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Abstract

Depolymerization of the actin cytoskeleton induces nuclear trafficking of regulatory proteins and 

global effects on gene transcription. We here show that in mesenchymal stem cells (MSCs), 

cytochalasin D treatment causes rapid cofilin-/importin-9-dependent transfer of G-actin into the 

nucleus. The continued presence of intranuclear actin, which forms rod-like structures that stain 

with phalloidin, is associated with induction of robust expression of the osteogenic genes osterix 

and osteocalcin in a Runx2-dependent manner, and leads to acquisition of osteogenic phenotype. 

Adipogenic differentiation also occurs, but to a lesser degree. Intranuclear actin leads to nuclear 

export of Yes-associated protein (YAP); maintenance of nuclear YAP inhibits Runx2 initiation of 

osteogenesis. Injection of cytochalasin into the tibial marrow space of live mice results in 

abundant bone formation within the space of 1 week. In sum, increased intranuclear actin forces 

MSC into osteogenic lineage through controlling Runx2 activity; this process may be useful for 

clinical objectives of forming bone.
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Introduction

The cell cytoskeleton, which participates in regulation of signal transduction, protein 

transport, and signal compartmentalization, can undergo reorganization in response to its 

microenvironment. Cytoskeletal reorganization in response to static physical cues from 

substrate attachment has been shown to influence lineage allocation of mesenchymal stem 

cells (MSCs) [1, 2]. Dynamic physical forces induce rearrangement of focal adhesions and 

interconnecting F-actin struts, leading to enhanced signaling [3, 4] and force transfer [5]. 
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Competition for G-actin can limit development of F-actin networks in discrete cellular 

locations [6]. In particular, interest has increased in understanding the processes regulating 

G-actin monomer transport to the nucleus [7], where actin is known to support gene 

transcription [8, 9] as well as affect nuclear stiffness [10]. Whether intranuclear actin in 

monomeric or polymerized forms serves specific regulatory roles is unknown [11].

Nuclear actin has both global and specific effects on gene expression [12], affecting 

chromatin remodeling as well as transcript elongation [13], and its depletion is associated 

with cell quiescence [14]. Availability of monomeric or polymeric actin in the cytoplasm 

and nucleus may serve to regulate cell fate through differential binding affinities to multiple 

transcription factors. myocardin-like protein 1 (MAL/MKL1) affinity for actin monomers 

has led to its calponin domains being used to generate monomeric actin probes [15]; 

increased cytoplasmic actin monomers have recently been shown to sequester MKL1 

outside of the nucleus [9], relieving suppression of the adipocyte transcription factor PPARγ 

and thus promoting adipogenesis of MSCs [16]. In a similar fashion, binding of two related 

transcriptional co-activators, Yes-associated protein (YAP) and transcriptional co-activator 

with PDZ-binding motif (TAZ), to polymeric actin promotes their localization outside of the 

nucleus [17]. This suggests that actin disposition may regulate the localization of 

transcription factors involved in stem cell lineage decisions.

Actin transport into the nucleus is dependent on the co-regulatory functions of importin-9 

and the actin binding protein cofilin, which limits actin polymerization [18]. Nuclear steady 

state actin levels are also determined by the amount of monomeric actin substrate available 

for transport, as well as by an export machinery consisting of paired profilin and exportin 6 

[19]. Once intranuclear, actin can be found in filamentous forms [15, 20], as well as in a 

formation defined by the presence of actin-cofilin rods [21]. The role of intranuclear actin 

formation in controlling gene transcription is poorly understood.

In the case of MSC differentiation, it has been suggested that greater cytoskeletal structure 

due to increased F-actin stress fibers will enhance differentiation towards an osteoblastic 

lineage and prevent adipocyte differentiation [1, 22]. The cytoskeletal response to 

attachment on hard surfaces is thought to be an in vitro representation of osteogenic 

differentiation occurring along the mineralized surface of skeletal tissue. Dynamic physical 

force in the form of exercise also reinforces the skeleton [23, 24] and its withdrawal 

promotes bone resorption [25], effects subtended under Wolff’s Law that form is adapted to 

function [26]. To better understand cytoskeletal effects on MSC differentiation, we here 

consider that actin turnover, where F-actin and G-actin dynamically cycle in response to a 

changing mechanical environment [27, 28], might have a regulatory role in MSC 

osteogenesis.

In this work, we show that influx of actin to the nucleus, and its maintenance there, regulates 

osteogenesis via activation of the transcription factor, Runx2, in part by relieving Runx2 

from its repressive interaction with YAP. Cytochalasin D (CytoD) or latrunculin directed 

cytoplasmic F-actin disassembly induces the importin 9/cofilin dependent transport of 

monomeric G-actin into the nucleus. Formation of intranuclear actin filaments (or actin–

cofilin rods) is coincident with osteogenic gene expression, resulting in a robust initiation 
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and acceleration of MSC entry into the osteogenic lineage. Disruption of the cytoplasmic 

actin cytoskeleton also serves to induce osteogenesis in vivo, where injection of cytochalasin 

into the tibial marrow compartment, which is replete with bone marrow MSCs, generates 

abundant trabecular bone formation within 1 week. These data demonstrate that intranuclear 

actin can exert a potent pro-osteogenic stimulus to MSC differentiation.

