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Abstract
It is unclear how genes, such as RPGR (retinitis pigmentosa guanine triphosphatase regulator) that are expressed in both rods and
cones, causevariablediseasepathogenesis.Using transcriptomic analysis,we showthat lossof RPGR ina rod-dominantmouse retina
(Rpgrko) results in predominant alterations in genes involved in actin cytoskeletal dynamics, prior to onset of degeneration. We
validated these findings and found an increase in activated RhoA-GTP levels and polymerized F-actin in the Rpgrko mouse retina. To
assess the effect of the loss of RPGR in the all-cone region of the human retina, we used Nrl−/− (neural retina leucine zipper) mice, to
generateRpgrko::Nrl−/−double-knock-out (Rpgr-DKO)mice. Thesemice exhibited supranormal cone response to light andsubstantially
retained retinal architecture. Transcriptomic analysis revealed predominant up-regulation of retinal pigmented epithelium (RPE)-
specific genes associatedwith visual cycle,whereas fattyacid analysis showedmild decrease in docosahexaenoic acid in the retina of
the Rpgr-DKOmice when compared with the Nrl−/− mice. Our data reveal new insights into distinct intracellular pathways that are
involved in RPGR-associated rod and cone dysfunction and provide a platform to design new treatment modalities.

Introduction
Our vision starts with detection of photons of light by photore-
ceptors (rods and cones). These neurons form the bulk of the ret-
inal cell types and, along with the overlaying RPE, comprise the
light-sensing compartment of the eye (1). Photoreceptors are po-
larized neurons with a distinct sensory outer segment (OS; also
called sensory cilium) and an inner segment involved in protein
synthesis and transport (2,3). The OS is loaded with photopig-
ment opsin (rod opsin in rods and cone opsin in cones), which
binds to the chromophore to carry out light detection cascade.
RPE is involved in regulating visual cycle by participating in the
regeneration of the chromophore and OS maintenance (4–6). Vi-
sion loss due to degeneration and dysfunction of photoreceptors

typically involves malfunction of the OS or the RPE. As cones are
responsible for the bulk of our day vision, cone degeneration
would eventually lead to legal blindness.

Retinitis pigmentosa (RP) is an inherited form of neurodegen-
erative retinal disease that affects ∼1 in 3000 individuals (7).
While RP is clinically and genetically heterogeneous, it is charac-
terized by progressive loss of rod function and night blindness
followed by cone loss and complete blindness, usually by the
third decade of life (8,9). RP can be inherited in an autosomal
dominant, autosomal recessive or X-linked manner. Of these,
X-linked RP (XLRP) is the most severe and prevalent form of RP.
Mutations in two genes, retinitis pigmentosa guanine tripho-
sphatase (GTPase) regulator (RPGR) and RP2 account for >90% of
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XLRP cases (10,11). RPGR mutations are the most common cause
of XLRP, accounting for >70% of XLRP cases and ∼15% of simplex
(isolated) RP cases (12,13). RPGR-associated disease shows vari-
able degrees of severity with respect to early involvement of ei-
ther rods or cones in males (14,15); some female carriers are
also known to develop a relatively severe form of the disease
(16). RPGR mutations are also associated with cone degeneration
andmacular atrophy (17,18), indicating predominantly cone dys-
function in the cone-rich region of the retina called the macula.

The RPGR gene encodes multiple alternatively spliced iso-
forms, of which there are two major isoforms: the constitutive
isoform, which contains 19 exons (RPGR1–19) and ORF15 isoforms
containing 15 exons terminating in intron 15 (RPGRORF15) (19–24).
RPGR is implicated in regulating protein trafficking in photorecep-
tors (22,25,26). The Rpgrkomouse undergoes progressive retinal de-
generation and mis-trafficking of opsins in photoreceptors (27).
Naturally occurring mouse and canine models of RPGRmutations
as well as additional gene-targeted mouse mutants of Rpgr have
been reported (28–30). These models exhibit distinct rod and
cone alterations as observed in patients.

Given discordant rod and cone involvement in RPGR-XLRP;
here, we present our findings of the discordant effect of the loss
of RPGR on rod-dominant or cone-only rodent retinas. Our stud-
ies not only provide newplatforms to assess human cone disease
in RP, but will also assist in developing targeted therapeutic
strategies.

Results
Photoreceptor dysfunction and transcriptomic analysis
of Rpgrko in a rod-dominant background

To assess the pathogenic mechanism of the loss of Rpgr, we
wanted to select an age of mice that is prior to any detectable
photoreceptor dysfunction. Therefore, we analyzed the photo-
receptor function in the Rpgrko mice by electroretinography
(ERG). Although such studies have been reported (27), we aimed
to assess the photoreceptor dysfunction using similar conditions
in all our experiments. While 8-month-old Rpgrko mice show de-
creased rod (scotopic) and cone (photopic) responses (Fig. 1A
and B) and decrease in the thickness of the outer nuclear layer
(ONL; photoreceptor nuclei) (Fig. 1C) when compared with the
wild-type (WT) counterpart, no effect was observed at 1 month
of age. Therefore, we selected this age for further analysis.

