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ABSTRACT

Single Molecule, Real-Time (SMRT R©) Sequencing
(Pacific Biosciences, Menlo Park, CA, USA) provides
the longest continuous DNA sequencing reads cur-
rently available. However, the relatively high error
rate in the raw read data requires novel analysis
methods to deconvolute sequences derived from
complex samples. Here, we present a workflow of
novel computer algorithms able to reconstruct viral
variant genomes present in mixtures with an accu-
racy of >QV50. This approach relies exclusively on
Continuous Long Reads (CLR), which are the raw
reads generated during SMRT Sequencing. We suc-
cessfully implement this workflow for simultaneous
sequencing of mixtures containing up to forty dif-
ferent >9 kb HIV-1 full genomes. This was achieved
using a single SMRT Cell for each mixture and desk-
top computing power. This novel approach opens the
possibility of solving complex sequencing tasks that
currently lack a solution.

INTRODUCTION

Human Immunodeficiency Virus Type-1 (HIV-1) is one of
the most rapidly evolving pathogens (1). Although in the
majority of transmission events only a single variant gets
transmitted to the new host (2–5), due to the high mutation
rate that HIV-1 exhibits during its replication cycles (6) and
immune selection, a diverse intra-host population of vari-
ants (quasispecies (7)) rapidly evolves.

The underlying variation that establishes the viral qua-
sispecies is crucial for adaption to selective pressures (8).
Therefore, a better understanding of the dynamics of the
genomic variants in quasispecies can have important im-

plications for pathogenesis (8–12), treatment (13–17) and
vaccine development (18–20). To date, HIV-1 quasispecies
have primarily been studied by cloning (4,21–26) or deep se-
quencing (19,27–29). While the former limits the number of
variants that can be analyzed, the latter limits the length of
the genomic segment analyzed (because of the short length
of sequencing reads) or reduces the analysis to the study
of the frequency of individual polymorphisms within the
population without being able to confidently deconvolute
the genomic DNA sequence of each of the multiple closely-
related variants that comprise it. Therefore, at the present
there is a limited knowledge of the actual dynamics of an
HIV-1 quasispecies based on full-genomic sequences. A so-
lution to this would be to implement the Next Genera-
tion Sequencing (NGS) technology developed by Pacific
Biosciences (PacBio R©) called Single Molecule, Real-Time
(SMRT R©) DNA sequencing. This technology combines the
deep massive parallel sequencing of NGS with long se-
quencing reads (currently >10 kb). However, although the
long reads allow creation of finished, gapless, high quality
(>QV50) genome assemblies, it is only applicable when se-
quences are all derived from a single genome because the
relatively high error rate of base calls during the sequenc-
ing process precludes the efficient phasing of genomic se-
quences of multiple closely related variants.

To examine heterogeneous populations using SMRT se-
quencing, one can build consensus sequences from multi-
ple passes across the same molecule. Also known as circu-
lar consensus sequencing (CCS) (30), these CCS reads ex-
hibit a significantly lower error rate since they are derived
from multiple passes of the polymerase over the same cir-
cularized DNA molecule, thereby resulting in near-final,
higher-quality sequence reads. However, this approach re-
quires continuous long reads up to 10 times the length of
the region of interest. In the case of near full-length HIV-1
genomic sequences, for example, this approach would re-
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quire CLR sequences 100 kb in length. A recent attempt to
circumvent this problem involved PCR amplifying a series
of overlapping fragments across the HIV-1 genome, such
that high quality CCS reads were derived and then assem-
bled, but the level of genetic diversity in the mixture com-
promises any assembly approach, particularly when closely
related variants are present (31). An alternative is to derive
algorithms that allow the use of the raw, single-pass CLR
data to infer possible haplotypes. The higher single-pass se-
quence read error rate of this approach requires new analy-
sis tools.

In the present study, an analytical algorithm was devel-
oped that allows the accurate simultaneous sequencing of
at least 40 distinct full-length HIV-1 genomes on a single
SMRT R© Cell. This is achieved by exclusive use of single-
pass CLR data. This statistical approach is not limited to
HIV-1 but can be applied broadly to resolving other com-
plex sequencing problems.

MATERIALS AND METHODS

Samples analyzed

Samples were obtained from the participants of the Zambia
Emory HIV Research Project (ZEHRP) discordant couples
cohort in Lusaka, Zambia, enrolled in studies for which the
associated human subjects protocols have been approved by
both the University of Zambia Research Ethics Commit-
tee and the Emory University Institutional Review Board.
Prior to enrollment, individuals received counseling and
signed a written informed consent form agreeing to par-
ticipate. The subjects selected from the cohort were ini-
tially HIV-1 serodiscordant partners in cohabiting hetero-
sexual couples with subsequent intra-couple (epidemiolog-
ically linked) HIV-1 transmission (32–34). Epidemiological
linkage was defined by phylogenetic analyses of HIV-1 gp41
sequences from both partners (35). Zambian linked recipi-
ents were identified to have a median (interquartile range)
estimated time since infection (ETI) of 46 (42–60.5) days,
at which time plasma samples were obtained from both the
transmitting source partner (donor) and the linked serocon-
verting partner (recipient). All of the transmission pairs in-
cluded in this study are infected with subtype C HIV-1.