Materials and Methods

Reagents

Fetal bovine serum (FBS) was from Atlanta Biologicals (Atlanta, GA). Culture media, 

trypsin-EDTA reagent, antibiotics, CytoD, and latrunculin B were from Sigma-Aldrich 

(sigmaaldrich.com). Wnt10b was from R&D. Leptomycin B was from Santa Cruz 

(scbt.com). YAP expression construct was a gift from Dr. H Zhang (Chongqing Medical 

University, China). siRNAs were as follows: Importin 9: 5′-

CCCAGCUCUUCAACCUGCUUAUGGA and control (nucleotide change within same 

sequence) 5′-CCCTCTCCTAACCGTTCATTGAGGA; Cofilin 1: 5′-

AAACTAGGTGGCAGCGCCGTCATTT and the control 5′-

TCATTTCCCTGGAGGGCAAGCCTTT; for Runx2: 5′-

CCAGGTTCAACGATCTGAGATTTGT and control 5′-

CCATTACCAAGCTGTGATATGGTGT; for Exportin 6: 5′-

CAGCAAGTAGGAGCTTGGAGATTCT and control 5′-

CAGTGAGGACGAGTTGAGTACATCT; for β-catenin: 5′-

CCCTCAGATGGTGTCTGCCATTGTA and control 5′-

CCCGATAGGGTCTGTCCTATCTGTA.

Cells and Culture Conditions

Mouse marrow-derived MSC (mdMSC) cells were harvested from murine marrow using a 

published protocol [29] and human marrow-derived MSC (hMSC) were purchased from 

Texas A&M hMSC Cell Inventory (Texas). mdMSC were maintained in minimal essential 

medium (MEM) containing 10% FBS, 100 μg/ml penicillin/streptomycin. hMSC were 

maintained in MEM containing 15% FBS, 2 mM glutamine, and 100 μg/ml penicillin/

streptomycin. For experiments, the cells were plated at a density of 10,000 cells per square 

centimeter in six-well culture plates (Fisher, fishersci.com) and cultured for 1 day before 

application of treatments. Osteogenic medium consisted of 50 μg/ml ascorbic acid and 10 

μM β-glycerophosphate. Adipogenic medium included 0.5 mM 3-isobutyl-1-methyl 

xanthine (IBMX), 5 μg/ml insulin, and 1 μM dexamethasone.

Cell Staining

Cultures were fixed in 10% formalin. Alkaline phosphatase staining was performed with a 

kit (Sigma-Aldrich) as described previously [30]. Alizarin red S staining performed as 

manufacturer’s instruction to detect calcified matrix.

Immunofluorescence

For microscopy, cells were fixed with 4% paraformaldehyde for 10 minutes, permeabilized 

in 0.1% Triton-X 100 for 5 minutes, blocked sequentially with 0.2 M glycine for 10 minutes 
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separated by 3× 10-minute phosphate-buffered saline (PBS) washes between steps. Silicone 

membranes were cut from plates and transferred to six-well plate surface. Actin stress fibers 

were visualized with Alexa Fluor 488-conjugated phalloidin (Invitrogen, 

lifetechnologies.com). After 3× 10-minute washes, membranes were sealed with mounting 

medium on glass. Cells were imaged on an Olympus BX61 inverted microscope system 

using filters: Alexa Fluor 488 Phalloidin: Semroc 3540B. For 3D pictures, cells were imaged 

on Olympus IX70 confocal microscope.

Live Cell Imaging

hMSC were plated in six-well plate at 3 × 104 cells per well and labeled with CellLight 

Actin-RFP (Invitrogen) for 48 hours. The live cells were imaged at every 2 minutes with 

Zeiss LSM700 CO2 microscope. CytoD (0.1 μg/ml) was added in the culture at 30 minutes 

after imaging.

Real Time Reverse Transcriptase Polymerase Chain Reaction

Total RNA was isolated with the RNeasy mini kit (Qiagen, Qiagen.com) and treated with 

DNase I. Reverse transcription of 1 μg of RNA in a total volume of 20 μl was performed 

before real time polymerase chain reaction PCR (Bio-Rad iCycler). The 25-μl amplification 

reactions contained primers (0.5 μM), dNTPs (0.2 mM each), 0.03 units Taq polymerase, 

and SYBR-green (Molecular Probes, Eugene, OR) at 1:150,000. Aliquots of cDNA were 

diluted 5- to 5,000-fold to generate relative standard curves to which sample cDNA was 

compared. Apn, β-catenin, Osx, Runx2, Ocn, and 18S primers were as in ref. 31–33. Alp 

forward primer: 5′-AACCCAGACACAAGCATTCC-3′ and reverse primer: 5′-

GCCTTTGAGGTTTTTGGTCA-3′; aP2 forward primer: 5′-

CATCAGCGTAAATGGGGATT-3′ and reverse primer: 5′-

TCGACTTTCCATCCCACTTC-3′; Axin2 forward primer: 5′-

TAGGCGGAATGAAGATGGAC-3′ and reverse primer: 5′-

CTGGTCACCCAACAAGGAGT-3′. Standards and samples were run in triplicate. PCR 

products were normalized to 18S amplicons in the RT sample, and standardized on a dilution 

curve from RT sample.

