across subgroups of the sample. A 

novel feature of the MESE model is its flexibility in modeling the latent constructs as 

associated with one another conditional on the other covariates in the model.

Mis-specification to the shape of the conditioning model is also relatively robust. Schofield 

(2008) found little bias in the estimates of the regression coefficients of the structural 

equations in cases where the conditioning model was misspecified, even when the 

generating distribution of θ was skewed and the conditioning model was assumed normally 

distributed. Dresher (2006) found poor estimates to the mean and standard deviation of the 

distribution of θ when she assumed a normal conditional distribution on a θ whose 

distribution was skewed. Despite these same poor estimates of the θ distribution appearing 

in Schofield’s (2008) simulation, the estimates of the regression coefficients were not 

biased.

The choice of which variables to include in the conditioning model (8) is an interesting 

research question. Many large scale assessments (such as the National Assessment of 

Educational Progress, NAEP or the Program for International Student Assessment, PISA) 

follow Mislevy (1991) and condition on a huge set of background covariates to avoid bias in 

population statistics estimated from the test. Newer research by Schofield et al. (2014) 

shows that when θ is the independent variable in an analysis, θ must be conditioned on all of 

the covariates in the structural equation. However, if the response variable Y or any other 

variable associated with Y conditional on θ that is not already in the structural equation is in 

the conditioning set, bias will ensue (See Schofield, et al, 2014 for a proof, though the Law 

of Total Probability as in (5) suggests this result). Thus, the conditioning model in MESE is 

designed to include only the covariates in the structural equations. Mis-specification of 

which covariates are in the conditioning model will cause bias (Schofield, et al., 2014), 

though the size and direction of the bias varies based on the measurement error and the 

correlation between the covariates and θ.

3.3. The Structural Model

The structural equation, (6) is the equation of primary interest. The estimates of the latent 

constructs θ are noisy, but they are treated as a random variable in a mixed-effects 

regression. The functional form of the structural model is dependent on the substantive 

question of interest and the response variable, Y. The MESE model provides enough 

flexibility such that the structural model can accommodate several models; among them, any 

generalized linear model. In the example in Section 4, I use a logistic model.

4. Undergraduate STEM Retention in the United States

Over the past twenty years, there has been a rising concern about the under-representation, 

and specifically the retention of minorities and women in science, technology, engineering, 

and mathematics (STEM) disciplines in higher education. The National Center for 

Education Statistics (NCES, 2009) reports in 2008 only 31.7% and 33.1% of black and 

Hispanic students persist2 respectively compared to 43.9% of whites. Griffith (2010) studied 
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students who were in their first year of college in 1999 and found only 37% of women 

versus 43% of men persist to graduate with a STEM major. Several studies (e.g., Riegle-

Crumb et al, 2012; Xie and Shauman, 2003; Seymour and Hewitt, 1997) have examined the 

underlying reasons for the differentials in STEM persistence, by examining persistence after 

controlling for (latent) variables, such as academic achievement (e.g., Maltese and Tai, 

2011), math and science identity (Chang, et al., 2011), interest (Sullins, Hernandez and 

Fuller, 1995), future time perspective (Husman, et al, 2007), sense of community (Espinosa, 

2011), goals (Leslie, McClure and Oaxaca, 1998) or personality traits (Korpershoek, Kuyper 

and van der Werf, 2012).

Most scholars agree there is a strong positive correlation between math proficiency and 

STEM retention. While racial differences in STEM retention are often explained by the 

comparative disadvantage in academic background that under-represented minorities 

(URMs) have relative to their white peers, several recent studies (Weinberger, 2012; Riegle-

Crumb et al, 2012) question the explanation that gender gaps in STEM retention are due to 

gaps in math achievement. Others (e.g., Korpershoek, Kuyper and van der Werf, 2012) 

suggest STEM retention gender gaps may be better explained by personality trait 

differences.