To examine the effect of the loss of RPGR in a rod-dominant
retina, weperformed RNAseq analysis from three biological repli-
cates of 1-month-old WT and Rpgrko mouse retinas followed by
differential gene expression analysis. Significantly differentially
expressed genes were selected based on a cutoff of at least
2-fold change in the expression level between the two groups
and false discovery rate (FDR) <0.05. Our analysis identified 132
differentially expressed transcripts that were annotated (Supple-
mentary Material, Table S1). Bioinformatics analysis using in-
genuity pathway analysis (IPA) and Database for Annotation,

Figure 1. Phenotypic analysis of Rpgrkomice. (A and B) ERG was performed usingWT and Rpgrko mice at indicated ages to examine Rod response (scotopic; A) at indicated

flash intensities of light; and (B) cone response (photopic). *P < 0.012 (t-test). Tenmice of each genotypewere analyzed for each experiment. (C) Histological analysis using

hematoxylin-–eosin-stained paraffin sections of WT and Rpgrko mice (10 mice) revealed decrease in the thickness of the ONL (photoreceptor nuclei) at 8 months of age

whereas 1month of age exhibited no appreciable difference. RPE: retinal pigment epithelium; OS: outer segment; IS: inner segment; OPL: outer plexiform layer; INL: inner

nuclear layer; IPL: inner plexiform layer; GCL: ganglion cell layer. Scale: 50 µm.
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Visualization and Integrated Discovery, v6.7 (DAVID) identified
five major categories of disrupted cellular functions: molecular
transport, small-molecule biochemistry, cellular function and
maintenance, cellular movement and cellular assembly and
organization (Supplementary Material, Table S2). Among the
cellular functions specific to the retina, we identified: cell death
and survival, cellular assembly and organization, cellular func-
tion and maintenance, cell-to-cell signaling and interaction
and cell morphology (Supplementary Material, Table S3). Further
examination of the transcriptomics data revealed differential
regulation of genes involved in actin cytoskeletal dynamics
and in human diseases. As actin defects were implicated in
RPGR-associated ciliary dysfunction in a previous study using in
vitro cell culture model (31), we selected this pathway for further
analysis. We validated the expression of three genes implicated
in actin dynamics: STARD13 (StAR-related lipid-transfer domain
protein 13), RTKN2 (Rhotekin 2) and SRPX (sushi-repeat contain-
ing protein, X-linked). STARD13 regulates RhoA and is involved in
regulating cell adhesion mediated by actin cytoskeleton (32).
RTKN2, on the other hand, is an effector of Rho GTPases, which
binds to the activated form of Rho GTPases (33,34). SRPX was pre-
viously implicated in XLRP (35) and was also found to associate
with the actin cytoskeleton (36). We validated the changes in
the expression of Rtkn2, Stard13 and Srpx by quantitative poly-
merase chain reaction (qPCR). Consistent with our RNAseq data,
we detected a ∼3.8-folds increase in the expression of Stard13
and >25-folds increase in Rtkn2 transcript levels in the Rpgrko

mice (Fig. 2A; Supplementary Material, Fig. S1A). On the other
hand, Srpx expression was undetectable in the Rpgrko retina.

Actin cytoskeletal defects in Rpgrko mice

Actin dynamics is associated with syndromic ciliopathies, in-
cluding Bardet–Biedl syndrome (BBS) and is implicated in regulat-
ing cilia length (37,38). Moreover, actin filaments are localized at

the base of the OS and are implicated in discmorphogenesis (39).
To gain further insight into the status of actin cytoskeleton in the
Rpgrko retina, we first validated the changes in the protein level of
RTKN2 protein in the retina. Immunoblot analysis of WT and
Rpgrko retinal extracts revealed a significant increase in the levels
of the RTKN2 protein (Fig. 2B). As RTKN2 is involved in regulating
polymerization of actin, we then calculated the ratio between
polymerized filamentous (F)-actin and the globular (G)-actin in
the 1-month-old WT and Rpgrko retinas. By fractionating the ret-
ina followed by immunoblot analysis using anti-actin antibody,
we found a 2-fold increase in the F- to G-actin ratio in the Rpgrko

retina when compared with the WT retina (Fig. 2C and D). No
change in total actin levels was observed.

RhoGTPases are involved in the regulation of actin dynamics
and increase in RhoA-GTP results in increased actin polymeriza-
tion (40,41). We, therefore, hypothesized that increased levels of
polymerized actin in the Rpgrko retina are associated with higher
RhoA-GTP levels. Effectors of small GTPases recognize the GTP-
bound state of the GTPases (42,43). RTKN is an effector for
RhoA-GTPase as it preferentially binds to RhoA-GTP (33). To
gain insights into the predominant state of RhoA in the Rpgrko

retina, we performed a pull-down assay using recombinant
glutathione S-transferase (GST)-tagged RTKN (GST-RTKN) and
mouse retinal extracts loaded with non-hydrolyzable GTP analog
(GTPγS). As shown in Figure 2E and F, we found a ∼1.6-fold
increase in the levels of RhoA pulled down by GST-RTKN in the
GTPγS-loaded Rpgrko retinal extracts when compared with the
WT retinal extracts. No association between RhoA and purified
GST protein was detected.

Actin cytoskeleton has been proposed to regulate basal disc
orientation during OS morphogenesis (39). Ultrastructural
analysis of the OS of the Rpgrko mice revealed altered basal OS
morphology even at 1 month of age, which progressed with age
and was more prominent at 3 months of age (Supplementary
Material, Fig. S1B).