Nuclear and Cytoplasmic Protein Fractionation

Cells were washed with 1× PBS, and the cell pellets were resuspended in 0.33 M sucrose, 10 

mM Hepes, pH 7.4, 1 mM MgCl2, 0.1% Triton X-100 (pellet vs. buffer, 1:5), and placed on 

ice for 15 minutes. After 3,000 rpm for 5 minutes, the supernatant was collected 

(cytoplasmic fraction). The pellet was resuspended in 0.45 M NaCl and 10mM Hepes, pH 

7.4, and placed on ice for 15 minutes. After centrifugation at 12,000 rpm for 5 minutes, the 

nuclear fraction supernatant was collected.

Immunoblot

Whole cell lysates were prepared with lysis buffer (150 mM NaCl, 50 mM Tris HCl, 1 mM 

EGTA, 0.24% sodium deoxycholate, 1% Igepal, pH 7.5) containing 25 mM NaF and 2 mM 

Na3VO4; aprotinin, leupeptin, pepstatin, and phenylmethylsulfonyl fluoride were added 

before each lysis. An amount of 5–20 μg of fractionated or whole lysate proteins were 
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loaded onto a 7%–10% polyacrylamide gel for chromatography and transferred to 

polyvinylidene difluoride membrane. After blocking, primary antibody was applied 

overnight at 4°C including antibodies against active β-catenin (clone 8E7; Upstate, 

Temecula, CA), osteocalcin, PARP, LDH, actin, tubulin, YAP (Santa Cruz), and cofilin1 

(Cell Signaling, CellSignal.com). Secondary antibody conjugated with horseradish 

peroxidase was detected with ECL plus chemiluminescence kit (Amersham Biosciences, 

gelifesciences.com). The images were acquired with aHPScanjet and densitometry 

determined using NIH ImageJ, 1.37v.

Intra-Tibial Injection

C57BL/6 wild type mice, 6 weeks old, were used for the CytoD injection experiment. 12 

mice were divided into two groups to receive CytoD (0.8 μg in 10 μl) or 10 μl MEM 

medium control injected into the right tibial marrow space. (IACUC protocol approved).

Histochemical Staining

One week after CytoD injection, the right tibia were excised and fixed in 4% 

paraformaldehyde solution for 48 hours. The samples were then decalcified in 14% EDTA 

for 7 days, dehydrated in serial dilutions of ethanol, and embedded in paraffin. After 

hardening, the samples were sectioned along the long axis into 5 μm thickness, transferred 

onto 3-aminopropyltriethoxysilane (APES)-coated glass slides, and stained with H&E for 

histological analysis.

Bone Microarchitecture

The 4% paraformaldehyde fixed tibia was subjected to microcomputed tomography (μCT) 

analysis. Bone morphology parameters of the proximal tibial metaphysis and mid diaphysis 

were quantified ex vivo using high-resolution X-ray μCT (Scanco Medical; Wayne, PA). 

These included bone volume (BV), BV fraction (BV/TV), trabecular number, thickness and 

spacing, and measures of cortical area and thickness. Beginning 200 μm distal to the growth 

plate of the metaphysis was evaluated for trabecular bone; from 300 μm to 200 μm for 

cortical bone, at 12 μm resolution and 55 keV intensity settings. A threshold for each slice 

was set exclusively for cortical and trabecular bone using an automated script [34]. The 

reconstructed solid 3D images were then used to quantify bone microarchitecture.

Statistical Analysis

Results are expressed as mean ± SEM. Statistical significance was evaluated by one-way 

analysis of variance or t-test as appropriate (GraphPad Prism). All experiments were 

replicated at least three times to assure reproducibility.

Results

Increasing G-Actin Availability Initiates and Enhances Osteogenesis

Increased cytoskeletal tension is thought to contribute to the commitment of MSC to 

osteogenic lineage [22]. On stiff extracellular matrix, mimicking the natural bone 

environment, MSCs differentiate more rapidly into osteoblasts when treated with an 
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osteogenic media containing ascorbate and β-glycerophosphate, preceded by an upregulation 

of the osteogenic transcription factor Runx2 [1]. To understand whether the polymerized 

state of actin affected MSC lineage, we induced F-actin depolymerization in mdMSC, 

maintaining the depolymerized state continuously over several days. CytoD (0.1 μg/ml 

applied daily, Fig. 1A), induced an osteogenic gene program by day 3 even in the absence of 

an osteogenic medium (Fig. 1B); osterix (Osx) and osteocalcin (Ocn) mRNA expression 

increased five- and twofold, respectively, in non-osteogenic growth medium. When mdMSC 

were grown in osteogenic medium, 3 days of CytoD both accelerated and enhanced the 

induction of the osteogenic gene program (Fig. 1C); Osx and Ocn mRNA were upregulated 

40- and 20-fold, respectively. If the CytoD treatment was limited to the first day only, and 

then removed, MSC did not undergo osteogenesis, indicating that continuous repression of 

actin depolymerization was required (Supporting Information Fig. S1A). Alkaline 

phosphatase mRNA also rose, with protein reflected by increased enzymatic activity and 

stain for alkaline phosphatase activity (Fig. 1D).