Many of the studies noted above use batteries and surveys with small numbers of items to 

measure their latent traits (e.g., Chang, et al., (2011) develop a five-item factor to assess 

students science identity and Leslie, McClure and Oaxaca (1998) use a one item measure of 

“goal commitments”). Because the number of items is small, I expect the measurement error 

of these latent traits to be large suggesting the estimates of the latent variables’ effects and 

the effects of any other covariates correlated with them will be biased when the model does 

not account for measurement error.

In the remainder of this section, I estimate a typical logistic regression model for 

“explaining” racial and gender differentials. The central idea is to control for the latent traits 

in a model that includes 0/1 indicator variables for the racial or gender focal group. If after 

controlling for these latent traits, the regression coefficients in front of the indicator 

variables are smaller, then social scientists argue the latent trait may “explain away” some of 

the racial or gender differential. The model takes the form,

(12)

where Yi is a binary measure of STEM persistence, θi = (θ1i, θ2i, . . . , θki) is a vector of k 

latent variables measuring cognitive and non-cognitive traits, and Zi is a vector of 

demographic variables including indicator variables for underrepresented minorities 

(URMs) and female gender. I estimate this model under two different measurement error 

models for θ. In the first case, θ is replaced by θ̂, the test score published by the survey 

institution and no measurement error is modeled. In the second model, the regression 

2Here I define persistence to mean the student declared and then completed a STEM major.
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coefficient estimates are modeled simultaneously with θ, using the MESE approach for 

which I advocated in Section 2.

4.1. The Data

The data come from the 1997 National Longitudinal Survey of Youth (NLSY97) which is a 

nationally representative sample of almost 8900 youths who were 12 to 16 years old as of 

December 31, 1996. The youth have been surveyed yearly since 1997. The survey collects 

detailed information on many topics including: youth demographics, educational 

experiences, personality measures, and cognitive assessments.

The NLSY97 data set offers several benefits. First, the NLSY97 is longitudinal and paints a 

detailed account of the timing, progression, and types of degrees of those surveyed. Second, 

the NLSY97 is a nationally-representative survey making generalizations possible to the 

same cohort of students nationwide. Third, the NLSY97 contains item level data to certain 

academic tests that measure mathematics proficiency and personality measure surveys. 

Unfortunately, the NLSY97 does not contain certain variables which have been shown to 

have an effect on STEM retention (such as motivation or future-time perspective). I cannot 

examine these variables in this study, but I can extrapolate what kinds of bias may exist in 

other studies.

The variable of interest, Yi is a categorical variable which identifies each individual as: a 

“stayer,” someone who persisted in a STEM3 major; or a “leaver,” someone who declared a 

STEM major but did not persist to graduation. Race is operationalized as a 0/1 indicator 

variable for under-represented minority (URM). URMs include those who self-identify as 

black, Hispanic, Native American, or of mixed race. Non-URMs self-identify as either white 

or Asian.4 Gender is similarly operationalized as a 0/1 variable indicating Female gender.

There are a total of six latent variables: one a measure of cognitive proficiency in 

mathematics and the other five are measures of the Big Five (Costa and McCrae, 1992) 

personality characteristics of Extraversion, Agreeableness, Conscientiousness, Emotional 

Stability, and Openness. Measures of mathematics proficiency and personality traits both 

have been shown to predict STEM retention.

The mathematical proficiency measure is the mathematics Peabody Individual Achievement 

Test (PIAT; Markwardt, 1998). The observed item responses, Xij for the PIAT are binary 

(correct/incorrect) responses to the 100 multiple choice items written to test mathematics 

concepts and facts for individuals between the ages of 6–18 years. The PIAT-R Math 

Assessment was selected by the NLSY97 to represent a cross-section of various curricula in 

use across the United States. In addition, previous studies show the PIAT math test’s 

concurrent validity correlates reasonably with other tests of intelligence and math 

achievement (Davenport, 1976; Wikoff, 1978).

