
| INVESTIGATION

On the Identifiability of Transmission Dynamic
Models for Infectious Diseases

Jarno Lintusaari,*,1 Michael U. Gutmann,*,† Samuel Kaski,* and Jukka Corander†

*Helsinki Institute for Information Technology (HIIT) and Department of Computer Science, Aalto University, FI-00076 Aalto,
Finland, and †Helsinki Institute for Information Technology (HIIT) and Department of Mathematics and Statistics, University of

Helsinki, FI-00014 Helsinki, Finland

ABSTRACT Understanding the transmission dynamics of infectious diseases is important for both biological research and public health
applications. It has been widely demonstrated that statistical modeling provides a firm basis for inferring relevant epidemiological
quantities from incidence and molecular data. However, the complexity of transmission dynamic models presents two challenges: (1)
the likelihood function of the models is generally not computable, and computationally intensive simulation-based inference methods
need to be employed, and (2) the model may not be fully identifiable from the available data. While the first difficulty can be tackled by
computational and algorithmic advances, the second obstacle is more fundamental. Identifiability issues may lead to inferences that are
driven more by prior assumptions than by the data themselves. We consider a popular and relatively simple yet analytically intractable
model for the spread of tuberculosis based on classical IS6110 fingerprinting data. We report on the identifiability of the model, also
presenting some methodological advances regarding the inference. Using likelihood approximations, we show that the reproductive
value cannot be identified from the data available and that the posterior distributions obtained in previous work have likely been
substantially dominated by the assumed prior distribution. Further, we show that the inferences are influenced by the assumed
infectious population size, which generally has been kept fixed in previous work. We demonstrate that the infectious population size
can be inferred if the remaining epidemiological parameters are already known with sufficient precision.
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STATISTICAL models for transmission dynamics are widely
employed to answer fundamental questions about the

infectivity of bacteria and viruses and to make predictions
for intervention policies such as vaccines, decolonization,
and case containment. For some types of infectious diseases,
the complexity of the transmission process and the corre-
sponding model, combined with the characteristics of the
available data, makes the inference an intricate task. A par-
ticular difficulty arises from the need to use computationally
intensive methods. Examples include the work by Tanaka
et al. (2006), Sisson et al. (2007), Blum (2010), Stadler
(2011), Fearnhead and Prangle (2012), Del Moral et al.
(2012), Baragatti et al. (2013), and Albert et al. (2015),

who considered the transmission dynamics of Mycobacterium
tuberculosis based on IS6110 fingerprinting data from tu-
berculosis (M. tuberculosis) cases in San Francisco reported
earlier by Small et al. (1994). Except for Stadler (2011),
who proposed an inference scheme based on likelihood
and Markov chain Monte Carlo approximations, the above-
mentioned studies employed and improved an approxi-
mate inference technique known as approximate Bayesian
computation (ABC), which was originally introduced by
Tavaré et al. (1997).

Although estimation of the epidemiological parameters of
M. tuberculosis with the model of Tanaka et al. (2006) has
been widely studied, concerns about identifiability have been
raised. Originally, Tanaka et al. (2006) reported a wide cred-
ible interval for the reproductive value R, and later, Blum
(2010) suggested that the data of Small et al. (1994) are
not informative enough for confident estimation of R in the
original setting by visually comparing the prior to the inferred
posterior distribution. Stadler (2011) further questioned the
accuracy of the ABC approach of Tanaka et al. (2006) after
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obtaining significantly different estimates with her method.
This concern was later reconciled by Aandahl et al. (2014),
who showed that the ABC method was valid and, moreover,
also computationally more efficient. However, their confir-
matory experiments with synthetic data only covered the
setting with a single free parameter, which leaves the ques-
tion about estimableness open for models with multiple free
parameters.