As a corollary, culture with latrunculin B, which inhibits actin filament polymerization by 

binding to actin monomers [35], also enhanced osteogenic gene expression (Supporting 

Information Fig. S1B). These results suggest that free G-actin monomers are of significant 

regulatory importance for osteogenesis.

Runx2 rose in response to continuous actin depolymerization, lagging behind the appearance 

of specific bone mRNA expression. Both Osx and Ocn, downstream targets of Runx2, rose 

24 hours after the application of CytoD (Fig. 1C), with osteocalcin protein rising to threefold 

more than that in osteogenic medium alone (Fig. 1E). This suggests that Runx2 activity is 

enhanced during actin depolymerization. This effect was reproduced in hMSC, where CytoD 

induced a nearly 10-fold increase in osteogenic genes, Osx and Ocn after 3 days (Fig. 1F). 

Runx2 expression was earlier and perhaps of greater magnitude in the human MSC.

Staining for hydroxyapatite with Alizarin red S to confirm osteoblast function showed that 

both control and CytoD treated cells generated a mineralized matrix (Supporting 

Information Fig. S1E). Bone nodules formed in the control plate were typically observed as 

dense packets amid confluent cells. The number of nodules formed in a culture correlates 

with the total number of cells initially plated with each bone nodule developing from the 

progeny of an osteoprogenitor cell type present in the original cultures at a frequency of 

approximately one in approximately 250 cells [36]. In contrast, although the dose of CytoD 

used limited cell proliferation (Supporting Information Fig. S1F) as actin filaments are 

necessary during the process of cell division [37], a large proportion of plated cells entered 

the osteogenic lineage and achieved capacity to generate a mineralized matrix. This is 

supported by the increased proportion of cells attaining alkaline phosphatase staining after 

CytoD treatment, shown in Supporting Information Figure S1C. Actin depolymerization 

thus appears to induce osteogenic maturation of MSCs.

It has been demonstrated previously that cytoskeletal disruption can promote adipogenesis 

[16, 38], and we have confirmed that here. CytoD treatment of mdMSC cultured in growth 

medium at 5 days induces aP2 and adiponectin gene expression at the same time as 

increasing osteogenic markers (Supporting Information Fig. S2A). In osteogenic medium, 
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however, actin depolymerization enhances osteogenic genes by 10-fold (osterix) and 20-fold 

(Ocn) while inducing a smaller increase in adipogenic genes (fourfold for aP2 and 10-fold 

for adiponectin), suggesting that in these conditions the effect to enhance osteogenic genes 

was more pronounced (Supporting Information Fig. S2B).

Actin Transport into the Nucleus Is Required for Enhanced Osteogenic Gene Expression 
due to CytoD

Actin stress fiber depolymerization by CytoD generates free monomeric G-actin. G-actin 

can shuttle between the nucleus and cytoplasm in a highly regulated process [13]. We, 

therefore, considered that the monomeric G-actin generated by CytoD treatment might 

regulate osteogenic gene expression after transport into the nucleus. We tracked the location 

of actin between the cytoplasm and nucleus after CytoD treatment of mdMSCs. Nuclear 

actin increased by nearly threefold, measured after 3 days treatment with CytoD, with a 

concurrent decrease in cytoplasmic actin (Fig. 2A). To monitor the actin transport into the 

nucleus of live cells, RFP-labeled actin was transfected into human MSC: after CytoD 

treatment, stress fibers disassembled quickly (Supporting Information Movie S1) and 

accumulated in the nucleus within 30 minutes (Fig. 2B). The 3D images clearly confirmed 

the nuclear accumulation of actin at 8 hours in CytoD treated cells compared with control 

cells (Supporting Information Movies S2, S3).

Cofilin and importin 9 cooperate to transport actin monomers and dimers into nucleus [39]. 

Depletion of cofilin 1, the major isoform of cofilin in these cells, with siRNA limited CytoD 

induced osteogenesis (Fig. 2C). As well, siRNA targeting importin 9 inhibited stimulation of 

osteogenesis measured at 3 days (Fig. 2D). It is important to note that knockdown of either 

actin co-transporter also decreased osteogenic gene expression in the absence of CytoD (Osx 

and Ocn, white bars in Fig. 2C, 2D), suggesting that nuclear actin transport is supportive of 

osteogenic processes.

To verify that actin was not transported into the nucleus when the actin transport system was 

interrupted, we confirmed that importin 9 deficient cells failed to show a rise in nuclear actin 

after CytoD treatment (Fig. 2E). Actin transport was also inhibited when cofilin 1 was 

specifically targeted by siRNA (Supporting Information Fig. S3A). Phalloidin staining after 

CytoD treatment revealed nuclear filamentous actin, while staining was absent in the 

nucleus in cells depleted of either cofilin (Fig. 2F) or importin 9 (Supporting Information 

Fig. S3B), despite clear depolymerization of the cytoplasmic F-actin cytoskeleton. 