3STEM is defined to include biological sciences, computer/information science, engineering, mathematics, and physical sciences.
4There is evidence to argue against placing all underrepresented minority students into a single category (Palmer et al., 2011). 
Analyses were also conducted separating blacks and Hispanics and similar results were found, except with much lower power, so only 
the results with the URMs grouped together are reported.
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The non-cognitive trait measures are the Ten Item Personality Inventory (TIPI, Gosling, 

Rentfrow and Swann, 2003). The TIPI inventory contains two items for each of the five 

personality traits for a total of a 10-item survey. The observed item responses Xij for the 

TIPI are an ordinal scale of 7 Likert-type responses. The sub-scale scores are an average of 

the two items that pertain to each of the Five Factors. Research (e.g., Felder, Felder, and 

Dietz, 2002; Major, Holland and Oborn, 2012; Korpeshoek et al., 2012; Van Langen, 2005) 

notes personality traits such as the Big Five may have an effect on gender differences in 

STEM retention. For the purposes of showing the measurement error bias, the TIPI (in 

which J = 2 for each of the five latent personality traits) serves as a good example.

Attention is restricted to only those youth who completed either a two or four year college 

degree by 2010, declared a STEM major at some point in their college career and for whom 

there are both PIAT and TIPI measures. Table 1 provides some demographic statistics of the 

NLSY97 sample. Approximately two-fifths of those who initially declare a STEM major 

leave. Men and nonURMs are more likely to be “stayers” than women and URMs 

respectively. PIAT math scores are lowest on average for URMs. Similar to findings in 

Riegle-Crumb et al. (2012), there is little difference in the distribution of PIAT math scores 

by gender. Little variation exists in any of the TIPI sub-scale scores by URM status. Like 

Schmitt, et al., (2008), females tend to have higher agreeableness scores and lower 

emotional stability scores. The high relation between PIAT scores and URM status and 

between TIPI scores and gender suggest there will be bias in estimates of the racial and 

gender gaps when using fixed estimates of the PIAT and TIPI scores as predictors.

4.2. Methods

To examine the extent of the measurement error in examining STEM retention, I compare 

three “unadjusted” models that do not adjust for measurement error with three “adjusted” 

models in which the measurement error is modeled. I control for math proficiency (the 

PIAT) alone, personality traits (the TIPI) alone, and the two together (in which I allow them 

to correlate) to understand the effect of each latent trait individually and together. Below, I 

describe the full model in which I control for both math proficiency and personality traits. 

The simpler models should be altered accordingly.

I specify the unadjusted model as (12) where Yi = 1 for “stayers” and Yi = 0 for the 

“leavers.” The covariates include Zi which is a vector that contains two 0/1 indicator 

variables: one which indicates Female status and one which indicates URM status and θi = 

(θMi, θEi, θAi, θCi, θESi, θOi) which is a vector of six latent traits where θMi is the latent math 

proficiency, θEi is the latent extraversion personality trait, θAi is the latent agreeableness 

personality trait, θCi is the latent conscientiousness personality trait, θESi is the latent 

emotional stability personality trait, θOi is the latent openness personality trait.

To estimate the “adjusted” models in which I account for measurement error, I specify the 

MESE model as,

(13)
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(14)

(15)

(16)

where θ represents the vector of l ∈ {1, . . . , 6} true PIAT and TIPI subscores of individual 

i, μ is a vector of the means of the six latent traits and Σ is a 6x6 variance-covariance matrix 

of the six latent traits. The measurement model for the PIAT scores is the 3-PL model, (9).5 

The measurement model for the five TIPI scores is the GRM, (10).

It is necessary to estimate item parameters in the IRT models for each of the latent variables, 

because test publishers have not disclosed them. I estimate the item parameters for the full 

NLSY97 sample and then fix them at their estimates following standard practice (Ayers and 

Junker, 2008). In practice, this is how PIAT and TIPI prediction would occur: problems are 

fixed for the entire sample of test takers, but proficiencies and latent traits may change from 

year to year.