In certain cases, the outcomes of ABC may not be accurate
because the method includes several approximations and
because practical algorithms can have several tuning param-
eters. Multiple validationmethods thus have been developed.
Many operate by using synthetic data generated with known
parameter values in place of the observed data and compar-
ing the inference results with the known parameter values.
Wegmann et al. (2009), for example, used the absolute dif-
ference between the data-generating parameter values and
the posterior point estimates to test whether the inferred
posterior distribution is concentrated around the right pa-
rameter values; to test whether the spread of the distribution
is not overly large or small, they suggested computing the
proportion of times the credible interval contains the data-
generating parameter values [see also the work by Prangle
et al. (2014)]. Csilléry et al. (2012), however, recommended
comparing the observed data with data simulated from the
posterior predictive distribution. Further validation methods
include confidence intervals, interquantile ranges, visualiza-
tions of the posterior distributions (e.g., Tanaka et al. 2006;
Toni et al. 2009; Blum 2010), and principal-components
analysis (Toni et al. 2009; Cornuet et al. 2010).

Failure to pass some of the validation tests can occur
for several reasons. The approximationmay not be accurate
enough, the settings of the inference algorithm could be the
problem, or the issue could be deeper: themodelmay not be
fully identifiable in the first place. In this paper, we assess
the identifiability of the epidemiological model of Tanaka
et al. (2006) for genotype data of the kind available from
the San Francisco study of Small et al. (1994). Because the
likelihood function indicates the informativeness of the
data, we approach the identifiability problem directly by

approximating the likelihood. Further, because previous
ABC studies dealing with the same epidemiological model
have assumed a fixed infectious population size for the data,
we investigated how this choice influences estimation of the
epidemiological parameters and whether it is possible to
infer the population size from these kinds of genotype data
without access to more extensive surveillance data about
incidence. Because comparable data are widely considered
for many different kinds of pathogens, the issue of model
identifiability—and our approach of addressing it by ap-
proximating the likelihood function—is of wider general
interest beyond the particular case discussed here.

Materials and Methods

Model for disease transmission

The model considered in the paper is a linear birth-death
process with mutations (BDM) introduced by Tanaka et al.
(2006). The process model is defined as follows: each
infected individual, hereafter called host, carries the patho-
gen characterized by an allele at a single locus of its genome.
The host transmits the pathogen and the corresponding
allele with rate a and dies or recovers with rate d. For sim-
plicity, we call a the birth rate and d the death rate. In
addition, the pathogen mutates within the host at rate t,
resulting each time in a novel allele in the population of
hosts (infinite-alleles model). When simulating the pro-
cess, one begins with a single host and stops when either
the population of hosts X reaches a predetermined sizem or
the pathogen goes extinct. The observation model assumes
sampling of n,m hosts from Xwithout replacement. It was
noted earlier by Stadler (2011) that owing to the time
scaling of the model, at least one of the rate parameters
must be fixed. Similar to many of the earlier studies, we
use a time scale of 1 year and fix the mutation rate to t =
0.198 per year throughout the experiments. Likewise, the
infectious population size m is set to 10,000 unless other-
wise stated.

The epidemiological parameters of interest in this study
are the reproductive value R and the net transmission rate t.

Figure 1 The distribution of the difference Derror between the relative estimation errors for the baseline and two alternative distance measures.
A positive value of Derror indicates that the alternative method performs better. The intervals at the top show the estimated mean and the 95%
confidence interval [(A) us = (3.4, 0.69), (B) us = (2.1, 0.57), and (C) us = (1.7, 0.35)].
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In addition, we will consider the inference of the underlying
infectious population sizem given some estimate of R and t.
In what follows, we will often use u to denote the tuple
ðR; tÞ. The epidemiological parameters R and t are in a one-
to-one correspondence with the event-rate parameters of
the BDM process: R ¼ a=d, t ¼ a2 d, and d ¼ t=ðR2 1Þ,
a ¼ tR=ðR2 1Þ.
Data

The alleles of the pathogen carried by the n sampled
hosts are summarized in the form of the allele vector
a ¼ ða1; a2; . . . ; anÞ 2 ℕn, where element ai equals the num-
ber of allele clusters of size i present in the sample. An allele
cluster is a set of hosts having the same allele of the pathogen,
and its size is the number of hosts that belong to the cluster.
For example, the vector a ¼ ð4; 0; 1Þ implies that there are
four singleton clusters and one cluster with three hosts in the
sample. In other words, there are four different alleles, each
found in only one host and one allele shared by three hosts.
The size of a is defined as the sample size n, which can be
written in terms of a as n ¼ P

i iai.
For inference of the parameters, as in Tanaka et al.