Simultaneous knockdown of cofilin 1 and importin 9 did not produce an additive inhibitory 

effect on osteogenesis (Fig. 2G), supporting that these factors work in concert to transport 

actin, and that the process of actin transport into the nucleus promotes osteogenic gene 

transcription.

An active export process involving exportin 6 and profilin is required transport G-actin out 

of the nucleus [18, 40]. To ascertain whether nuclear actin export was involved in CytoD 

induced osteogenesis, exportin 6 was decreased by RNA interference. Knock down of 

exportin 6 neither induced osteogenesis nor prevented the increase of osteogenic gene 

expression due to CytoD (Supporting Information Fig. S3C). That eliminating exportin 6 
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failed to enhance osteogenesis suggests that sustained actin nuclear influx through a cofilin/

importin 9 transport mechanism is critical for this process.

Osteogenesis Resulting from Increased Nuclear Actin Requires Runx2

As Runx2 is the master regulator of osteogenic differentiation of MSC [41] we hypothesized 

that actin depolymerization might activate Runx2. To investigate this, Runx2 was knocked 

down using siRNA. Depletion of Runx2 prevented CytoD induction of osteogenic gene 

expression (Fig. 3A), consistent with a requirement of Runx2 for deployment of the 

osteogenic gene program. Interestingly, the CytoD induced increase in alkaline phosphatase 

expression was unaffected by Runx2 knockdown. Alkaline phosphatase (ALP) is a 

ubiquitous cellular protein [42], even though it can serve as an early marker of osteogenic 

differentiation. Here, CytoD induced ALP expression was independent of Runx2, and thus 

dependent on other effects mediated via cytoskeletal remodeling.

The activity of Runx2 is inhibited by YAP, which interacts directly with the Runx2 protein 

to suppress Runx2 transcriptional activity in a dose-dependent manner [43]. As YAP is 

known to translocate from the nucleus to the cytoplasm during actin depolymerization [44, 

45], we considered that YAP trafficking might be involved in Runx2 de-repression. First we 

showed that after 3 days treatment with CytoD, when osteogenesis is in effect, nuclear YAP 

was decreased by more than half, and accompanied by increases in the cytoplasmic 

compartment (Fig. 3B). Immunofluorescence staining showed that intense nuclear YAP 

stain was diminished and found in the cytoplasm after actin depolymerization (Supporting 

Information Fig. S4B). We next asked whether the nuclear import of free G-actin was 

involved in the YAP nuclear egress. siRNA depletion of importin 9, which prevents nuclear 

actin import, prevented YAP export from the nucleus after CytoD (Fig. 3C). This indicates 

that G-actin nuclear transfer contributes to the effects of actin depolymerization to induce 

YAP translocation to the cytoplasm.

Leptomycin B inhibits exportin 1 (CRM1), an evolutionarily conserved receptor for nuclear 

protein export [46]. The fact that blockade of nuclear export with leptomycin B preserved 

nuclear localization of YAP in MSC treated with cytoskeletal inhibitors [44] suggested that 

this inhibitor might restrain osteogenic induction by maintaining nuclear YAP. Indeed, 

shown in Figure 3D, pretreatment of mdMSC with leptomycin B prevented CytoD 

stimulation of Osx and Runx2 expression. These data support that maintenance of nuclear 

YAP contributes regulation of Runx2 activity. Ocn was surprisingly unaffected by 

leptomycin B pretreatment (Fig. 3D); however, we noted that even in the absence of CytoD, 

Ocn expression was induced by the presence of leptomycin B. This may be consistent with a 

direct effect of leptomycin B on osteocalcin transcription.

To further verify an effect of YAP to regulate osteogenic gene expression, YAP protein was 

overexpressed. Excess YAP protein interfered with CytoD induced osteogenesis in MSC, 

with retention of some FLAG-YAP expression in the nucleus after CytoD treatment (Fig. 

3E). We further showed that YAP localization to the cytoplasm required persistent actin 

fiber depolymerization: in Supporting Information Figure S4A removing CytoD after 24 

hours allowed the actin cytoskeleton to reassemble. Replacing CytoD containing medium 

with fresh medium after 1 day caused YAP to relocalize from the cytoplasm to the nucleus 
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when measured 24 hours later (Fig. 3F). As such, persistence of nuclear actin is requisite for 

the nuclear exclusion of YAP, as well as for the induction of osteogenesis (Supporting 

Information Fig. S1A).

Forcing actin into the nucleus by tagging with a nuclear localization sequence when cofilin 

is silenced does not rescue actin responsive RNA polymerase II activity [18]. As noted, G-

actin nuclear transfer is dependent on nonmuscle cofilin-1, which is also found in complex 

with actin and phosphorylated RNA polymerase II. Depleting cofilin affects active 

transcription [47], which might implicate cofilin as a partner in nuclear actin’s effect to 

modulate gene transcription. Indeed, after actin enters the nucleus, it can form rod like 

structures with cofilin; these structures are inhibited in the presence of leptomycin B [21]. 