Both models (adjusted and unadjusted) are estimated using an MCMC algorithm specified in 

WinBUGS (Spiegelhalter, Thomas and Best, 2000) software.6 Bayesian estimates for the 

unadjusted models are extremely similar to frequentist ML estimates. For both the 

unadjusted and adjusted models, N(0, 10) priors were assigned to each β coefficient. In the 

adjusted models, the prior on the latent variables is assumed to be multivariate normal and 

conditioned on race and gender (following Schofield, et al, 2014). The hyperprior for Σ is a 

Wishart (Ik, k) distribution and μk has a flat N(0, 1) prior. The MCMC procedure was run 

with 3 chains with 10000 iterations each with the first half of the simulations used for burn-

in and a thinning interval of 15. Model fit is compared using the DIC fit statistic 

(Spiegelhalter et al., 2002). Following Gelman and Hill (2007) convergence was assessed 

using the general rules that R̂ < 1.1 (the potential scale reduction factor) for each parameter 

and the effective number of simulations neff > 100.

4.3. Results

In Table 2, I report the mean and standard deviation of the MCMC chains for the parameters 

in the structural model for seven analyses: a baseline model including only indicator 

variables for the demographic groups (model a); “unadjusted” and “adjusted” models 

controlling for the PIAT alone (models b–c); the TIPI alone (models d–e); and the PIAT and 

the TIPI together (models f–g). Estimates in Table 2 demonstrate the bias in assessing the 

effect of math proficiency and personality traits on STEM retention when not accounting for 

measurement error. It is notable the bias is much larger in models that adjust for the 

5Junker, Schofield, and Taylor (2012) note even though the PIAT is not constructed using the 3-PL model, the 3-PL is a suitable IRT 
model that provides a good direct model for measurement error.
6R and WinBUGS code is available from the author.
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measurement error of the TIPI scores which contain only two items per scale, versus the 

PIAT scores.

As in other work on STEM retention, I find a strong positive correlation between math 

proficiency and persistence in a STEM discipline, which may be slightly underestimated in 

the previous literature. A one standard deviation increase in PIAT scores results in a log 

odds increase of only 0.341 before adjusting for measurement error (model f) and an 

increase of 0.400 (model g) after adjusting.

The findings also reveal a strong effect of personality. When the measurement error in the 

TIPI score is not modeled, the effect of personality is highly attenuated. The estimate of the 

effect of agreeableness in the models that account for measurement error is four times that of 

the estimates when there is no adjustment for measurement error. The results in model (g) 

suggest individuals who are less agreeable (i.e., more critical) have a higher probability of 

persisting in STEM. Korpershoek, Kuyper, and van der Werf (2012) find similar results in 

examining school subject choices for high school students in the Netherlands.

Note, the standard errors of the estimates of the effect of the personality traits are quite large 

when the measurement error is modeled. The MESE model will tend to have larger standard 

errors of the structural model parameters than when the measurement error is not modeled. 

When the information on θ is small (i.e., the number of items is low as in the TIPI where J = 

2), the estimates of θi will be highly variable and less identifiable, resulting in high variation 

in the estimates of their effect on outcomes. This is easily seen in the substantial increase in 

the standard errors of the estimates of the parameters in models (e) and (g) in which the 

measurement error of the TIPI scores is modeled versus models (d) and (f) where the 

measurement error is not considered.

The estimates of the racial gap are quite different across the seven models. With no control 

for either math proficiency or personality traits (model a), the log odds of a URM persisting 

in STEM is 0.584. After controlling for math proficiency without adjusting for measurement 

error (model b), URMs remain less likely to persist in STEM, but the log odds decreases to 

0.427. When adjusting for measurement error in math proficiency (model c), the estimate on 

the race coefficient becomes insignificant, suggesting comparably-skilled URMs and whites 

are equally likely to persist in STEM. The racial gap increases when controlling for 

personality traits and adjusting for the measurement error; however, the standard error of the 

race coefficient also increases.