(2006), we used the San Francisco data of Small et al.
(1994), which consist of an allele vector a* of size n =
473. Its nonzero elements are a*1 ¼ 282;   a*2 ¼ 20;   a*3 ¼ 13;
  a*4 ¼ 4;   a*5 ¼ 2;   a*8 ¼ 1;   a*10 ¼ 1;   a*15 ¼ 1;   a*23 ¼ 1, and
a*30 ¼ 1.

Inference method

The likelihood function plays a central role in statistical in-
ference. For the model considered in this paper, however, it
cannot be expressed analytically in closed form (Tanaka et al.
2006). Tanaka et al. (2006) thus used approximate Bayesian
computation (ABC) for the inference. We here approximate
the likelihood function using kernel density estimation with
a uniform kernel and a distance measure d, an approach that
is related to ABC but that makes explicit its inherent approx-
imations (Blum 2010; Gutmann and Corander 2015).

For a fixed value of the population size m, the likelihood
function LðuÞ is approximated as LðuÞ � L̂

N
d;eðuÞ, that is,

L̂
N
d;eðuÞ}

1
N

XN
i¼1

1½0;e�
h
d
�
a*;a

ðiÞ
�i

(1)

where 1½0;e�ð�Þ is an indicator function that equals 1 if the
distance d is less than a threshold e and 0 otherwise, a(i) is
an allele vector simulated using parameter u, and N is the
number of such simulations performed (Gutmann and Cor-
ander 2015). The distance dða*;aÞ is a nonnegative function
that measures the similarity between the observed allele vec-
tor a* and the simulated allele vector a. Possible choices of
d are discussed later. Equation 1 means that the likelihood is
approximated by the fraction of times the simulated allele
vector a is within distance e of the observed allele vector
a*. The approximate likelihood function for inference of
the population size m for fixed u is defined in an analogous
manner.

While there are several variants of the inference procedure
of ABC, they are essentially built out of sampling candidate
parameter values u and retaining those for which the distance
dða*;aÞ is less than the threshold e. Under certain conditions,
the retained parameters correspond to samples from the pos-
terior. In ABC, the approximate likelihood function is gener-
ally never explicitly constructed but is implicitly represented
by the sampled parameter values for which the simulated
data are close to the observed data. By contrast, in this paper,
the likelihood function is explicitly approximated using Equa-
tion 1, which is important because it provides information
about the identifiability of the parameters.

Because the parameter space is low dimensional, we can
evaluate the approximate likelihood function by varying the
parameters on a grid. Several grids were created based on the
different inference tasks considered:

For inference of u, we formed a 137 3 120 evenly spaced
grid over a subspace Da 3Dd ¼ ½0:3; 2 3 ½0:0125; 1:5�� of

Figure 2 Likelihood (A) and posterior distribution when using a uniform prior in the ða; dÞ space (B). The approximate posterior is obtained by
multiplying the approximate likelihood by the prior on the grid. The red cross denotes the mode. Note the different scales of the x-axes.
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the ða; dÞ BDM parameter space. At each node of the grid,
N = 3000 allele vectors were simulated to approximate
the likelihood in that location by using Equation 1.

To study the effect of m on R, four different grids (one for
each value ofm) with 41 nodes were created, which were
subsets of the interval Da ¼ ½0:53; 1:4� and had N = 3000
simulations in each node.

For evaluation of the feasibility of inference of m, four
grids also were used, two with size 50 and two with
size 51, N = 3000, all grids being subsets of the interval
DN ¼ ½500; 25; 000�.

For the final inference of the population size m, we used two
grids, one with 15 nodes and the other with 26 nodes,
both subsets of DN ¼ ½500; 35; 000�, with N = 30,000
simulated allele vectors in each node.

The amount of simulated data in the preceding grids was
selected to ensure the stability of the likelihood approxima-
tions. Results for stabilization of the marginal likelihoods for
the grid over the ða; dÞ parameter space are shown in the
Supporting Information, File S1. The dimensions of the
two-dimensional grid were chosen such that the grid includes
the modes of the likelihoods used in the experiments. The
one-dimensional grids were chosen so that they included all
the significant mass of the approximated likelihood functions
and thus numerical computation of the posterior means is
possible.