Figure 2.Actin cytoskeletal defects in the Rpgrkomice.(A) qRT-PCR analysis of Rtkn2was performed using 1-month-oldWTor Rpgrko retinas. The data are representative of

three biological replicates. ***P < 0.001. (B) Protein extracts from WT and Rpgrko retinas were analyzed by SDS–PAGE and immunoblotting using anti-RTKN2 or β-tubulin

(loading control) antibody. Apparent molecular-weight markers are shown in kilodaltons (kDa). Relative band intensity is shown in the lower panel (*P < 0.05). (C)
F- and G-actin fractions of the WT and the Rpgrko mice (six each) were analyzed by SDS–PAGE and immunoblotting using the anti-actin antibody. Total protein extract

was used as control for an equal amount of actin in the two samples. Apparent molecular-weight markers are shown in kilodaltons (kDa). The experiment was

repeated three times. (D) Fold change in the ratio of F- to G-actin is represented, as measured by the band intensity of the anti-actin immunoreactive band in the F- or

G-actin fractions of theWTandRpgrkomice (*P < 0.05). (E) Protein extracts fromWTand Rpgrkomicewere prepared in the presence of non-hydrolyzable GTPγS and subjected

toGST-pulldownusingGST-RTKN fusion protein. The proteinswere analyzed by immunoblotting using anti-RhoA antibody. Lowerpanel shows the total RhoA amount in

the two extracts. Apparent molecular weight markers are shown in kilodaltons (kDa). (F) Graph represents fold change in the band intensity of RhoA-GTP pulled down by

GST-RTKN in the WT versus Rpgrko retina.
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Expression of Rpgr in cone-dominant mouse retinas

Past work suggests that, in cases where the causative gene is ex-
pressed specifically in rods, secondary effects of rod lossmanifest
in cones as well. This is largely because rods account for the ma-
jority (97%) of photoreceptors in mammalian retina. However, in
several instances, the causative gene (such as RPGR) is expressed
in a variety of cell-types and mutations also manifest as early
loss of cone function (44–46). Thus, it is conceivable that RPGR
plays distinct roles in rods and cones and that cone death also
involves the effect of the loss of RPGR directly on cone function.
In primates, the fovea represents a cone-enriched region of the
retina and dysfunction in this region results in the loss of day-
time vision. To generate a cone-enriched model of RPGR loss,
we utilized Nrl−/− mice, which develop cone-only retinas with a
complete absence of rod photoreceptors. These mice express
cone-specific genes and their cones display morphological and
physiological features of WT cones (47,48). Thus, there is a
great utility of Nrl−/− mice to understand cone biology and
responses of human fovea during disease, as evident from previ-
ous studies to assess primary and secondary effects of retinal
degeneration on cones (49–51).

Wefirst performedqRT-PCRusingRNAfromretinasofWT(rod-
dominant) andNrl−/−mice. Comparedwith theWTmice,we found
a ∼2-fold up-regulation of Rpgr transcript expression in the Nrl−/−

retina (Fig. 3A). Although our analysis of Rpgr expression in the
WTmice is also taking into account its levels in cones, such levels
would be minimal compared with 95–97% rod photoreceptors.

Generation and characterization of Rpgr-DKO mice

We, next, generated Rpgr-DKOmice by breeding the Rpgrkomice to
the Nrl−/− mice. The loss of RPGR was validated by immunoblot
analysis of mouse retinal extracts using a previously reported
anti-RPGR antibody (21). As shown in Figure 3B, expression of
both major isoforms of RPGR: constitutive RPGR (RPGRconst) and
RPGRORF15 is undetectable in the Rpgr-DKO mice. We also tested
whether the loss of RPGR results in alterations in the expression
of other cone-specific genes. qRT-PCR and immunoblot analyses
revealed no differences in the expression of S-cone opsin (Fig 3C
and D) and cone alpha subunit of cone phosphodiesterase (data
not shown) between Rpgr-DKO and Nrl−/− mouse retinas. The
amount of protein loaded in the gel (20 µg) is such that S-opsin

expression is undetectable in the WTmouse retina so that higher
expression inNrl−/− and Rpgr-DKOmouse retina is easily detected.

Cone function alterations in Rpgr-DKO

Previous studies using animalmodels and RPGR patient informa-
tion revealed a decline in both rod and cone function with age
(15,52,53). Using the Rpgr-DKO mice, we conducted an age-
dependent functional analysis of light signal processing in the
absence of rods using ERG. As controls, we used age-matched
Nrl−/− mice. Consistent with previous studies (47,48), Nrl−/−

photopic ERG amplitude was relatively higher when compared
with the WT mice (data not shown). Interestingly, we detected
even higher (supranormal) photopic amplitude (∼2-fold high) in
the Rpgr-DKO mice (Fig. 4A). Analysis of Flicker ERG waveforms
also showed similar results (Fig. 4B). There were sharp triangular
waveforms in Rpgr-DKO mice at all ages tested as opposed to
although sharp, but low-amplitude waveforms in Nrl−/− mice.
Such sharp responses are typical of functional cone photorecep-
tors. Although there was progressive decline of cone response in
Rpgr-DKO mice, the function was significantly higher even up to
9 months of age when compared with Nrl−/− mice. As expression
levels of other cone proteins are similar in the two mouse mod-
els, such differences are unlikely to be due to differences in
cone cell number.