The gender gap is more influenced by personality traits than math proficiency. The estimates 

of the gender gap in STEM retention are similar for the models that do and do not control 

for math proficiency (similar to results found in Riegle-Crumb et al., 2012). Models (d) and 

(f), the unadjusted models that include controls for personality traits suggest personality 

traits may account slightly for differences between men and women. After adjusting for 

measurement error, models (e) and (g) suggest comparably-skilled and comparably-traited 

men and women are equally likely to remain in STEM; gender becomes non-significant and 

the estimate drops dramatically. Supplementary analyses (not shown here) were performed 

in which each personality sub-score was entered into the model separate from the other 
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personality sub-scores. These analyses suggest the effect of the agreeableness sub-score may 

have the largest effect on the STEM gender differential.

The results suggest the effect of prior academic achievement has been previously under- 

estimated in the literature and that it seemingly accounts for close to half the gap in STEM 

retention among URMs and whites. More striking are the results of the personality 

measures. Personality measures essentially remove the gender gap in STEM retention and 

account for over half of the gap (although they do not explain any of the racial STEM gaps.) 

Moreover, the effect of personality is highly attenuated if the measurement error is not 

modeled.

5. Conclusion

This paper proposes the Mixed Effects Structural Equations model to appropriately account 

for measurement error in latent variables when they are used as predictors in regression 

analyses. The MESE model follows Richard and Gilks’s (1993) Bayesian framework to 

simultaneously estimates the latent variable and the parameters of interest. The MESE 

model extends other similar SEM models by modeling several latent traits as correlated 

conditional on the other covariates and modeling each latent trait with a different IRT 

measurement model. The IRT model provides a direct model of the heteroskedastic 

measurement error inherent in psychometric latent variables.

When latent variables are used to examine future outcomes such as college major choice, 

measurement error will persist. The standard practice in the social sciences of using a point 

estimate of the latent variable leads to very different results than those models which 

account for the measurement error. This is particularly true for studies that use batteries and 

tests which have small numbers of items, such as the TIPI.

The motivating example demonstrates there is both a practically and statistically significant 

bias when latent variables measured with error are used as predictors in STEM retention 

analyses and the error is not modeled. I find prior mathematics proficiency and personality 

have been previously underestimated in the STEM retention literature. In addition and 

perhaps more importantly, I find the racial and gender gaps change substantially when the 

measurement error of the latent variables is modeled. When math proficiency is modeled 

with error, I find an insignificant estimate on the race coefficient, suggesting comparably-

skilled URMs and whites are equally likely to persist in STEM. When personality skills are 

modeled with error, I find comparably-skilled and comparably-traited men and women are 

equally likely to remain in STEM.

The results presented here suggest interventions aimed at improving persistence of URMs 

and females in STEM ought to consider the role of prior math proficiency and personality 

traits – in particular the trait of agreeableness. Individuals who design such interventions 

must be mindful of the impact person-environment fit can have on individual performance. 

There is a vast literature on the relationship between personality and vocational interests 

(e.g., Walsh, 2001, Holland, 1987), which may have significant application to the design of 

interventions aimed at reducing the gender differentials in STEM retention.

Schofield Page 14

Ann Appl Stat. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This work does not directly examine the clearly critical role of STEM interest, motivation, 

or instructional practices, but does suggest when these variables are measured, they are 

likely measured with error. Future work must examine the extent of the bias in using these 

variables as predictors of STEM retention. Models such as the MESE model offer 

opportunities for researchers and practitioners to better understand the complicated influence 

academic achievement and personality traits have on STEM retention.

Several other areas of educational research use latent variables as predictors. The MESE 

model is applicable to these areas of educational research as well. The results presented here 

suggest similar biases will exist in any of these literatures where latent variables are used as 

predictors but their error is not modeled.
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Fig 1. 
Measurement error for a typical 3-PL model by θ where a ~ Unif(0, 2), b ~ N(0, 1) and c = 0 

for all items.
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