Distance measures used to approximate the likelihood

The likelihood approximation in Equation 1 relies on a dis-
tance measure dða*;aÞ between the observed sample a* and
the sample a produced by the simulation process with the
parameter vector u. Consequently, different distance meas-
ures may lead to different estimation results depending on
howmuch information about the generating process they are
able to capture from the data. It is thus natural to ask which
distance measures would be optimal for a model of the type
considered here.

In the limit of e/0 and N/N, one can easily define
distance measures dða*;aÞ, which lead to exact likelihoods
LðuÞ. The only requirement is that dða*;aÞ ¼ 0 if and only if
a ¼ a*. In practice, however, too small thresholds e and a very
large number of simulations N are computationally not fea-
sible. Therefore, one has to rely on likelihood approximationsbLd;eðuÞ dictated by the distance measure d, a nonzero thresh-
old value e, and a finite N.

Given a fixed number of simulations N, differences in the
quality of the approximations arise from the ability of the dis-
tance measures d to produce approximate likelihood functions
that are as close as possible to LðuÞ. Because the likelihood LðuÞ is
unknown in the first place, evaluation of the approximations is
challenging. Onemethod to evaluate the goodness of an approx-
imate likelihood function is to measure the goodness of the cor-
responding estimates using synthetic observed dataas where the
data-generating parameters us are known. In particular, the
mode of the likelihood approximation, on average, should be
near us if the sample as is, in general, informative enough.

In this study, we evaluate the performance of three differ-
ent distance measures. The baseline distance measure is the
one introduced by Tanaka et al. (2006) and is defined as

dbase
�
a; a9

�
¼ 1

n
jga 2 ga9j þ jHa2Ha9j (2)

where Ha ¼ 12
P

i aiði=nÞ2 is a gene diversity summary sta-
tistic, and ga ¼

P
i ai is the number of distinct alleles in a or,

in other words, the total number of clusters present in the
data.

The second distance measure, called simple, is defined as

dsim
�
a;a9

�
¼��a12 a91

��þ jMa 2Ma9j (3)

where a and a9 are allele vectors, and Ma ¼ max ijai 6¼ 0gf is
the largest cluster size in a. This measure compares the num-
ber of singleton clusters in the sample and the sizes of the
largest clusters. It can be seen as a simplified version of the
baseline distance measure by excluding some information.

The third distance measure dGKL is motivated by the obser-
vation that element ai of the allele vector a is proportional to the
frequency of occurrence of cluster size i in the data, with the
proportionality factor ga ¼

P
i ai being equal to the total num-

ber of clusters present. We thus can consider ai to indicate the
probability of observing cluster size i in the data. This probabi-
listic interpretation of vector a opens up the possibility of using
known divergence measures from probability theory to gauge
the similarity between the two vectors a and a9. In more detail,
because both a and a9 correspond to estimated probabilities, we
will discount small differences in the number of clusters of
similar size, which may be present owing to chance alone,
and represent a and a9 by smooth continuous functions fa and
fa9 approximating the two vectors in the discrete locations i; that
is, faðiÞ � ai and fa9ðiÞ � a9i . Because a and a9 correspond to
unnormalized probability vectors, fa and fa9 correspond to
unnormalized probability densities, and we can assess their
similarity by the generalized Kullback-Leibler (GKL) divergence

dGKLð fa; fa9Þ ¼
Z

faðxÞ½log faðxÞ2 log fa9ðxÞ�dx2
Z

faðxÞdx

þ
Z

fa9ðxÞdx (4)

The GKL divergence belongs to the family of Bregman diver-
gences (Bregman 1967), which have a number of desirable

Table 1 Effect of the prior on the posterior mode, mean, and
credible interval of the epidemiological parameters of M.
tuberculosis for the San Francisco data

Prior Parameter Mode Mean
Credible
interval (95%)

Uniform prior in (R, t) R 50.6 44.1 (9.5, 80.0)
t 0.59 0.59 (0.51, 0.67)