Rosette formation is a hallmark of Nrl−/− mice (48,54) and has
been reported to be associated with the loss of photoreceptor
function (50,55,56). We, therefore, examined the effect of the
loss of Rpgr on rosette formation by using retinal cross sections
and whole mounts. As shown in Figure 4C and Supplementary
Material, Figure S2, we observed mild decrease (∼25%) in the
number of rosettes in the Rpgr-DKO retina when compared with
the Nrl−/− retina.

Retinal morphology and protein trafficking in Rpgr-DKO
mice

To assess the effect of the loss of RPGR on the morphology of the
cone-only retina, we performed histological analysis of retinal
sections at different stages. As shown in Figure 5A, the ONL (com-
posed of photoreceptor nuclei) in the Rpgr-DKOmice was similar
in thickness to that of the Nrl−/− retinas at 1 month of age. How-
ever, whereas Nrl−/− mice showed a decline in ONL thickness
(consistent with previous reports of photoreceptor degeneration

Figure 3. Characterization of Rpgr-DKOmice. (A) qRT-PCR analysis ofWT and Nrl−/− micewas performed using primers that recognize all Rpgr isoforms (Rpgr), **P < 0.01 (t-

test). The data represent three biological replicates. (B)Anequal amount of protein extracts (20 µg) of Rpgrko,Nrl−/−, Rpgr-DKOandWTmicewereanalyzed by SDS–PAGE and

immunoblotting using indicated antibodies. Asterisks represent non-specific immunoreactive signal. No change in transcript (C) or protein (D) levels of cone-specific S-

opsin was detected in the Rpgr-DKO mice. Apparent molecular-weight markers are shown in kilodaltons (kDa). ns: not significant.
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Figure 4. Phenotypic analysis of Rpgr-DKOmice. (A) Photopic b-wave response was analyzed by ERG at indicated ages of the Nrl−/− and the Rpgr-DKOmice. P < 0.00001. At

least 10 mice of each genotype were tested in this experiment. Waveforms are represented in the lower panel. (B) Flicker (30 Hz) ERG waveforms of Nrl−/− and Rpgr-DKO

mice showed distinct improvement in Rpgr-DKOmicewith sharp triangular waveforms, which are typical of functional cone photoreceptors. (C) Wholemounts of retinas

from Nrl−/− and Rpgr-DKO mice were stained with PNA (red). Arrows indicate rosettes. Inset shows higher magnification of the rosettes in the region enclosed in a

rectangle. Quantitative analysis (right panel) revealed a significant reduction in the number of rosettes in the Rpgr-DKO mice (**P < 0.003).

Figure 5. Retinal morphology and protein trafficking in Rpgr-DKO mice. (A) Histological analysis of Nrl−/− and Rpgr-DKO mice (n = 10) was performed at indicated ages.

Although Nrl−/− mice showed progressive and faster deterioration of the thickness of ONL, considerably slow deterioration of the ONL was observed in Rpgr-DKO mice

with relatively preserved thickness even up to 9 months of age. (B) TEM analysis of the Nrl−/− and Rpgr-DKO mice (n = 3) was performed at 1and 6 months of age.

Although no difference was observed at 1 month, slightly altered OS architecture was detected in the Rpgr-DKO mice at 6 months of age. OS: outer segment; IS: inner

segment; RPE: retinal pigment epithelium. Scale bar in 1-month-Rpgr-DKO image: 2 µm; scale bar in the rest of the images: 1 µm. (C and D) Retinal cryosections of 3-

month-old WT, Nrl−/− and Rpgr-DKO mice (five each) were stained with indicated antibodies M-opsin (C; green) or S-opsin (D; red). Nuclei are stained with Hoechst

(blue). OS: outer segment; ONL: outer nuclear layer; OPL: outer plexiform layer. Scale bar: 50 µm.
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in these mice (54) at 3, 6 and 9 months of age, the Rpgr-DKO
mouse retina showed relative delay in the decline in ONL thick-
ness, with a thicker ONL even at 9 months of age. Ultrastructural
analysis of mouse retinas at early age (1 month; prior to onset of
degeneration in Nrl−/− retina) and later stage (6 months) corrobo-
rated our histological analysis. We found no apparent difference
in conemorphology between the Rpgr-DKO and theNrl−/−mice at
1month of agewhereas cone OSmorphology was altered slightly
at 6 months of age in Rpgr-DKO (Fig.5B). Overall, these data sug-
gest that the loss of RPGR in mice spares cone development,
but not maintenance.

RPGR is proposed to regulate ciliary protein trafficking in
photoreceptors (22,26,57). To test whether Rpgr-DKO mice also
exhibit protein trafficking defects, we performed immunofluor-
escence analysis using antibodies against cone outer segment
(COS) proteins in Rpgr-DKO and Nrl−/− mouse retinas. Consistent
with the previous observations using the Rpgrko mice (27,28), we
found mis-localization of M-opsin in the Rpgr-DKO mice
(Fig. 5C). Although the Nrl−/− mice exhibit M-opsin mis-localiza-
tion, this effect is more pronounced in the Rpgr-DKO mice. As
control, no mis-localization was observed in the WT mouse ret-
ina. We did not observe any change in S-opsin trafficking in the
Rpgr-DKO mice (Fig. 5D). This could either be because there is
minor S-opsin mis-localization, which escaped our detection
limits or because S-opsin mis-localizes secondary to rod degen-
eration in the Rpgrko mice.