Single genome amplification

Viral RNA extraction and near full-length genome Single
Genome Amplicons (SGAs) were obtained by limiting di-
lution RT-PCR as described previously (36,37). Viral RNA
was extracted from 140 �l of plasma using the QIAamp Vi-
ral RNA mini kit (Qiagen, Limburg, Netherlands) and was
used for cDNA synthesis carried out with Superscript III
(Life Technologies, Carlsbad, CA, USA) and an anchored
Oligo(dT)18 primer. The cDNA was used immediately for
PCR amplification using the Q5 Hot Start High-Fidelity
DNA Polymerase (NEB, Ipswich, MA, USA). Near full-
length single genome PCR amplification was performed by
serially diluting cDNA, followed by two rounds of PCR
amplification, so that ∼30% of wells became positive. Both
rounds of PCR were performed in 1x Q5 Reaction Buffer,
1x Q5 High GC Enhancer, 0.35 mM of each dNTP, 0.5

�M of primers and 0.02 U/�l of polymerase in a total re-
action volume of 25 �l. First round primers were, 1U5Cc
and 1.3’3’PlCb, and second round primers were 2U5Cd and
2.3’3’plCb (38). Cycling conditions for both reactions are
98◦C for 30 s, followed by 30 cycles of 98◦C for 10 s, 72◦C for
7.5 min, with a final extension at 72◦C for 10 min. PCR reac-
tions were visualized by electrophoresis through 1% agarose
lithium acetate at 300 V for 25 min.

SGA mixtures for library preparation

Five SMRTbellTM libraries containing multiple HIV-1 full-
length genome amplicons were constructed by pooling mul-
tiple SGAs from five different patients as follows: In library
#1, 18 SGAs obtained from the chronically HIV-positive
transmitting partner (donor) Z4473F were mixed together
with one SGA representing the transmitted/founder (T/F)
virus from the acutely infected partner (recipient) Z4473M.
Similarly, in library #2, 20 SGAs from the donor, Z4248F,
were mixed together with the T/F virus SGA from the re-
cipient Z4248M. Library #3, contained a mixture of all
40 SGAs used for the first two libraries. Library #4 con-
tained a mixture of 18 independent SGA amplicons ob-
tained from an acutely infected HIV-1 individual (Z3576F).
Finally, Library #5 contained a single full-length SGA
from an acutely infected patient (R880F). The sequences
of all of the genomes present in the libraries were initially
obtained using Sanger sequencing (GenBank KR820394-
820413, KR820417, KR820422-820440).

Library preparation protocol

PCR products from each SGA were purified separately
using the Wizard R© SV Gel and PCR Clean-Up System
(Promega, Madison, WI, USA) and DNA was quantified
using the NanoDrop R© ND-1000 UV-Vis Spectrophotome-
ter (Thermo Fisher Scientific, Waltham, MA, USA). Equal
amounts of DNA from each of the SGAs to be included
in a library were pooled together to a final concentration
of 70 ng/�l. SMRTbell libraries were generated for each
pool according to protocols from the DNA Template Prep
Kit 2.0 (Pacific Biosciences Inc., CA, USA cat 100-259-
100). Specifically, initial repair of the amplicons was done
by combining 42 �l (3000 ng) of the pooled DNA sample
with 5 �l of DDR Buffer (10×), 0.5 �l of NAD+ (100×),
0.5�l of dNTP (10 mM) and 2 �l of DNA Damage Repair
Enzyme (25×), and incubated at 37◦C for 20 min and then
at 4◦C for 1 min. Then the mixture is subjected to a round of
DNA purification using AMPure PB magnetic beads (Pa-
cific Biosciences, Inc.) and eluted in 30 �l of Elution Buffer.
The mixture is then subjected to End Repair reaction by
adding 5 �l of Template Prep Buffer (10×), 5 �l of ATP Hi
(10 mM), 2 �l of dNTP (10 mM), 5.5 �l of water and 2.5 �l
of End Repair Mix Enzyme (20×). The mix is incubated at
25◦C for 15min and then at 4◦C for 1–2 min. Another round
of DNA purification using AMPure PB magnetic beads is
performed and DNA is eluted in 30 �l of Elution Buffer.
The mixture is then subjected to Ligation with SmartBell
Adaptors by adding 1 �l of blunt adaptors, 4 �l of Tem-
plate Prep Buffer (10×), 2 �l of ATL Low (1 mM), 2 �l of
water and 1 �l of T4 Ligase (30 U/�l). The mix is incubated
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overnight at room temperature and then heated for 10 min
at 65◦C to inactivate the ligase. 0.75 �l of Exonuclease III
and 0.75 �l of Exonuclease VII are added to the ligation
mix and incubated at 37◦C for 1 h in order to remove any
unligated DNA. Finally, three rounds of DNA purification
using the AMPure PB magnetic beads are performed, elut-
ing in 100 �l of Elution Buffer after first and second round,
and eluting in 15 �l of Elution Buffer after the final round
of purification. The quality of the library was assessed by
running the sample in the Agilent 2100 Bioanalyzer system
(Agilent Technologies, Santa Clara, CA, USA). Final con-
centrations of each library were: (i) 30.94 ng/�l with a peak
at 9199 bp, (ii) 28.46 ng/�l at 9359 bp, (iii) 32.04 ng/�l at
9029 bp and (iv) 25.06 ng/�l at 9130 bp. Primer anneal-
ing and P4 polymerase binding to the SMRTbell libraries
were performed. SMRT sequencing was performed on the
PacBio RSII, using 2-h movies.

Genetic variants reconstruction

(i) Generation of initial data set
A fasta file containing the initial set of reads to be an-
alyzed is generated with the bash5tools.py code (SMRT
Analysis v2.2.0 for Ubuntu 10.04), which uses informa-
tion generated by the PacBio instrument contained in the
bas.h5 and bax.h5 files. Only reads longer than 2 kb are
retained in this step.