Uniform prior in ða; dÞ R 2.7 10.5 (1.4, 39.0)
t 0.52 0.56 (0.46, 0.66)
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properties, e.g., nonnegativity and being equal to 0 if fa ¼ fa9,
as well as useful applications (see, e.g., Collins et al. 2002;
Frigyik et al. 2008; Gutmann and Hirayama 2011). Like the
ordinary Kullback-Leibler divergence, the GKL is also asym-
metrical. However the integrals over fa and fa9 need not
equal 1. In fact, by construction of fa and fa9, the difference
between their integrals assesses the difference between the
total number of clusters ga and ga9, much as in dbase. Con-
ceptually, our probabilistic interpretation of a boils down to
using the cluster size as a summary statistic and comparing
its probability distribution for observed and simulated data
in a nonparametric way.

Results

Evaluations of the distance measures

To compare the performance of the alternative distance
measures dsim and dGKL to the baseline distance measure
dbase in likelihood approximation, the difference Derror be-
tween the relative errors in their respective estimates was
computed. A value Derror. 0 indicates that the relative error
is larger for the baseline compared with the alternative
method, in which case the alternative method would be
preferable.

The relative error was defined as
P

iðjusi 2 u ij=usi Þ, where
us is the true data-generating parameter value used to simu-
late the synthetic data as, and bu is the estimate obtained by
maximizing the approximate likelihood. Maximization was
performed in a simple way, by searching for the maximal
value over the two-dimensional grid. To compute the relative
error, a total of 50 synthetic observations as were simulated
using us, and the likelihood function was approximated with
the grid for each observation as. The threshold e was set for
each distancemeasure to the valueminimizing the sum of the
relative errors over the 50 trials.

We considered three different setups for the data-generating
parameter value us. In the first setup, the value of us was set
to the estimate (3.4, 0.69) of Tanaka et al. (2006). The
second setup uses the estimate (2.1, 0.57) from Aandahl
et al. (2014). To further see whether the values of the actual
epidemiological parameters had an effect on estimation ac-
curacy, we considered one more setup in which both the
reproductive value R and the transmission rate t of the first
setup were divided by 2.

Figure 1 shows the resulting distribution of Derror for the
comparison between dsim and dbase (blue curve) and the com-
parison between dGKL and dbase (red curve). The simple dis-
tance measure performs slightly worse than the baseline,
although the difference is not significant in any of the setups
(the null hypothesis of a 0 mean of Derror cannot be rejected).
This means that reducing the distance measure dbase of
Tanaka et al. (2006) to the simpler dsim does not cause
a notable reduction in estimation accuracy. The GKL dis-
tance dGKL, however, performs slightly better than the base-
line, and the difference is significant in the last setup (the
0 mean hypothesis of Derror can be rejected at P = 0.0237).
It should be noted, nevertheless, that the absolute errors
tend to be rather large with all the distance measures, as
shown in File S2.

Because dGKL was found to perform at least as well as the
other measures, it was used in the remaining parts of this
paper unless stated otherwise. Furthermore, for simplicity,
we will often drop the qualifier “approximate” and use “ap-
proximate likelihood” and “likelihood” interchangeably.

Relative effects of likelihood and prior on the posterior

The simulator operates genuinely in the ða; dÞ space, where a
and d are the birth rate and the death rate in the model,
respectively. Accordingly, all the ABC studies so far have as-
sumed an uninformative (uniform) prior for the region
0, d,a in the Bayesian framework. The law of transforma-
tion of random variables implies that choosing a uniform
prior for ða; dÞ is equivalent to choosing the following prior
for the epidemiological parameters ðR; tÞ:

pðR; tÞ}
� t

ðR21Þ2 if   R. 1; t. 0

0 otherwise
(5)

The prior is shown in File S3. The formula and the figure show
that its probability mass is concentrated on small values of
the reproductive value R.

Figure 2A shows the likelihood function of ðR; tÞ for the
San Francisco data of Small et al. (1994) on the rectangle
defined by 1:2,R,80 and 0:4, t, 0:7. We used the same
grid as in the preceding section with threshold equal to the
1024 quantile of all the distances. The likelihood function is
flat over large areas of the parameter space, and many values
of R are equally likely, which means that the data are not
informative enough to identify the parameter R of the model.