Fatty acid analysis of the Rpgr-DKO retinas

Previous studies showed that build-up of polyunsaturated fatty
acids, such as docosahexaenoic acid (DHA; C22:6n3) and very

long-chain fatty acids results in supranormal ERG responses
(58). DHA is the most abundant fatty acid in the phospholipids
of rod OSs. It has been shown that abnormal build-up of DHA
and other long-chain fatty acids leads to supranormal ERG
responses in mice. We, therefore, hypothesized that the cone-
enriched Rpgr-DKO retinas have altered fatty acid content,
which results in a hyperabnormal ERG response. To test this
hypothesis, we assessed the fatty acid composition of phospho-
lipids in theRpgr-DKO retinas and compared it to that in theNrl−/−

retinas. First, we observed that the major fatty acids in the
cone-rich Nrl−/− retinas are: stearic acid (C18; ∼28%), palmitic
acid (C16; ∼25%), DHA (C22:6n3; ∼20%), oleic acid (C18:1; ∼14%)
and arachidonic acid (C20:4n6; ∼10%) (Fig. 6A). As evident, DHA
is not themost abundant fatty acid in the cone-rich retinas. Ana-
lysis of the Rpgr-DKOmice revealed that the level of DHAwas sig-
nificantly (P < 0.05) reducedwhen comparedwith theNrl−/−mice.
No significant change in other fatty acids was detected in this
analysis.

Transcriptomic analysis of Rpgr-DKO mice

Our data show that the loss of RPGR does not affect cone ultra-
structure and protein trafficking, but there is a significant in-
crease in the cone function. To gain insights into the pathways
underlying such an effect, we assessed the transcriptome of
the Rpgr-DKO mice when compared with the Nrl−/− mice. We
compared the samples at 1month of agewhen there is no appar-
ent degeneration in the Nrl−/− and the Rpgr-DKOmice. We identi-
fied 110 differentially expressed genes based on a cut-off of at
least 2-fold change in the expression level between the two
groups (Supplementary Material, Table S4). IPA revealed that
these genes belong to fivemajor molecular functions: cell-to-cell
signaling and interaction, cellular function and maintenance,
cellular movement, cellular development and cellular growth
and proliferation (Supplementary Material, Table S5). Of these,
12 genes were identified as parts of four canonical pathways
that are altered in the diseased retina: visual cycle, complement
system, retinol biosynthesis and phototransduction pathway
(Supplementary Material, Table S6). The majority of these path-
ways including the complement system and visual cycle are
implicated in Leber congenital amaurosis (LCA) and age-related
macular degeneration (59,60). We, therefore, validated the
alteration of two of the complement genes by qPCR and found
a 2- to 3-fold down-regulation of C1qa and C1qb.

Among the up-regulated genes associated with visual cycle
regulation, we detected a ∼2.5-fold increase in Rgr (retinal G-
protein-coupled receptor) and ∼3-fold increase in Lrat (lecithin:
retinol acyltransferase) (61–63) (Fig. 6B). We also observed a
3-fold increase in Rpe65 (retinal pigment epithelium 65) (Fig. 6B),
which is involved in chromophore recycling (64–66). Importantly,
mutations in these three genes are associated with retinal degen-
eration (59,67,68). Immunoblot analysis of RPE extracts from the
Nrl−/− and the Rpgr-DKO mice revealed ∼2.5-fold increase in
RPE65 protein levels (Fig. 6C; Supplementary Material, Fig. S3).

Discussion
RPGR-XLRP is considered one of the most severe forms of RP and
is associated with complex phenotypic presentation of differen-
tial rod or cone disease (11,12,69–71). With recent advances in
gene therapy for RPGR-XLRP in the mouse and canine models
(52,72) and the observation of rescue of rpgr-knock-down-asso-
ciated phenotype in zebrafish studies (73), it is imperative to
now design a suitable therapeutic plan for patients by

Figure 6. Alterations in the Rpgr-DKO retinas. (A) Fatty acid composition of the

Nrl−/− and Rpgr-DKO mice retina was assessed, as described in the ‘Materials

and Methods’ section. Data are mean ± SD for n = 6 samples. *P < 0.05. (B)
qRT-PCR of the indicated genes was performed using retinal/RPE RNA from

1-month-old Nrl−/− or Rpgr-DKO mice. The results represent three biological

replicates. (C) Immunoblot analysis using the anti-RPE65 antibody revealed

increased protein levels in the Rpgr-DKO mice when compared with Nrl−/− mice.

Anti-β-tubulin antibody was used as loading control.
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understanding rod and cone disease pathogenesis. Our studies
have revealed different effects of the loss of RPGR on rod and
cone-rich retinas and identified potential pathways that are al-
tered during disease.

