Table 2.
Average sensitivity of cross-validation results, feature vector size per columns. Rows correspond to scalar feature mappings.
Measure | Feat.Map. | HG | 500 | 1000 | 5000 | 10000 | |
---|---|---|---|---|---|---|---|
SZAH vs. SZNAH | FC | OS-LAAM | L | 100 | 100 | 100 | 100 |
R | 100 | 100 | 100 | 100 | |||
BF-LAAM | L | 100 | 100 | 100 | 100 | ||
R | 100 | 100 | 100 | 100 | |||
LA | ReHo | - | 100 | 100 | 100 | 100 | |
ALFF | - | 96.7 | 96.7 | 100 | 100 | ||
fALFF | - | 100 | 100 | 100 | 100 | ||
SZAH vs. HC | FC | OS-LAAM | L | 28.3 | 21.7 | 11.7 | 8.3 |
R | 38.3 | 30 | 18.3 | 10 | |||
BF-LAAM | L | 96.7 | 96.7 | 93.3 | 85 | ||
R | 96.7 | 93.3 | 91.7 | 93.3 | |||
LA | ReHo | - | 100 | 100 | 96.6 | 96.7 | |
ALFF | - | 45 | 41.7 | 21.7 | 18.3 | ||
fALFF | - | 100 | 100 | 100 | 100 | ||
SZNAH vs. HC | FC | OS-LAAM | L | 40 | 40 | 20 | 15 |
R | 50 | 40 | 25 | 20 | |||
BF-LAAM | L | 100 | 100 | 90 | 80 | ||
R | 100 | 95 | 90 | 85 | |||
LA | ReHo | - | 100 | 100 | 95 | 95 | |
ALFF | - | 60 | 50 | 30 | 20 | ||
fALFF | - | 100 | 100 | 100 | 100 | ||
SZ vs. HC | FC | OS-LAAM | L | 30 | 27.5 | 17.5 | 20 |
R | 40 | 35 | 25 | 22.5 | |||
BF-LAAM | L | 97.5 | 100 | 95 | 92.5 | ||
R | 95 | 95 | 90 | 92.5 | |||
LA | ReHo | - | 100 | 100 | 96.6 | 96.7 | |
ALFF | - | 47.5 | 45 | 37.5 | 35 | ||
fALFF | - | 97.5 | 100 | 97.5 | 97.5 |
Column HG indicates the left (L) or right (R) Heschl’s Gyrus ROI. Results above 90% are highlighted in bold. Key to abbreviations: FC = Functional connectivity. LA = Local Activity. OS-LAAM = one-sided lattice auto-associative memories. BF-LAAM = background/foreground lattice auto-associative memories. ReHo = regional homogeneity. ALFF = amplitude of low frequency fluctuations. fALFF = fractional amplitude of low frequency fluctuations.