We examined formation of such actin–cofilin rod structures within nuclei, finding them only 

in nuclei of CytoD treated cells: Figures 2D, 3D, and 3G show many rod-like phalloidin-

stained structures appearing after CytoD treatment. Furthermore, these rods are clearly 

visible within the nucleus as shown in Supporting Information Movies S4 and S5. Taken 

together, these results indicate that osteogenic differentiation due to cytoskeletal actin 

depolymerization depends on Runx2 activation, a process that involves YAP translocation 

from the nucleus. YAP translocation and potentially gene activation may require the 

formation of actin/cofilin rods which form when G-actin and cofilin reach appropriate 

concentrations within the nucleus.

Bone Formation Is Induced by Intra-Tibial Injection of CytoD

Prior investigations have suggested that greater cytoskeletal structure due to increased F-

actin stress fibers will enhance osteogenic differentiation of MSC. We, instead, found that 

rapid and sustained loss of actin cytoskeleton can also lead to osteogenesis in vitro. To test 

the effect of actin depolymerization in a site where endogenous marrow MSC are readily 

accessible, we injected CytoD (0.8 μg in 10 μl), or 10 μl MEM medium control, into the 

right tibial marrow space marrow of 6-week-old mice (IACUC protocol approved). One 

week after injection, tibiae were excised and analyzed with μCT. The vertical sections 

revealed that the CytoD-injected tibiae contained more trabeculae in the marrow cavity, with 

trabecular extension into the diaphysis (Fig. 4A; Supporting Information Fig. S5A). 

Trabecular parameters measured by μCT showed that trabecular BV/TV, trabecular 

thickness (Tb.Th), and trabecular number (Tb.N) significantly increased and trabecular 

spacing (Tb.S) significantly decreased, consistent with new bone formation (Fig. 4B, p > 

0.01). In cross-sections, we found that cortical thickness in the CytoD group was increased 

compared with the control group (Fig. 4A; Supporting Information Fig. S4B, p < 0.01). 

Cortical bone showed significant increase in cortical bone area (Ct.Ar), total area (Tt.Ar), 

and in thickness (Ct.Th) in the CytoD treated group (Fig. 4C). H&E staining confirmed the 

abundant increase in trabecular bone formation in CytoD treated tibiae (Fig. 4D). As such, 

this indicates that CytoD not only strongly induces formation in trabecular bone but also 

enhances cortical bone area.

Diminishing cellular tension can promote adipogenic differentiation [2, 22], and as we found 

with ALP, intracellular actin can generally increase gene activity [8, 12]. Histology of tibial 

bones (Fig. 4D) suggested that CytoD treated marrow had more white spaces, consistent 
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with marrow adipocytes, than did control mouse tibiae. This is consistent with reverse 

transcriptase PCR (RT-PCR) results showed that gene expression level of adipogenic 

markers were increased in mdMSC treated with CytoD (Supporting Information Fig. S2). 

Importantly, in a bone environment, these levels were less than those reflecting osteogenic 

gene expression (Supporting Information Fig. S2C). Thus, although depolymerization of 

actin stress fiber caused adipogenesis in vitro and in vivo, the induction of osteogenesis in 

MSC in a bone environment predominates over that of adipogenesis.

Discussion

In this study, we provide direct evidence that cofilin-/importin 9-dependent nuclear 

translocation of actin initiates a robust osteogenic differentiation program in marrow derived 

MSC. The sustained presence of nuclear actin results in osteoblastogenesis in vitro, an effect 

recapitulated in vivo as intramarrow injection of CytoD causes robust local bone formation. 

It has been shown that structural dynamics of nuclear actin filaments can modulate gene 

transcription [20, 48, 49]. Nuclear entry of G-actin affects the expression profile of many 

genes either through sequestration of inhibitors and activators [9], or potentially the binding 

of such regulators to chromatin [48]. Examples include the interaction of MAL, a cofactor of 

serum response factor (SRF), with monomeric actin in the regulation of SRF induced gene 

transcription [9] and the reactivation of the pluripotency gene Oct4 by nuclear actin [49]. 

Here, we show that increased nuclear actin causes YAP relocalization to the cytoplasm 

resulting in the de-repression of the specific osteogenic transcription factor, Runx2.

Actin, lacking a nuclear localization sequence, requires cofilin to gain access to the nucleus. 

Depletion of cofilin, or importin 9, its transporter partner, prevented actin induced 

osteogenesis (Fig. 2). Furthermore, the depolymerization constraint had to be maintained, as 

removal of CytoD after 24 hours is followed by reformation of F-actin fibers (Supporting 

Information Fig. S4A), YAP re-entry (Fig. 3F) and failure to induce osteogenesis 

(Supporting Information Fig. S1A). Either very high intranuclear actin is necessary, or there 

may be a specific nontransport role for cofilin in Runx2 activation. Besides its key role in 

nuclear translocation of actin, cofilin participates in the formation of actin/cofilin rods [18, 

21]. The formation of actin/cofilin rods during cell stress decreases transcription of most 

steady-state proteins while increasing transcription and translation of chaperones and other 

stress related proteins [50]. Here, we show that F-actin structures, perhaps representing 

actin/cofilin rods, are present within the nucleus (Fig. 3G) after CytoD induced cytoplasmic 

actin depolymerization.