Loss of RPGR in cone-rich retina

Our analysis of the Rpgr-DKO mice revealed new information on
unusually preserved cone population and supranormal cone
function. Other reports using the Nrl−/− retina have also revealed
relatively slow cone loss due to mutations in genes expressed in
both rods and cones, such as Cep290, peripherin/Rds, Rpe65, Grk1
and insulin receptor (49–51,55,74–76). On the one hand, the
Rpgr-DKO mice showed partial rescue of ONL degeneration of
the Nrl−/− mice, while on the other hand, they exhibited even
higher ERG responses. Although Nrl−/− mice exhibit higher cone
ERGs when compared with WT mice, our results show that
these ERGs can be even higher in the absence of RPGR. These ob-
servations indicate that the loss of RPGR potentially overcomes a
negative effect on cone ERGs in the Nrl−/− mice and suggest a po-
tential genetic interaction between NRL and RPGR. Since NRL is a
transcription factor and some RPGR isoforms are also expressed
in the nucleus (19), an association between these two proteins
cannot be ruled out at this stage.

It has been reported that patients with macular degeneration
or RP can presentwith supranormal photopic response (77). How-
ever, clinical testing for such ERG changes may not be feasible in
all patients as they may present a late stage of the disease by
which time the cone function has already deteriorated. Nonethe-
less, our results support the idea that patients or individualswith
XLRP can be assessed for hyperabnormal cone response at their
earliest clinic visit. It should be noted that the Nrl−/− mice devel-
oped increased number of S-cones, which form aminority popu-
lation in human retina. Therefore, if the enhanced responsewere
predominantly S-cone enriched, then a spatial testing using
multifocal ERG or visual field test would be beneficial for early
diagnosis of patients.

Several scenarios may account for the unusual cone response
that we observed in the Rpgr-DKO mice. (i) An inherent property
of the Nrl−/− retina: such a scenario seems unlikely because
several previous studies have shown that ablation of a retinal dis-
ease gene in theNrl−/−mice results in a decrease in the cone func-
tion and deterioration of retinal morphology (49–51). Therefore,
we hypothesize that the effect that we have observed is specific-
ally due to the loss of Rpgr on theNrl−/− background. (ii) TheNrl−/−

mouse retina develops rosettes, which can result in artifacts: it
has been hypothesized that such structures are formed due to
aberrant photoreceptor-Muller glia interactions, activity of
RPE65 or photoreceptor-RPE interactions (50,55,56). However,
those studies have not shown association between reductions
in rosettes and increased cone function. Intriguingly, reduction
in rosettes was shown in the Rpe65ko and Rpe65 hypomorphic
mutation on the Nrl−/− background (55,56). However, our studies
show that reduction in rosettes is associated with increased
levels of Rpe65 and Lrat. We hypothesize that while the loss of
Rpe65 more significantly affects rosette formation, the loss of
RPGR has a low-to-moderate effect on rosette formation, which
is independent of its effect on the levels of Rpe65 and Lrat. There-
fore, it is also unlikely that the mild reduction in whorls and
rosettes is contributing to the increased photopic amplitude of
the Rpgr-DKO mice. (iii) A more likely scenario is that there is a
predominant cone visual cycle dysfunction in the absence of
RPGR. This is evident from the predominant alterations in
the expression of RPE-specific genes in the Rpgr-DKO mice and

alterations in the DHA levels of the Rpgr-DKO retinas. Changes
in the fatty acid composition are predicted to affect the fluidity
of the OS membranes and may result in altered ERGs. Previous
studies showed that accumulation of DHA and other long-chain
fatty acids is associated with supranormal ERG responses (58).
However, the Rpgr-DKO mice showed a mild decrease in DHA
levels when comparedwith theNrl−/−mice. Additional investiga-
tions are necessary to delineate the significance and physio-
logical relevance of reduced the DHA and function of cone-rich
retinas.

Our studies suggest that either RPGR plays a critical role in the
RPE or that up-regulation of the visual cycle-associated genes in
the RPE is a secondary effect of altered light processing capacity
of cones in the absence of RPGR. The light-sensitive chromo-
phore 11-cis retinal is bound to the opsin and upon activation
by light quanta, isomerizes to all-trans retinol. This initiates
the phototransduction cascade (78). The all-trans retinol is then
trafficked to the RPE where it is acted upon by LRAT to produce
all-trans retinyl esters followed by action of RPE65 to produce
11-cis retinol. These cascades result in the recycling of the
chromophore, which is then returned to the OS (51,56). It has
been proposed that cones may possess distinct mechanisms of
faster regeneration kinetics of the chromophore to better adapt
to light conditions that allow uninterrupted daytime vision (79).
An increase in Rpe65, Lrat as well as Rgr expression would
enhance the rate of synthesis of reaction intermediates, which
would increase the chromophore regeneration rate. Further
studies are needed to test this hypothesis.

Loss of RPGR in rod-dominant mice

We found predominant alterations in actin dynamics-associated
pathways in our analyses of the Rpgrko retina. The actin cytoskel-
eton is proposed to regulate basal OS disc alignment as well as
photoreceptor axon retraction (34,39,80,81). Our analysis of
RhoA activation and increased F- to G-actin ratio at 1 month of
age indicate an early involvement of cytoskeletal defects in the
Rpgrko mice. In support of this hypothesis, we detected altered
basal OS morphology in the Rpgrko mice, prior to onset of photo-
receptor dysfunction and degeneration. However, we did not de-
tect significant alteration in ERG at early stages of the Rpgrkomice.
We reckon that these initial changes in actin dynamics may not
significantly alter photoreceptor function at early stageswhereas
a slow and progressive build-up of the insult due to cytoskeletal
alterations eventually lead to ciliary dysfunction and photo-
receptor degeneration.