(ii) Alignment
A central task to sequencing mixtures of genomes is de-
termining consensus or estimating the single most-likely
genome given a set of reads that only have sequencing
errors. With a robust consensus procedure in place, the
problem of sequencing mixtures might be broken into
two tasks: (a) stratifying reads that are likely to have orig-
inated from different genomes and (b) estimating consen-
sus within each genome strata to remove sequencing er-
ror. We rely on the Quiver algorithm to estimate consen-
sus and remove sequencing error. Quiver is a process that
for a candidate genome and a set of reads computes the
probability of the reads given the genome using a com-
putationally efficient algorithm that explores all possible
alignments of the reads to the genome. The single best
consensus genome is one that maximizes this probability.
With the consensus genome estimated by Quiver, a sim-
plified multiple sequence alignment view is generated by
pairwise aligning each of the reads to the single Quiver
consensus and combining the pairwise alignments into a
single multiple alignment.

(iii) Alignment correction algorithm
The majority of errors in PacBio raw reads are insertions
and deletions (INDELs) and so the initial phase of se-
quence derivation is to minimize the alignment artifacts
derived from such errors. Every read in the alignment is
considered a row vector in which elements are aligned to
the Quiver reference and can be either ‘main positions
P’, which are positions classified as true, or ‘INDEL po-
sitions p’, which are positions classified as false. If y, x
and z are ‘main positions’, any given read of length n can
be defined as:

ν = [P1, . . . , Py, py+1, . . . , px−1, Px, px+1, . . . , pz−1, Pz, . . . , Pn ]

where any position in between them is an INDEL posi-
tion (either a gap or a nucleotide classified by the align-
ment method as a sequencing error). During the align-
ment correction algorithm, if A is the group of ‘main po-
sitions’ (Pi) and y ∈ Ax ∈Az ∈ A and y is the next down-
stream main position to x and z the next upstream posi-
tion to x, if for any i, where y < i < x or x < i < z, Pi
in {A, C, G, T}, then the nucleotide at Px is replaced by
a gap, which is considered a non-informative state in our
model.
After implementing the correction to every main position
in every read, all the INDEL positions in the alignment
are removed leading to corrected reads defined as:

νcorrected = [P1, . . . , Py, Px, Pz, . . . , Pn ]

(iv) Identification of positions with evidence of true diversity
For every non-consensus nucleotide nt at every position z
in the alignment, the probability for that nucleotide to be
a sequencing error was defined as the complement prob-
ability to the binomial cumulative distribution with a 5%
uniform rate (expected frequency for noise) where xnt is
the number of observations of nucleotide nt (A, C, G or
T) and nz is the total number of observations:

Pb = 1 − F (xnt |nz, 0.05) = 1 −
xnt∑
i=0

(
nz

i

)
0.05i 0.95(nz−i )

where xnt is the number of reads in which the specific nu-
cleotide type nt (A, C, G or T) was present as a potential
erroneous insertion, nz is the total number of reads for
the position z.
Correction for multiple comparisons is performed by es-
timating the positive false discovery rate (pFDR) from
the p-values using the procedure described by Storey (14)
as implemented in MATLAB R2012a (mafdr algorithm).
Only non-consensus nucleotides with a q-value less than
0.2 were considered likely to be true polymorphisms.

(v) Classification of reads
Classification of reads was performed by implementing
a hierarchical clustering method. Edit distances between
reads were determined based on the positions selected in
the previous step and using only overlapping positions
between reads, disregarding positions where either read
has a gap. The final distance is defined as the percentage
of differences over the total positions included in the cal-
culation. Then the set of reads are linked to each other on
a cluster analysis based on the calculated distances and
the distance between clusters is measured following the
furthest neighbor method (linkage algorithm, MATLAB
R2012a).
If x ∈ A, y ∈ B, d(x, y) = distance between objects x
and y, then the distance between A and B is dist (A, B) =
max {x ∈ A, y∈B} d (x, y).
Based on distance between clusters, reads are classified in
two subgroups separated by the largest distance (cluster
algorithm, MATLAB R2012a).

(vi) Recurrent analysis of subgroups
In order to derive all of the unique sequences in the mix-
ture steps i-v are repeated until there are no positions with
significant diversity remaining within the subgroups.

(vii) Error correction algorithms
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Although each subgroup is homogeneous, some errors in
the sequence remain primarily due to bases missed during
sequencing. To correct these errors, we utilize two error
correction algorithms.

Error correction algorithm #1. This algorithm reanalyzes
all of the nucleotides initially classified as potentially er-
roneous insertions in the raw read alignment for evidence
of specific nucleotides present at frequencies significantly
higher than that expected for noise considering statistically
significant any nucleotide having a q-value lower than 0.01.
Any nucleotides found to be significantly prevalent are con-
sidered real nucleotides missed by the alignment process due
to low frequency in the sequencing output data and are con-
sequently inserted in the final consensus sequence. In addi-
tion, and because these misclassified nucleotides were actu-
ally present at low frequency among reads, we performed a
bootstrap analysis in which the statistical analysis was im-
plemented and repeated over 50 subsamples containing 75%
of the reads randomly selected from the alignment. After
the analysis, nucleotides that exhibited p-values lower than
0.05 and q-values lower than 0.01 in at least 40 of the 50
replicates are considered true nucleotides and are incorpo-
rated into the final consensus sequence.

The algorithm proceeds as follows:

(i) Perform a sampling without replacement of 75% of the
reads in the alignment.