Figure 2B shows the posterior distribution of ðR; tÞ for the
prior in Equation 5, i.e., for the uniform prior on ða; dÞ. It can

Figure 3 Likelihoods of the reproductive value R with fixed death rate
d = 0.52 and four alternative population sizes m using the San Francisco
data. The vertical lines indicate the modes of the likelihoods.
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be seen that the prior leads to a substantial shift of the
probability mass toward the lower end of values of R. The
difference between the modes of the likelihood and the
posterior is striking: R = 50.6 vs. R = 2.7, as shown in
Table 1. The table also shows the posterior means and
credible intervals for the case that the likelihood is inter-
preted as the posterior distribution with a uniform prior in
the ðR; tÞ space. It should be noted that the upper value of
the credible intervals for R is an artifact of limiting our
computation to values of R , 80. The shape of the likeli-
hood in Figure 2A suggests that computations with larger
values of R would lead to a corresponding increase in the
credibility intervals. The results mean that the prior dom-
inates the posterior distribution, which confirms previous
findings by Blum (2010).

Effect of the infectious population size

The preceding sections suggest that data of the kind
considered in the San Francisco study do not carry enough
information for accurate inference of R but that the prior
plays a major role. To make the inference of R possible,
Aandahl et al. (2014) obtained an estimate 0.52 for the
death rate d by summing the rates of self-cure, death from
causes other than tuberculosis, and death from untreated
tuberculosis as estimated in other studies. The parameter
d then either was fixed to this value or an informative
prior centered on it was used. Also previously, in all the
corresponding ABC studies, the infectious population size
m has been fixed, commonly to the value m = 10,000
following Tanaka et al. (2006). We were thus interested
in whether reducing the infectious population size to
a smaller, possibly more realistic number has an influ-
ence on the estimated value of R. To ease the compari-
son with previous studies, we used the distance dbase
in the likelihood approximation. The thresholds were
set to the 5 3 1023 quantile of the distances in the
respective grids.

Figure 3 shows the likelihoods of R for m 2 1000; 5000;f
10; 000; 20; 000g using the San Francisco data (Small et al.
1994) and d = 0.52. The difference in location of the like-
lihoods is clear, with modes shifting to the right with in-
creasing m. The mode locations were (1.1, 1.6, 1.9, 2.2)
given in the order of increasing m. Posterior means with
uniform prior over the support of the likelihoods were the
same. The results show that the assumed infectious popula-
tion size m affects the inference of R.

Inference of the infectious population size

The observed effect of the infectious population size m on
the inference of R means that there is some (statistical)
dependency between m and R. This suggests that it might
be possible to infer the size of the underlying infectious
population from the data when R and d are known. Alter-
natively, given the relationship between the parameters,
knowing any two of a, d, R, or t would be sufficient.

We fixed d = 0.52 as earlier and considered two alter-
native configurations: R = 2.1 and R = 1.1. The former is
also the estimate of Aandahl et al. (2014). To test whether
inference of the infectious population size parameter is
possible, we ran 50 trials with synthetic data as before
and determined each time the parameter value on the grid
which maximized the approximate likelihood. The thresh-
olds ewere set to the 1022 quantile of the distances. Table 2
shows the results of these experiments: the estimated pop-
ulation sizes are reasonable, and the actual population size
m is covered by the 95% confidence interval of the mean in
all but one of the cases. Only in the last case is the true m
just barely outside the interval. These results thus illustrate
that estimation of m is possible, provided that reliable in-
formation is available about the other epidemiological
parameters.

We next estimated the infectious population size for
M. tuberculosis in the San Francisco area during the time the
data of Small et al. (1994) were collected. Threshold e was
selected as the 1023 quantile of the distances. Figure 4
shows the likelihood functions for two different values of
R: R = 1.1 and R = 2.1 (with d = 0.52 as before). Assuming
that R= 1.1 produced the posterior mean bm ¼ 2106 and the
95% credible interval (1166, 3226) with uniform prior over
the support of the likelihood function. Assuming that R =
2.1, however, produced the posterior mean bm ¼ 21; 108
and the 95% credible interval (13,408, 30,155).