The increase in the osteogenic gene program exemplified by expression of osterix and 

osteocalcin followed by mineralization of MSC was found to require the participation of 

Runx2. The Runx2 binding profile, or its “cistrome,” is altered during osteoblastogenesis 

[51]. The PY motif of Runx2 has been previously shown to recruit YAP to Runx2 binding 

sites at heterochromatin, where its presence represses Runx2 activity [43]. Our data suggest 

that Runx2 activation, consistent with the report by Zaidi, may be regulated through nuclear 

availability of YAP. Indeed we showed that overexpression of YAP and its nuclear retention 

almost entirely prevented the osteogenic response to CytoD (Fig. 3E). Recently it has 

become apparent that the nuclear/cytoplasmic location of YAP and its affiliated protein TAZ 
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are dependent on mechanical and cytoskeletal cues [52]. A highly structured cytoplasmic F-

actin network promotes YAP localization within the nucleus [53, 54]. The obverse state, 

actin depolymerization, results in YAP nuclear egress [55], and is consistent with our data 

showing that increased nuclear actin promotes YAP nuclear exit. Although extra-nuclear 

YAP is commonly associated with a decrease in proliferation [56], it may have contextually 

dependent effects on differentiation: in mechanically sensitive cardiac progenitor cells 

silencing YAP/TAZ not only decreases proliferation but also promotes endothelial 

commitment [57]. In the bone marrow MSC studied here, maintenance of YAP exclusion 

from the nucleus supports osteogenic differentiation.

Cell tension stimulated by internal or external force induces actin polymerization, which is 

broadly thought to enhance commitment of MSC to osteogenic lineage [58]. However, the 

fact that actin depolymerization induced by CytoD strongly enhanced osteogenic 

differentiation both in vitro and in vivo challenges the simplicity of this theory, and suggests 

that temporal (during MSC differentiation) and contextual (environmental) effects strongly 

pertain. The turnover of actin polymerization and depolymerization is a common process 

during cell migration [59], a process that may be crucial to increasing periosteal 

circumference of loaded bones. Furthermore, osteoblast differentiation in vitro takes place 

within confluent cultures; here, cells are less spread than in subconfluent dishes, consistent 

with extra-nuclear localization of YAP. In support of the concept that the cellular fraction of 

G-actin will enhance osteogenesis, work has shown that inhibition of actin bundling with the 

ROCK inhibitor, Y27632, augments BMP induced ectopic bone formation in vivo [60]. The 

ROCK inhibitor also increased osteocalcin production and enhanced bone nodule formation 

in primary cultures of neonatal murine calvarial cells [60].

In MSC, along with the predominant stimulation of Runx2 dependent osteogenesis, nuclear 

actin has a Runx2 independent effect to increase alkaline phosphatase mRNA and protein 

(Fig. 3A) as well as factors associated with adipogenesis. Monomeric G-actin generated by 

depolymerization of F-actin interacts with (MAL/MKL1) to prevent nuclear access of 

MKL1, allowing expression of the adipocyte transcription factor PPARγ [16]. We also 

demonstrated adipogenesis, confirming these findings (Supporting Information Fig. S2), and 

further showed histological evidence of increased adipocytes after CytoD injection in vivo 

(Fig. 4D). Quantitative measures showed significant increases in bone formation 1 week 

after CytoD injection into the in vivo bone environment containing MSC. Nuclear actin may 

also underlie the periosteal bone formation seen in a study where CytoD was injected into 

the periosteum [61], this study did not evaluate the mechanism or the target cell. In the case 

of marrow MSC, nuclear actin’s effect on Runx2 activity to cause osteogenesis dominates 

the differentiation response under osteogenic conditions both in vivo and in vitro. It is 

known that actin participates in gene expression through multiple mechanisms, including 

chromatin remodeling, RNA processing, and is required for transcription by all RNA 

polymerases [62]; it is likely that the high degree of cofilin-dependent influx of actin in our 

experiments affects the differentiation state of MSC dependent on multiple mechanisms 

which are temporally and spatially controlled by cues in the microenvironment.

Finally, delivery of a chemical disruptor of F-actin within mouse tibiae where MSC reside 

induces abundant trabecular and even cortical bone formation. Whether this effect is 
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sustained, and whether biochemical control of actin turnover could offer a clinical strategy 

for building bone, remains to be explored. There are limitations to our in vivo experiment. 

First, we did not follow for longer than 7 days to measure continued bone apposition, or 

whether the new bone was maintained. Second, the mice used were young, presumably with 

abundant multipotential MSC, which may not be present in older animals. Furthermore, it is 

possible that the effect of cytochalasin within the marrow space might be indirect, with an 

injury response driving resident MSC, and indeed that actin transposition to the nucleus is 

not involved at all. These questions will need to be addressed before we can propose actin 

regulation of osteogenesis in the clinic.

Conclusion

In conclusion, depolymerization of the MSC actin cytoskeleton induces a robust osteogenic 

gene program in marrow derived MSC that leads to bone formation. Such osteogenesis is 

dependent on actin nuclear transport, where it forms fibrillar intranuclear structures that are 

associated with YAP relocalization to the cytoplasm and thus de-repression of Runx2 

activity. As such regulation of the MSC actin cytoskeleton, and nuclear actin content, should 

have implications for understanding differentiation of stem cells.
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Significance Statement

Actin is a multi-functional protein that forms F-actin. Cytochalasin D binds to actin 

filaments and blocks polymerization which results in rapid cofilin/importin-9 dependent 

transfer of free-actin into nucleus. Intranuclear actin induces Runx2-dependent 

expression of osteogenic genes, and leads to acquisition of osteogenic cell phenotype. 