(ii) For every position Pz in the initial raw read alignment,
determine the frequency of each nucleotide type (A, C,
G and T) that was initially classified as a potentially
erroneous insertion located between positions Pz and
Pz+1,

(iii) Calculate the probability Pb for each nucleotide type
(A, C, G and T) to be an error as the complement prob-
ability to the binomial cumulative distribution func-
tion as follows:

Pb = 1 − ynt = 1 − F (xnt |nz, p) = 1 −
xnt∑
i=0

(
nz

i

)
pi q(nz−i )

where p is the expected frequency for noise defined as
the percentile 95 from the distribution of all the fre-
quencies determined in the previous step and q = 1 –
p

(iv) Obtain the q-values derived from correcting the p-
value for multiple comparisons using the Benjamini–
Hochberg FDR method (39), and select as potential
true nucleotides those exhibiting a q-value lower than
0.01.

(v) Repeat steps (i) through (iii) 50 times and define true
nucleotides as those found to have a q-value lower than
0.01 in at least 40 of the 50 replicates.

Error correction algorithm #2. This algorithm explores ev-
ery single gap in the alignment obtained after correction
with algorithm 1, and defines as a ‘real’ nucleotide any nu-
cleotide type initially classified as potentially erroneous in-
sertions in the raw read alignment that, while exhibiting a
significant q-value in at least one of the 50 replicates of al-
gorithm 1, would fill a single gap in the sequence.

The algorithm proceeds as follows:

(i) In the corrected alignment obtained from algorithm 1,
determine the frequency of gaps at each position Pz of
the alignment.

(ii) For every gap in every sequence of the alignment lo-
cated in an alignment position Pz, determine in how
many replicates (if any) of algorithm 1 a nucleotide lo-
cated between positions Pz-1 and Pz+1 of that sequence
was found to exhibit significant q-value.

(iii) Define as real nucleotides those found to have a signif-
icant q-value in at least 1 of the 50 replicates of algo-
rithm 1 and located between positions Pz-1 and Pz+1,
if and only if the frequency of gaps in position Pz was
lower than 5%, as calculated in step (i).

The total runtime for the analysis of a dataset of 3000
reads is ∼2.3 h with peak memory requirements of 1.1 Mb.

Validations of the method

Validation of the analytical algorithm was performed
by comparison of the DNA sequences generated by
our algorithm with the DNA sequences obtained by
Sanger sequencing. Alignments were built using HIV Align
Tool (40) [available at http://www.hiv.lanl.gov/content/
sequence/VIRALIGN/viralign.html], and then hand-edited
in Geneious 6.1.4. The number of mismatches between se-
quences was counted and analyzed using algorithms built
with MATLAB 2012a.

RESULTS

Overview of the sequencing run and analytical approach

The goal of the present study was to develop an analyti-
cal approach able to accurately reconstruct multiple HIV-1
genomes sequenced in parallel using only Continuous Long
Reads (CLR).

Overall, as shown in Figure 1 the analytical approach that
we present here includes (i) alignment of raw CLR reads
longer than 6 kb to a Quiver derived consensus, (ii) align-
ment correction to minimize the impact of erroneous in-
sertions, (iii) probabilistic analysis of the diversity of each
nucleotide base (A, C, G, T) at each position to minimize
the impact of erroneous deletions, (iv) classification analy-
sis using differential weighting of each position based on
the preceding diversity analysis, which minimizes the im-
pact derived from erroneous substitutions and (v) an error-
correction algorithm that focuses on deletions in order to
correct residual errors and achieve high levels of accuracy.

Assembly of reads and alignment correction

For each SMRTcell, an initial consensus was estimated us-
ing Quiver (41) and a standard HIV-1 reference sequence
(HXB2). Despite the relatively large number of sequencing
errors present in the raw CLR data, sufficient information
remains in the reads to allow alignment using Quiver (Fig-
ure 2A). An average of 3256 reads greater than 6 kb were
obtained per SMRTcell with a median length of 6892 bases
(p5 = 6164; p95 = 7975) (Supplemental Figure S1A). Align-
ments showed lower coverage at both ends of the genome
since reads can start from either the 5′ or 3′ end and not all

http://www.hiv.lanl.gov/content/sequence/VIRALIGN/viralign.html
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Figure 1. Schematic view of the main steps involved in the workflow. The
workflow consists of a number of steps that initially align the Continu-
ous Long Reads, then minimizes the impact of insertions by performing
an Alignment Correction, then identifies positions with true diversity dis-
regarding deletions, and classifies reads into two groups using a distance
method based on positions selected in the previous step. The recurrent im-
plementation of these procedures to each subgroup generated increases the
homogeneity of the sequences until all the sequences contained in one sub-
group were highly likely obtained from sequencing the DNA molecules
with the same DNA sequence. Finally, an Error Correction algorithm is
implemented over the derived sequences in order to increase their QV.

of them are long enough to span the entire genome (Sup-
plemental Figure S1B).

Initially, we evaluated whether the genetic information
present in the reads, although sufficient to build an overall
approximate alignment, could also allow for the differenti-
ation of the unique HIV-1 genomes in each library. How-
ever, an attempt to derive an accurate nucleotide sequence
for each HIV-1 variant present in the original sample by us-
ing a distance method over the aligned reads was unsuccess-
ful, confirming that the number of errors present in the raw
reads prevented phylogeny-based reconstruction of the in-
dividual HIV-1 genomes.