Discussion

Statistical inference plays an important role in the study of
the transmission dynamics of infectious diseases. In this
paper, we considered some of the challenges arising from
model identifiability and from the expert choices necessary
for approximate inference using the relatively simple yet
analytically intractable model of Tanaka et al. (2006) for
the transmission dynamics of M. tuberculosis. It is reason-
able to assume that these problems persist for more complex
transmission models unless molecular and epidemiological
data are detailed enough to mitigate their effect.

Given the intractability of the transmission model, an
approximate inference approach was used that belongs to
the framework of approximate Bayesian computation (ABC),
which relies on a distance measure gauging similarity be-
tween observed and simulated data. An alternative approach
was presented by Stadler (2011) based on likelihood and
Markov chain Monte Carlo (MCMC) approximations. Also

Table 2 Mean estimated population size m for 50 trials and the
respective confidence intervals (CIs) under two alternative
configurations of R and population size m

m m CI (95%)

R = 2.1 1,000 1,051 (990, 1,112)
10,000 10,020 (9,380, 10,660)

R = 1.1 1,000 1,007 (976, 1,038)
10,000 10,510 (10,003, 11,017)

Death rate was fixed to d = 0.52; results are for synthetic data.
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in this approach, the model has an analytically intractable
likelihood function, meaning that the probability of the ob-
served data as a function of the parameters of interest is not
available in closed form. The reason for the intractability is
the presence of unobserved variables (forming the transmis-
sion tree in Stadler’s model), which are integrated out using
MCMC. While feasible for a small number of variables, this
technique runs into problems when the number of unob-
served variables is large (see, e.g., Green et al. 2015). The
problems manifest in the form of increased convergence
issues of the Markov chain. Aandahl et al. (2014) resolved
such issues in the approach of Stadler (2011) but concluded
that the ABC method has a similar accuracy and better com-
putational efficiency than the amended version.

In all the tests comparing distance measures in ABC, the
GKL distance measure attained a lower or equal estimation
error compared to the baselinemeasure introducedbyTanaka
et al. (2006), suggesting that one can reduce the estimation
error to some degree by the choice of the distance measure
only (see also Fearnhead and Prangle 2012). A possible dis-
advantage of the approach with the GKL distance is a slight
increase in computational cost. Although not an issue in our
study, where the computational bottleneck was the simulator,
this may be an issue when the inference procedure is re-
peated for a large number of data sets or when the simulation
of the data is not computationally expensive. While the mea-
sure used by Tanaka et al. (2006) has some clear biological
meaning, the GKL distance is based on a more general in-
formation-theoretical construction. The observed increase
in performance is thus interesting because, in ABC, distances
are usually strongly based on application-specific knowledge,
even though some exceptions do exist (Gutmann et al. 2014).

Our explicit construction of the approximate likelihood
function put on display the difficulties in the estimation of
Rwhen inferring both the reproductive value R and the trans-
mission rate t (Tanaka et al. 2006; Blum 2010). The credible
intervals for R were (1.4, 38.0) and (9.5, 80.0) when using

a uniform prior over the ða; dÞ and ðR; tÞ space, respectively.
The large upper end points of the credible intervals reflect the
extreme flatness of the approximate likelihood function with
respect to the reproductive value parameter. An uninforma-
tive prior over the ða; dÞ space has been, to our knowledge,
the standard choice in all the related ABC studies. Comparing
the posterior with the approximate likelihood function shows
how significantly the prior contributed to the posterior, alter-
ing the shape of the likelihood function greatly. The results
highlight the usefulness of likelihood approximation as an
identifiability check when performing inference for models
with intractable likelihoods.

A uniform prior is usually considered uninformative, so it
may seem paradoxical that the prior had such a strong in-
fluence on the posterior. The apparent paradox is readily
resolved by noting that the uniform prior was not imposed
on the actual epidemiological quantities of interest but on
a nonlinear transformation of them.

