Table 1.
Average accuracy of cross-validation results, feature vector size per columns. Rows correspond to scalar feature mappings.
Measure | Feat.Map. | HG | 500 | 1000 | 5000 | 10000 | |
---|---|---|---|---|---|---|---|
SZAH vs. SZNAH | FC | OS-LAAM | L | 97.5 | 97.5 | 97.5 | 92.5 |
R | 92.5 | 92.5 | 95 | 95.2 | |||
BF-LAAM | L | 100 | 97.5 | 95 | 90 | ||
R | 100 | 100 | 100 | 100 | |||
LA | ReHo | - | 100 | 100 | 100 | 100 | |
ALFF | - | 85 | 87.5 | 92.5 | 92.5 | ||
fALFF | - | 97.5 | 100 | 100 | 97.5 | ||
SZAH vs. HC | FC | OS-LAAM | L | 43.7 | 42.7 | 30.7 | 28.3 |
R | 52.3 | 50 | 33 | 28 | |||
BF-LAAM | L | 96.7 | 98 | 96.3 | 93 | ||
R | 98.3 | 96 | 92.7 | 93 | |||
LA | ReHo | - | 98 | 98.3 | 96.7 | 96.6 | |
ALFF | - | 48.7 | 49 | 30.3 | 31.7 | ||
fALFF | - | 100 | 100 | 98.3 | 98.3 | ||
SZnAH vs. HC | FC | OS-LAAM | L | 65 | 63 | 59.5 | 55 |
R | 74 | 70 | 60 | 55 | |||
BF-LAAM | L | 100 | 100 | 95.5 | 93 | ||
R | 100 | 98 | 95.5 | 93.5 | |||
LA | ReHo | - | 97.5 | 98 | 95.5 | 96 | |
ALFF | - | 78 | 76 | 62 | 53 | ||
fALFF | - | 100 | 100 | 100 | 100 | ||
SZ vs. HC | FC | OS-LAAM | L | 32.4 | 31 | 26 | 25 |
R | 41.4 | 36.7 | 26.9 | 25.2 | |||
BF-LAAM | L | 95.5 | 97.1 | 88.6 | 85.7 | ||
R | 94.3 | 91.2 | 86.7 | 87.1 | |||
LA | ReHo | - | 95.7 | 95.7 | 97 | 95.5 | |
ALFF | - | 48.8 | 42.9 | 35.2 | 35.2 | ||
fALFF | - | 98.5 | 100 | 97.1 | 97.1 |
Column HG indicates the left (L) or right (R) Heschl’s Gyrus ROI. Results above 90% are highlighted in bold. Key to abbreviations: FC = Functional connectivity. LA = Local Activity. OS-LAAM = one-sided lattice auto-associative memories. BF-LAAM = background/foreground lattice auto-associative memories. ReHo = regional homogeneity. ALFF = amplitude of low frequency fluctuations. fALFF = fractional amplitude of low frequency fluctuations.