Althoughmolecularmechanismsunderlying the activation of
RhoA in ciliary dysfunction are still unclear, it was shown that
RhoA-GTP levels are also up-regulated in the absence of BBS-
associated proteins (37). Thus, interplay between RPGR and BBS
proteins to regulate actin cytoskeletal dynamics in the retina can-
not be ruled out at this stage. Given an association of actin poly-
merization with cilia length control (38) and the involvement of
RPGR and BBS proteins in the ciliary function, we propose that
deregulation of actin cytoskeleton plays a significant role in the
pathogenesis of retinal ciliopathies as well as syndromic
ciliopathies.

Photoreceptor OS undergoes periodic disc shedding at the
distal tips, which involves phagocytosis of the shed discs by the
RPE (3). Actin cytoskeleton and specifically Myosin 7A is shown
to play crucial roles in the phagocytosis of the shed discs and
phagosomes and melanosome transport in the RPE. It would
be interesting to examine RPE pathology in RPGR-associated
disease.

Human Molecular Genetics, 2016, Vol. 25, No. 7 | 1351



Overall, our results show (i) an unexpected response of cone
photoreceptors and (ii) involvement of distinct pathways asso-
ciated with rod and cone dysfunction, due to the loss of RPGR.
Additional investigations are necessary to evaluate the mechan-
isms underlying such defects. The deregulated pathways are also
implicated in other retinal degenerative diseases, such as LCA,
BBS, Usher syndrome and other syndromic ciliopathies. There-
fore, our studies may provide crucial insights and identify poten-
tial commonalities among multiple retinal diseases that cause
degeneration and dysfunction of photoreceptors.

Materials and Methods
Animals

All animal procedures and experiments were performed in ac-
cordance with the guidelines of Institutional Animal Care and
Use Committee. Micewere housed in animal facility at University
of Massachusetts Medical School, where they were maintained
on a standard diet in a 12 h light to 12 h dark cycle. Lighting
conditions were kept constant in all cages with illumination of
10–15 lux at the level of the cages. The Nrl−/− and Rpgrko mice
were procured from Dr Anand Swaroop and Dr Tiansen Li (Na-
tional Eye Institute), respectively. Homozygous Nrl−/− and Rpgrko

mice were bred to generate Rpgr::Nrl−/− DKO mice. Genotypes
were confirmed by PCR genotyping and immunoblotting ana-
lysis. All mice were also genotyped to exclude the rd1 and rd8
alleles.

Primers and antibodies

List of antibodies and primers used in the present study is pro-
vided as Supplementary Material, Tables S7 and S8.

ERG, histology and immunofluorescence

ERGs were recorded as described previously by using the Espion
e2 recording system (Diagnosys, Lowell, MA, USA) (82,83). For sco-
topic response, mice were dark-adapted overnight and all proce-
dures were performed under dim red light. Light-adapted
(Photopic) ERGs were recorded after light adaptation with a back-
ground illumination of 30 cd/m2 (white 6500 K) for 8 min by two
protocols: (i) the stimulus strength of 10 cd.s/m2 was chosen for
single flash. Twenty trials were averaged for single-flash re-
sponses and (ii) 30 Hz flicker ERG was performed under photopic
conditions.

Histological and immunofluorescence analyses of paraffin-
and cryopreserved retina and of flat mounts were performed as
described (82–84). All imageswere taken by using a scanning con-
focal microscope (Leica TCS SP5 II laser; Leica Microsystems).

Transmission electron microscopy: eyes were collected from
euthanized mice and fixed in 2.5% glutaraldehyde in 0.1  so-
dium cacodylate buffer (pH 7.2) for 20 min at room temperature,
as described (82). Specimenswere visualized with a transmission
electron microscope (Philips CM-10; Philips, Eindhoven, The
Netherlands), coupled with a charge-coupled device digital cam-
era (Gatan Erlangshen 785; Gatan, Inc., Warrendale, PA, USA).

RNA sequencing

The total RNAwas extracted from 1-monthWT, Rpgrko,Nrl−/− and
Rpgr-DKO mice by using RNeasy plus mini kit (Qiagen, USA) ac-
cording to manufacturer’s instructions. The starting sample
was consisted of neuroretina + RPE (including choroid). Three
biological replicates were included for each genotype. The

quantity of RNAwas measured by using spectrophotometer (Na-
nodrop, Thermo Scientific, USA) and quality of all samples was
examined on the Agilent 2100 bio-analyzer using the RNA 6000
Nano Chip (Agilent Technologies, Santa Clara, CA, USA). We
only included RNA samples with a RNA integrity number value
>8. All subsequent steps were performed at Beijing Genomics In-
stitute (Hong Kong). RNA samples were first treatedwith DNase I,
followed by purification of poly (A) RNA usingmagnetic beads. To
prepare libraries, mRNA was fragmented into short fragments,
and the first-strand of cDNAwas synthesized using random hex-
amer-primed reverse transcription. Buffers, dNTPs, RNase H and
DNA polymerase I were added to synthesize the second-strand.
The double-strand cDNAwas purified using magnetic beads fol-
lowed by end repair and Ion Proton adaptors were ligated to the
ends of these fragments. Ligated products were selected by size
and purified by using Tris-acetate-EDTA-agarose gel. Finally,
the fragments were enriched using PCR amplification, purified
using magnetic beads and dissolved in appropriate amount of
Epstein–Barr solution. Quality of the sample library was deter-
mined by using Agilent 2100 Bioanalyzer and these products
were sequenced via the Ion Proton platform according to the
manufacturer’s specifications. Data were collected and bioinfor-
matics analysis was performed.