The standard assumption in previous ABC studies con-
cerned with the tuberculosis data from San Francisco (Small
et al. 1994) has been that the infectious population size m
equals 10,000 individuals. We showed that the infectious
population size influences the estimation of R, with the esti-
mate of R increasing with m. Assuming thatm= 10,000, the
posterior mean was bR ¼ 1:9. Smaller assumed population
sizes m = 1000 and m = 5000 yielded smaller estimatesbR ¼ 1:1 and bR ¼ 1:6, respectively, while larger assumed pop-
ulation size m = 20,000 increased the estimate to bR ¼ 2:2.
The corresponding likelihoods (proportional to posterior dis-
tributions with uniform prior) with varying m were clearly
distinct from each other, as seen in Figure 3.

Taking advantage of the dependency betweenR andm, we
showed that it is possible to estimate the infectious popula-
tion size m when R and d are known. Using the estimate d =
0.52 (Aandahl et al. 2014) and assuming either R = 2.1 or
R = 1.1, the posterior means of m were 21,100 or 2100,
respectively, for the San Francisco data of Small et al.

Figure 4 Likelihoods of population sizem with fixed death rate d = 0.52 and two alternative values of R using the San Francisco data: (A) R = 1.1 and (B)
R = 2.1. Vertical lines indicate the modes of the likelihoods.
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(1994). Further biological expertise can be used to assess
the reasonability of different inferred population sizes in
a comparable modeling setting.

Wenoticed that for small values ofm, the generativemodel
was unable to produce data with a similar number of distinct
alleles as the San Francisco data while also containing large
clusters, supporting the observation of Tanaka et al. (2006)
that m = 1000 does not result in an appropriate level of di-
versity. In the San Francisco data, large clusters were present
originating from groups of people with conditions affecting
the immune system, e.g., AIDS. Among such groups, the
transmission rate of M. tuberculosis can be expected to be
notably higher and thus rapidly producing large clusters.
The simple model, however, does not account for these sit-
uations. In future work it would be interesting to consider
approximate inference for models with possibly heteroge-
neous reproductive values that depend on auxiliary epidemi-
ological data (Bacaër et al. 2008). However, given the
apparent identifiability issues with the simple model studied
here, it would be of utmost importance to ensure that the
molecular and epidemiological data are jointly informative
enough to perform reliable inferences.
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FILE S1: STABILIZATION OF THE APPROXIMATE LIKELIHOODS
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(a) Tanaka distance measure
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(b) GKL distance measure

Figure S1: Stabilization (convergence) of the approximate marginal likelihoods for de-

creasing thresholds. The thresholds εqi were obtained from the quantiles (q1, q2, q3, q4) =

(0.001, 0.0001, 0.00005, 0.000025) of the distribution of the distances.



FILE S2: EVALUATIONS OF THE DISTANCE MEASURES
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Figure S2: Mean (solid lines) and median (dotted lines) errors of the approximate maximum

likelihood estimates with the three different distance measures dbase (blue lines), dsim (red

lines), dGKL (purple lines) and a decreasing threshold ε given by the p-quantile. The error is

the L1 distance between Rs and R̂, that is, |Rs − R̂|.

The rather large difference between the mean and median errors of R in Figure S2 indi-

cates that there are some large errors which pull the mean error up. This is mostly due the

tendency of R = α/δ to be large when the estimate of the death rate δ is small. Although the

errors for R in Figure S2 are large, the small errors in Figure S3 indicate that the estimation



of the transmission rate t can still be done accurately and is not affected by the error-prone

estimate of R.
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Figure S3: Mean and median errors of the approximate maximum likelihood estimate of t.

Visualization is as in Figure S2. The error is the L1 distance between ts and t̂, that is, |ts− t̂|.

Absolute errors in the rate parameter space:

We noticed a general tendency of acquiring small estimates of δ irrespective of the setup.

This is a plausible reason for the slightly reduced errors in Figure S4 (a) compared to the

other setups as δ∗ is the smallest in that setup.
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(a) φ∗ = (0.98, 0.29)
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Figure S4: Mean and median errors in the estimated φ = (α, δ). Visualization and setup is

as in Figure S2. The error is the L1 distance between the vectors φ∗ and φ̂.



FILE S3: TRANSFORMED UNIFORM PRIOR

Figure S5: Visualization of the logarithm of the prior in Equation 5 corresponding to the

uniform prior on (α, δ). Note the concentration of probability mass on small R.
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