Intranuclear actin causes nuclear export of YAP which inhibits Runx2 initiation of 

osteogenesis in nucleus. In live mice, injection of cytochalasin into MSC-rich tibial 

marrow results in abundant bone formation. In sum, increased intranuclear actin forces 

MSC into osteogenic lineage through enhancing Runx2 activity, a mechanism which 

could be harnessed for clinical objectives of forming bone.
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Figure 1. 
Actin depolymerization initiates and enhances osteogenesis. Mouse marrow-derived 

mesenchymal stem cell (mdMSC) or human marrow-derived MSC (hMSC) were treated 

with CytoD (0.1 μg/ml) for indicated times. Except for panel (B), cells were cultured in 

osteogenic medium. (A): Control and CytoD-treated mdMSC stained with phalloidin, day 3. 

Scale bars = 25 μm. (B): mdMSC cultured in MEM; Osx and Ocn reverse transcriptase 

polymerase chain reaction. (C): mdMSC response to continuous CytoD, day 3; notations a, 

b, c ≠ control and differ from each other with p < 0.05. (D): ALP assay (at d1, control 
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without CytoD = 5.1 nmol nNP/μg total protein per minutes) and ALP stain, mdMSC. (E): 
Osteocalcin (OCN) protein at 5 d, mdMSC. 3 experiments assessed for densitometry of Ocn, 

shown in graphs to the right, confirm a significant increase; *, p< 0.05. (F): hMSC response 

to CytoD, 3 days; *, p < 0.01. Abbreviations: ALP, alkaline phosphatase; CTL, control; 

CytoD, cytochalasin D; OCN, osteocalcin.
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Figure 2. 
Actin transport into the nucleus is required for enhanced osteogenic gene expression after 

CytoD. (A): Nuclear and cytoplasmic IB, mouse marrow-derived mesenchymal stem cell 

(mdMSC) ± CytoD, 3 days. Densitometry of nuclear actin, shown in graphs to the right, 

confirms a significant increase compared with control, n = 3, *, p< 0.05. (B): CellLight 

Actin-RFP transfected human marrow-derived MSC imaged 8 hours after ± CytoD. Scale 

bars = 25μM. (C, D, G). Reverse transcriptase polymerase chain reaction analysis after 

siRNA treatment for cofilin1 (C), importin 9 (D) and importin 9 + cofilin 1 (G) ±CytoD for 
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3 days. For Panels (C), (D), and Alkaline phosphatase a, b ≠ control and differ from each 

other, p < 0.01. (E): Nuclear and cytoplasmic IB. Densitometry for nuclear actin blots reflect 

n = 3, *, p < 0.05. (F): Phalloidin stain. Scale bars = 25 μM. Abbreviations: CTL, control; 

CytoD, cytochalasin D; LDH, lactate dehydrogenase; PARP, polyribose polymerase.
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Figure 3. 
Osteogenesis resulting from increased nuclear actin requires Runx2 activity. (A): Mouse 

marrow-derived mesenchymal stem cell (mdMSC), ± CytoD for 3 days at 24 hours after 

Runx2 siRNA treatment; a, b ≠ control and differ from each other, p < 0.01. (B, C): Nuclear 

and cytoplasmic IB, 3-day treatment of cytochalasin D after importin 9 knock-down. 

Densitometry of nuclear Yes-associated protein (YAP) is shown in (B, C), n = 3, *, p < 0.05. 

(D): Reverse transcriptase polymerase chain reaction (RT-PCR) analysis ± leptomycin B (5 

ng/ml) and ± CytoD for 3 days; a, b ≠ control and differ from each other with p < 0.01. (E): 
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mdMSC transfected with YAP construct or empty vector. IB, left panel. RT-PCR ± CytoD 

for 3 days. a, b ≠ control and differ from each other, p <0.01. (F): mdMSC treated with 

CytoD for 0 (3−), 3d (3+), or on the first day only (1+/2−). IB for nuclear YAP. 

Densitometry of nuclear YAP bands is shown, n = 3, *, p< 0.05. (G): 2D and 3D images. 

mdMSC ± CytoD for 3 days, phalloidin stain. Scale bars = 25 μm. Abbreviations: CTL, 

control; CytoD, cytochalasin D; LDH, lactate dehydrogenase; PARP, polyribose 

polymerase; YAP, Yes-associated protein.
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Figure 4. 
Bone formation is induced by intra-tibial injection of cytochalasin D. (A): 3D images of 

cross and vertical sections of right tibia reconstructed from μCT. (B, C): Trabecular and 

cortical quantitative measurement for the same tibia as (A). (D): H&E staining for the right 

tibia with/without CytoD treatment. Asterisks indicate significant difference, *, p< 0.05; **, 

p < 0.01. Abbreviations: CTL, control; CytoD, cytochalasin D.
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