A computational algorithm was, therefore, developed to
remove nucleotide calls most likely to be errors prior to phy-

logenetic analysis. The concept of this ‘alignment correc-
tion’ was based on the fact that insertions and deletions, de-
rived by incorrect base calling, impair the construction of an
accurate alignment. The alignment of raw reads to the ini-
tial Quiver-derived consensus exhibited a large number of
INDELs, which are known to be much more frequent than
substitution errors in this sequencing system. Considering
that any position located next to a potentially erroneous in-
sertion was more likely to suffer from alignment problems,
a computational algorithm was developed to use the infor-
mation from those insertions to clean the alignment by re-
moving from each read any nucleotide that exhibited an in-
sertion either upstream or downstream of the reference se-
quence base (Figure 2B). Even though a large number of
‘real’ nucleotides were removed through this approach, the
final dataset was then enriched in the nucleotides most likely
to be correct. This procedure removed a median of 13.9%
(q25 = 11.06%, q75 = 17.8%) of the positions in each read of
the alignment (Supplemental Figure S2). After implemen-
tation of the alignment correction, the diversity per posi-
tion tends to increase (Supplemental Figure S3). This result
was related to the fact that, when erroneous insertions were
located next to a real nucleotide, the chances of finding a
nucleotide identical to the consensus would be higher for
that region, and given that the alignment algorithm relied
on minimizing the differences between reads, erroneous in-
sertions tended to ‘hide’ the true diversity present among
the reads.

Identification of positions with true diversity

The difficulty in defining true diversity from noise can be
seen when examining the variability in observed base fre-
quencies, as measured by entropy, for individual positions
in the viral sequence for a mixture of amplicons from acute
infection (Figure 3A) or a single SGA (Supplemental Fig-
ure S4A). The examined entropy is the simple expectation
of negative log probability over the base distribution at in-
dividual positions in the multiple sequence alignment. In
a situation with no sequencing errors on a clonal sample,
the median entropy would be expected to be close to zero.
However, average entropies of 0.4181 and 0.4726 were ob-
served in the above datasets, respectively, with 75% of the
positions above 0.2911/0.3591. In order to minimize the im-
pact of this overall error, a second algorithm was developed,
which weighted positions exhibiting the highest diversity,
since these are the positions most likely indicative of true
variability. To select those positions, a statistical approach
was implemented to analyze only base substitutions, inde-
pendently of deletions (the alignment-correction algorithm
described above having already minimized errors derived
from nucleotide insertions). This method assumed that the
distribution of these non-consensus nucleotides within the
noise followed a binomial distribution with a expected fre-
quency of 0.05, providing a conservative threshold for de-
tecting diversity according to the observed frequency of
non-consensus nucleotides when each individual base is an-
alyzed independently from the others (Supplemental Fig-
ure S4B) for the acute/single SGA sample. The probabil-
ity of being a sequencing error was then calculated for each
non-consensus nucleotide separately at each position, and
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Figure 2. Schematic view of the ‘alignment correction’ procedure implemented during the analytical approach. During implementation of the algorithm,
the original alignment (A) obtained using Quiver is edited and the positions most likely to lead to errors in the alignment process due to erroneous
technique-driven insertions are removed, generating a corrected alignment (B) that has lost information but which is enriched in the most reliable segments
of the reads.

corrected for using multiple comparisons by the Benjamini-
Hochberg method for defining false discovery rates (FDR)
(42). This approach allowed the separation of background
noise from true diversity, with the additional benefit of tak-
ing into account the number of sequencing reads obtained
at each position. Using a p-value of 0.05 and q-value of 0.2
for this probabilistic approach, the number of positions se-
lected correlated with the diversity in the original sample. In
library #1 (mixture of two chronic patients) 930 and 1,010
significant positions were found respectively in each repli-
cate; for library #2 (single chronic patient with high diver-
sity) these numbers were 739 and 614; and for library #3
(single chronic patient with low diversity) 106 and 105 sig-
nificant positions were found. This is in contrast to library
#4 (single acute patient) where a single position in each
replicate was identified (q < 10−15 and q = 2.8 × 10−9, re-
spectively) (Figure 3B-C). In the acute patient, all the posi-
tions except one exhibited a q-value of 1, while in the chronic
patients 60% of the q-values lower than 1 were found to be

significant (q < 0.2). In addition, 95% of the significant q-
values were actually lower than 0.01, demonstrating that the
probabilistic approach exhibited very low background noise
(Figure 3B and C).

Separation of reads using clustering methods

In order to ultimately reconstruct each of the HIV-1
genomes included in the sequencing run, a distance-based
clustering method was implemented. This method uses the
positions identified above as having significant diversity, to
classify the reads into different groups according to their
similarity to each other. Instead of using a fixed distance
cut-off to separate reads, an analytical approach was em-
ployed in which reads were separated sequentially into two
groups at a time based on the largest distance between reads
determined using the furthest neighbor method (Figure 4).
By using this approach it was not necessary to set a spe-
cific cutoff and the accuracy of separating different HIV-1
genomes into discrete groups of sequencing reads was in-
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Figure 3. Identification of true diversity among samples with variable degrees of diversity. When the distribution of either the entropy (A) or the q-values
derived from the statistical approach described (B) are compared after sequencing a mixture of two HIV-1 chronically infected patients, a single chronically
infected patient with high diversity, a single chronically infected patient with low diversity, and an acutely infected patient, the probabilistic approach proves
to be more sensitive to variations in real diversity. When both entropy and q-values are used to identify non-consensus nucleotides across the entire HIV-1
genome shown from 5′ (blue) to 3′ (red) (C), the differentiation between background noise and real diversity for the statistical approach versus that using
entropy is apparent, allowing positions of actual diversity to be identified.