Bioinformatics analysis

To estimate gene expression levels, we used RPKM (reads per
kilobase per million mapped reads) values. To estimate differen-
tial expression of genes, we calculated log2 ratio from the RPKM
values. To identify the genes with potential biological signifi-
cance, we selected based on their log2 values either >1 or <−1,
FDR of <0.05 and P-value < 0.05. We selected genes that were sig-
nificantly altered at least 2-fold difference in all biological repli-
cates. For pathway and network analyses, we used IPA
(Ingenuity Systems, Redwood City, CA, USA; www.ingenuity.
com) and DAVID software. The analysis was performed in two
ways: (i) with all tissues and (ii) with retina only.

Real-time qRT-PCR

Differentially expressed genes were chosen for further validation
by qRT-PCR analysis. The total RNA from all themice by using an
RNeasy plus mini kit (Qiagen), with gDNA eliminator columns to
remove any contaminating genomicDNA. Primerswere designed
to amplify fragments of 120–200 bp, with shorter fragments pre-
ferred. Approximately 1 µg of total RNA was reverse transcribed
to cDNA by using a Verso™ cDNA Kit (Thermo Fisher Scientific)
and qPCRwas performed on Bio-Rad CFX96 Real-time PCRDetec-
tion System (Bio-Rad) by using SsoFast EvaGreen Supermix (Bio-
Rad). Reactions were performed in duplicates for at least three
biological replicates. The Ct values were normalized to a loading
control (glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
and β-tubulin). Gene-expression fold changes were calculated
using the ΔΔCT method where the relative expression is calcu-
lated as 2−ΔΔCt and Ct represents the threshold cycle. The data
are presented based on the published guidelines (85). Fold change
was calculated considering relative gene expression of control
sample as ‘1’.

F-/G-actin measurements

Retinal fractionation to obtain the F- and G-actin fractions was
performed as described (37,86,87). Briefly, fresh retinas from
WTand Rpgrko (six retinas fromeach genotype)were homogenized
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in F-actin stabilization buffer (50 m piperazine-N,N′-bis(2-etha-
nesulfonic acid at pH 6.9, 50 m NaCl, 5 m MgCl2, 5 m ethyl-
ene glycol tetraacetic acid, 5% glycerol, 0.1% NP40, 0.1% Triton
X-100, 0.1% Tween 20, 0.1% β-mercaptoethanol, 1 m adenosine
triphosphate, protease inhibitor cocktail) and passed several
times through a 29-G syringe. The lysate was incubated at 37°C
for 10 min and then centrifuged at 350 × g for 5 min to remove
cell debris. Supernatant was collected and centrifuged again at
100 000 × g for 1 h. The resultant supernatant was transferred im-
mediately into another tube andwas used as the G-actin fraction.
The pellet was resuspended in equal volume of the buffer con-
taining 100 µ cytochalsin D and kept on ice for 60 minwith gen-
tle mixing for every 15 min. Samples were then sonicated and
centrifuged and the supernatant was collected for F-actin frac-
tion. The G- and F-actin fractions were analyzed by immunoblot-
ting. Fold change was calculated considering relative band
intensity of control sample as ‘1’.

RhoA activation assay

RhoA activity assay was performed with the use of a Rho activa-
tion assay kit (Cytoskeleton) in accordance with the manufac-
turer’s instructions. Briefly, fresh retinas (six retinas each
genotype) were dissected and were lysed in ice-cold lysis buffer.
The resultant homogenate was centrifuged at 1700 × g for 10 min
at 4°C. Supernatantwas collected into fresh tube and 20 µg of GST
or GST-RTKN conjugated beads were added in the presence of
GTPγS. These samples were incubated on a nutator for 1 h at
4°C. Samples were then centrifuged at 4000 rpm and the beads
were washed three times with wash solution. Final bead pellet
was resuspended in sample buffer, boiled for 5 min and analyzed
by sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS–PAGE) and immunoblotting. Fold change was calculated
considering relative band intensity of control sample as ‘1’.

Lipid analysis

Fatty acid profiles were determined for retina. Total lipids were
extracted following the method of Bligh and Dyer (88) with mod-
ifications (89). To each lipid extract were added 15:0 and 17:0 as
internal standards. The lipid extracts were subjected to acid hy-
drolysis/methanolysis to generate fatty acid methyl esters
(FAMEs) (90). FAMEs were quantified using an Agilent Technolo-
gies 6890N gas chromatograph with flame ionization detector
(GC) (91). The results were also confirmed by GC-MS.

Statistical analysis

All data are presented as means ± SEM. Data groups were com-
pared by non-parametric t-tests (two groups) or multiple t-tests
(more than two groups) using the GraphPad software. Differences
between groups were considered statistically significant if P <
0.05. The statistical significance is denoted with asterisks (*P =
0.01–0.05; **P = 0.001–0.01; ***P = 0.0001–0.001 and ****P≤ 0.00001).

Supplementary Material
Supplementary Material is available at HMG online.
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