creased. Although both groups would likely still have a mix-
ture of reads obtained from different genomes, by sequen-
tially repeating the steps of alignment correction, identifi-
cation of positions, and clustering, we were able to separate
reads into groups of increasing sequence homogeneity. This
was repeated until no further positions with significant di-
versity were found, indicating that the alignment in the fi-
nal subset was composed exclusively of reads obtained from
the sequencing of the same HIV-1 genome (Figure 4A–C).
This procedure generated a number of HIV-1 genomes that
was equal to, or higher than, the number of HIV-1 genomes
present in the original sample. However, phylogenetic anal-
yses showed that this was due to the generation of redun-
dant identical genomes at different cycles of the analysis.
In other words, reads belonging to the same genome were
at some point in the analysis separated into different sub-
sets and eventually used to independently derive the same
HIV-1 genome. Since this diluted the number of reads clus-
tered per genome, and because these redundant genomes
were easily identified by phylogenetic analysis, an additional
step was included in which all the reads that independently
derived the same genome were merged and re-tested by the
code to determine whether it constituted a mixture or was

derived from the same HIV-1 genome. After this procedure,
the number of consensus sequences obtained was equal to
the number of SGAs present in the original sample, whether
the analysis was started with a mixture of 19 (library #1), 21
(library #2) or 40 defined genomes (library #3) (Figure 5A
and B). This result also provided confirmation that each
SGA was indeed unique and not a mixture of multiple HIV-
1 genomes co-amplified in the same RT-PCR.

Final correction for single base deletions/insertions

When the sequences obtained using the above algorithm
were compared with the sequences obtained by Sanger
sequencing, 791 errors (783 deletions and eight inser-
tions) were observed in the total dataset (∼1.6 million nu-
cleotides), which represents a median of 5 (p95 = 9, max
= 17) errors in each of the 161 genomes analyzed (QV =
32.6). As shown in Figure 6A and B, these errors were most
frequent at both ends of the alignments where the sequence
coverage was lower. However, clear hotspots of error were
identified as shown in Figure 6B as well as several errors
in regions with high coverage as shown in Figure 6G (blue
bars).
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Figure 4. Stepwise classification of reads. Because a majority of the errors generated during sequencing are INDELS, by analyzing the data independently
by nucleotide (A, C, G, T), it is possible to reduce the effective background error rate and more accurately identify the positions exhibiting real diversity
(A). By implementing a clustering analysis only on positions of the alignment exhibiting significant diversity, so that two groups are generated at every
step, it is possible to eventually obtain a subgroup of reads that lack any evidence of diversity (B). Such homogeneous subgroups can be considered to be
the result of sequencing DNA molecules with the exact same nucleotide sequence. Some subgroups require further analysis to derive additional subgroups
as they remain a mixture of multiple sequences (C).

Given that the vast majority of errors were deletions, a
probabilistic algorithm (see Materials and Methods, Error
Correction Algorithm #1, ECA1) was developed to deter-
mine whether an actual position in the alignment was ini-
tially removed because of low frequency detection of the nu-
cleotide during sequencing. This algorithm reanalyzes all of
the nucleotides initially classified as potentially erroneous
insertions in the Quiver alignment for evidence of specific
nucleotides present at frequencies significantly higher than
that expected for noise. By implementing this new correc-
tion algorithm it was possible to reduce the total number
of errors from 791 to 167 (144 deletions and 23 insertions,
QV = 39.2) with a median of 0 (p95 = 4, max = 9) errors in
each of the 161 genomes analyzed. The errors that remained
were associated with positions of low coverage at the ends
of the alignment (Figure 6C and G––red bars), with 90% of
the errors located in positions with coverage lower than 50×
(Figure 6H). After correction, the majority of hotspots were
eliminated (Figure 6D). While the number of deletions was
reduced by 80%, the number of insertions increased from
8 to 23. This is due to the fact that given the probabilistic
nature of the analysis, a number of false positives were ex-
pected, which in this case is 2.3% (15/639), a number close
to the 1% cutoff defined by the 0.01 q-value.

In order to further reduce the number of errors, an addi-
tional approach was explored. The 144 remaining deletions
were all single gaps that could be identified by aligning the
sequences obtained from the first correction with a refer-
ence HIV-1 sequence. To address this, we developed an al-
gorithm that determined, for each of these gaps, whether a

nucleotide was present at a significant frequency in at least
one of the 50 replicates performed during ECA1 (see Mate-
rials and Methods, Error Correction Algorithm #2, ECA2).
It is important to note that for this analysis, no information
from the known Sanger sequence is required. After imple-
menting the second correction, 100 nucleotides that fit the
defined criteria were found. All of them were found to be
real nucleotides after comparing with the Sanger reference
sequences. In other words, for any given nucleotide initially
classified as a technique-driven error that would fill a gap
in the alignment, and is identified in at least one of the 50
replicates performed in ECA1, the empiric probability for
that nucleotide to be real is 1. After this second correction
all 23 insertions remained.

After performing both corrections, the analytical ap-
proach developed in the present study was able to derive
the sequence for 99.8% of the targeted bases of the 19 dif-
ferent HIV-1 genomes present in library #1 with an error
rate of 0.0009% (or 0.9 in 100 000 nucleotides sequenced
or QV50); 99.9% of the 21 different HIV-1 genomes present
in library #2 with an error rate of 0.003% (or 3 in 100 000
nucleotides sequenced or QV45); and even with 40 different
HIV-1 genomes present in library #3, 98.1% of all sequences
were obtained with an error rate of 0.007% (or 7 in 100 000
nucleotides sequenced or QV41). In this way we were able
to distinguish 9kb genomes differing in only five bases (Fig-
ure 5, denoted by asterisks). Additional information on pa-
rameters related to the final sequences can be found in Sup-
plementary Figure S5.
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Figure 5. Comparison of the reference Sanger sequences with the consensus sequences generated by the algorithm. Maximum-parsimony trees were con-
structed using the Sanger reference sequences (labeled in black) for chronic patient Z4248F (A) and chronic patient Z4473F (B) and the consensus sequences
obtained with the algorithms described here (labeled in blue for SMRTCell #1, in orange for SMRT Cell #3 and in green for SMRT Cell #5). The name
of each consensus sequence denotes, in addition to the specific SMRT Cell, the round of analysis (first, second or third) and the ‘path’ indicating the sub-
group in which the sequence was found. The ‘uncorrected’ label indicates that these are the consensus sequence obtained before implementing the INDEL
correction algorithm.

Assessing sensitivity to detect minor variants

In the previous analyses, we had determined the sequences
of individual amplicons in mixtures with equal proportions
of each. Since direct amplification of a diverse population
of viruses would likely involve varying proportions of differ-
ent variants, we performed SMRT sequencing of a mixture
of 20 SGAs from the two chronic patients under study (10
SGAs per patient) in which each one of the SGAs is present
at decreasing proportions in the initial sample (Table 1).

The results from SMRT sequencing of this complex mix-
ture of genomes with frequencies ranging from 25% to
0.05%, show that we were able to detect and sequence SGAs
present at a frequency as low as 1.56% for patient Z4248F
(Donor 1) and 0.78% for patient Z4473F (Donor 2). More-
over, as shown in Figure 7A, there is a highly correlated (R2

= 0.972; 0.979 respectively) linear relationship between in-
put frequency and the proportion of reads corresponding

to each variant indicating that the last parameter is also a
measure of frequency in the original sample.

In order to determine how the sensitivity threshold is re-
lated to the total number of reads analyzed, we repeated the
analysis but after randomly extracting different numbers of
reads (250, 500, 1500, 2000, 2500) from the original dataset.
As shown in Figure 7B, the sensitivity threshold is depen-
dent on the number of reads generated in the initial sequenc-
ing run, such that the sensitivity increases from ∼3.3% with
1000 reads to 1.9% with 2000 reads. This represents a 1.7-
fold increase in sensitivity with a 2-fold increase in input
read numbers for this dataset. This data is consistent with
our ability to detect a minor variant with frequencies rang-
ing from 0.78 to 1.56% from an average of 3000 reads (Ta-
ble 1). In addition, the analysis of the least frequent variant
detected in each of the above data subsets, indicates that a
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Figure 6. Analysis of errors found before and after implementation of INDEL correction algorithms. The cumulative and absolute number of errors across
the alignment is shown for the sequences obtained before performing INDEL correction (A, B) and after performing the first (C, D) and second (E, F)
INDEL correction. In addition, the QV according to depth of sequence coverage is shown (G) for the uncorrected alignment (blue) as well as for the
alignment after the first (red) and second (green) correction. Panel h. shows the cumulative frequency of errors against coverage, showing that before
implementation of the correction algorithm, the errors were frequent even at positions with high coverage, while after correction, 90% of the error was
limited to positions with coverage less than 50×.

minimum of ∼30 reads >6 kb are required for unambigu-
ous detection (Supplementary Table S1).

Furthermore, when the raw data from both replicates
were combined in one single dataset of 5938 reads for
analysis, one additional variant per patient was identified
(Z4248F 11 and Z4473 21). They average a frequency of
0.58%, consistent with the predicted 0.8% sensitivity for
that number of reads in our dataset.

Development of an automated workflow for sequence analysis

In order to facilitate sequence analysis, the various algo-
rithms for the analytical approaches described above, start-
ing from the raw data (.bax.h5 and .bas.h5 data files) to the
final correction algorithm, have been integrated into a single

MATLAB R© workflow. The final output of this single work-
flow is a series of FASTA files containing the final corrected
sequences.

DISCUSSION

In the present study, we have developed an analytical work-
flow that allows for the efficient use of single-pass, continu-
ous long read (CLR) data to interrogate complex mixtures
of HIV-1 genomes. We describe a method that can deconvo-
lute mixtures of multiple closely related sequences present at
low abundance from raw CLR data. Such deconvolution of
full length genomes is not possible with any other available
NGS technology.
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Table 1. Expected and observed relative frequency of genomic variants during assessment of sensitivity

SGA
Amount in
INPUT (ng)

Expected
proportion in
INPUT (ng
loaded/total) Amount in OUTPUT (number of reads)

Observed proportion in OUTPUT (number
reads in SGA/total reads)

Replicate 1 Replicate 2 Replicate 1 Replicate 2

Donor #1
Z4248F 1 750.00 25.00 628 526 19.44 19.43
Z4248F 2 375.00 12.50 254 281 7.86 10.38
Z4248F 3 187.50 6.25 177 169 5.48 6.24
Z4248F 6 93.75 3.13 39 34 1.21 1.26
Z4248F 10 46.88 1.56 45 51 1.39 1.88
Z4248F 11 23.44 0.78 ND ND ND ND
Z4248F 13 11.72 0.39 ND ND ND ND
Z4248F 15 5.86 0.20 ND ND ND ND
Z4248F 20 2.93 0.10 ND ND ND ND
Z4248F 23 1.46 0.05 ND ND ND ND
Total reads 1143 1061

Donor #2
Z4473M 1 750.00 25.00 939 710 29.06 26.23
Z4473F 2 375.00 12.50 541 478 16.74 17.66
Z4473F 12 187.50 6.25 309 269 9.56 9.94
Z4473F 16 93.75 3.13 115 85 3.56 3.14
Z4473F 17 46.88 1.56 42 44 1.30 1.63
Z4473F 19 23.44 0.78 24 30 0.74 1.11
Z4473F 21 11.72 0.39 ND ND ND ND
Z4473F 24 5.86 0.20 ND ND ND ND
Z4473F 25 2.93 0.10 ND ND ND ND
Z4473F 26 1.46 0.05 ND ND ND ND
Total reads 1970 1616

Filtered out reads 118 30 3.65 1.11
Total 3000 ng 100% 3231 2707 100% 100%

ND: not detected.

Figure 7. Analysis of sensitivity to detect minor variants. (A) A mixture of 20 SGAs from two patients were mixed together at different frequencies and the
sequences of each variant was derived using our workflow. As shown there is a strong correlation between the frequency of each variant in the INPUT and
the proportion of reads building each variant in the final OUTPUT, indicating that this parameter is a good estimate of frequency in the original sample.
(B) The same dataset obtained in (A) was resampled for a decreasing number of reads and the sequences of each variant were derived using our workflow.
As shown, the sensitivity of our method is strongly correlated in a non-linear manner with the number of reads in the initial INPUT. In particular, every
2-fold increase in the number of reads analyzed leads to a 2-fold increase in the sensitivity to detect minor variants.

Importantly, the workflow described does not require the
a priori definition of the number of putative unique genomes
comprising the sample to get an accurate result and explores
the entire data set to derive an independent set of unique
genetic variants present in the original sample. It is also im-
portant to note that the algorithm does not generate any
in silico artificial sequences or in silico recombination of

different genetic variants between reads. Based on the re-
sults presented here, the correct number and sequence of
the different variants present in the original sample can be
obtained even when variants differing from each other by
as few as five nucleotides are present. Although a limited
number of errors remain at the end of the analysis, the final
error rate (7/100 000) in the most diverse dataset with 40 dif-
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ferent genomic variants at expected frequency of 2.5% is in
the order of Sanger sequencing (approx. 1/100 000 to 1/10
000). Given that the error rate is related to sequence cover-
age, by increasing the number of sequencing reads either by
improvements in the sequencing efficiency or simply by run-
ning the sample in additional SMRT cells, the error rate can
be dramatically reduced. For example, based on sensitivity
analyses the workflow is able to detect the least frequent
variant with a median coverage of 30×. Current sequencing
chemistries (P6-C4) are able to provide around 20,000 reads
longer than 6kb. This would yield an expected coverage in
the order of 500 reads per sequence, which, would lead to
extremely infrequent errors since we have not detected any
errors in regions with coverage higher than 150×. More-
over, given that we report a QV41 for samples with a median
coverage of 60×, in a 20 000 read dataset there would be the
potential to sequence up to 300 HIV-1 genomes at this error
rate.

In the present study, we have not sequenced a natural mix-
ture; we artificially built the mixture out of a number of
SGAs obtained from patient samples. This was done to al-
low validation of our workflow, as such validation requires
that we know precisely the true underlying DNA sequences
of the variants as well as their frequencies in the origi-
nal sample. There are certain limitations that make it tech-
nically difficult to obtain representative full-length HIV-1
genome amplifications from patient samples, such as pref-
erential amplification of sub-genomic mRNAs. As an ap-
proach, sensitivity analyses suggest that the workflow is able
to derive the sequence of genomic variants present at vari-
able frequencies and up to a detection threshold determined
by the number of reads in the input data. Therefore this ap-
proach could have direct applicability for natural mixtures,
without the need for complementation with lower error-
rate, short read NGS technology (e.g. Illumina) to derive
the sequence of multiple closely related variants (31). In ad-
dition, the fact that the proportion of reads that build each
derived nucleotide sequence is strongly correlated with the
frequency of the variant in the original sample demonstrates
that the workflow can be also used as a quantitative method.
Furthermore, because the presented workflow does not rely
on CCS reads but only CLR reads, it can readily be imple-
mented on the sequencing of any large amplicons of closely-
related genomic variants. Thus, the workflow could have
direct applicability to other viral pathogens of similar ge-
nomic size, including Influenza viruses, Flaviviruses such as
hepatitis C virus or dengue virus, and Parainfluenza viruses
such as measles virus or respiratory syncytial virus., For
larger genomes the workflow should be able to derive the
sequences of each variant for segments of up to 30 kb, or
larger genomes by scanning them using a window of 30 kb.

Finally, the methods described here did not require the
barcoding of each SGA, but relied exclusively on the in-
formation present in the reads to derive each genomic se-
quence, which were then mapped to each amplicon by their
comparison to the Sanger sequences previously obtained.
The addition of barcodes to the PCR primers would allow
for the possibility of multiplexing multiple samples and re-
lying exclusively on SMRT sequencing for linking the se-
quences to specific amplicons derived from each sample.

Overall, the results shown in the present study demon-
strate that it is possible to overcome the error rate present
in raw CLR data derived from SMRT sequencing to ob-
tain highly accurate sequences comprising complex genetic
mixtures. This opens the possibility of solving complex se-
quencing problems that currently lack a solution.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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