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ABSTRACT Genome-wide data with millions of single-nucleotide polymorphisms (SNPs) can be highly correlated due to linkage
disequilibrium (LD). The ultrahigh dimensionality of big data brings unprecedented challenges to statistical modeling such as noise
accumulation, the curse of dimensionality, computational burden, spurious correlations, and a processing and storing bottleneck. The
traditional statistical approaches lose their power due to p � n (n is the number of observations and p is the number of SNPs) and the
complex correlation structure among SNPs. In this article, we propose an integrated distance correlation ridge regression (DCRR)
approach to accommodate the ultrahigh dimensionality, joint polygenic effects of multiple loci, and the complex LD structures. Initially,
a distance correlation (DC) screening approach is used to extensively remove noise, after which LD structure is addressed using a ridge
penalized multiple logistic regression (LRR) model. The false discovery rate, true positive discovery rate, and computational cost were
simultaneously assessed through a large number of simulations. A binary trait of Arabidopsis thaliana, the hypersensitive response to
the bacterial elicitor AvrRpm1, was analyzed in 84 inbred lines (28 susceptibilities and 56 resistances) with 216,130 SNPs. Compared to
previous SNP discovery methods implemented on the same data set, the DCRR approach successfully detected the causative SNP while
dramatically reducing spurious associations and computational time.
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WITH recent developments in high-throughput genotyp-
ing technique, and dense maps of polymorphic loci

within genomes, an ultrahigh dimension of single-nucleotide
polymorphisms (SNPs) (typically .0.5 million) is increas-
ingly common in contemporary genetics, computational bi-
ology, and other fields of research (Burton et al. 2007; Zeggini
et al. 2007; Altshuler et al. 2008; 1000 Genomes Project Con-
sortium 2010; Stein et al. 2010). Despite the fact that large-
scale genome-wide association studies (GWAS) provide great
power to unravel the genetic etiology of complex traits by
taking advantage of extremely dense sets of genetic markers
(Cohen et al. 2004; Visscher and Weissman 2011; Worthey
et al. 2011; Chen et al. 2012), they bring concomitant chal-
lenges in computational cost, estimation accuracy, statistical

inference, and algorithm stability (Fan et al. 2009, 2014).
First, the number of SNPs p, in units of hundreds of thousands
or millions, far exceeds the number of observations n, in units
of hundreds or thousands. Referred to as “small n big p,” this
situation disables the power of many traditional statistical
models (Donoho et al. 2000; Fan and Li 2006). The unique
problems that belong only to ultrahigh-dimensional big data,
such as storage bottleneck, noise accumulation, spurious cor-
relations, and incidental endogeneity, were pointed out by
Fan et al. (2014). Computationally, the combinatorial search
space grows exponentially with the number of predictors,
called the “curse of dimensionality.” Second, most complex
traits are mediated through multiple genetic variants, each
conferring a small or moderate effect with low penetrance,
which obscures the individual significance of each variant
(Sun et al. 2009; Xu et al. 2010; Yoo et al. 2012; Mullin
et al. 2013). Third, multicollinearity grows with dimen-
sionality. As a result, the number and extent of spurious
associations between genetic loci and phenotypes increase
rapidly with increasing p due to noncausal SNPs highly
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correlated with causative ones (Fan and Lv 2008; Fan et al.
2012, 2014).

Linkage disequilibrium (LD), the nonrandom association of
alleles at nearby loci,may be causedby frequent recombination,
physically linked genetic variants, population admixture, or
even genetic drift (Brown 1975; Devlin and Risch 1995; Patil
et al. 2001; Dawson et al. 2002; Gabriel et al. 2002; Gibbs et al.
2003; McVean et al. 2004; Wang et al. 2005; Slatkin 2008;
Grady et al. 2011). LD is one of the most important, extensive,
and widespread features in genomes, with �70–80% of ge-
nomes showing regions of high LD (Dawson et al. 2002;Gabriel
et al. 2002;Wall and Pritchard 2003;McVean et al.2004;Wang
et al. 2005). Additionally, LD patterns among a whole genome
vary, with the average length of 60–200 kb in general popula-
tions (Jorde 2000; McVean et al. 2004; Wang et al. 2005).
Excessive LD may hinder the ability to detect causative genetic
variants truly influencing a phenotype. Strong LD existing
among the loci of extremely dense panels provides correlated
SNPs in the vicinity that share substantial amounts of informa-
tion and introduce heterogeneity that can partially mask the
effects of other SNPs. As a result, it is difficult to separate the
individual variants that are truly causative from those con-
founding spurious variants that are irrelevant to the phenotype

but highly correlated with the causative loci due to LD. Strong
LD leads to inflated variance, incorrect statistical inferences,
inaccurate tests of significance for the SNP, unstable parameter
estimates, diminished significance for truly influential SNPs,
and false scientific identifications (Cardon and Bell 2001; Daly
et al. 2001; Reich et al. 2001; Crawford et al. 2004).

Many statistical models have been used to assess the asso-
ciation between genetic variants and phenotypes in GWAS. The
prevailingGWASstrategieshave focusedonsingle-locusmodels
(for example, the logistic regression with a single SNP as the
predictor, the Cochran–Armitage test for trend (Armitage
1955), or Fisher’s exact test), which assess the potential asso-
ciation of each SNP in isolation from the others (Houlston and
Peto 2004;Marchini et al.2005; Balding 2006;Dong et al.2008;
Jo et al. 2008;He and Lin 2011;Hook et al. 2011;Molinaro et al.
2011; Sobrin et al. 2011; Xie et al. 2012). Although widely
used for its simplicity, the single-locus model has limited power
because it neglects the combined multiple joint effects of SNPs,
inappropriately separates SNPs in LD, fails to differentiate
potentially causative from noncausative variants, struggles
with multiple correction due to an extremely large number
of simultaneous tests, and yields both high false-positive and
false-negative results (Burton et al. 2007; Malo et al. 2008;

Table 1 Simulation results for MAF = 0.1

LD Strength Criteria

P = 10 P = 100

CA LRR DCRR CA LRR DCRR

r ¼ 0:2 Strict power 1 1 1 0.91 0.91 0.97
Power 1 1 1 0.982 0.982 0.994
Type 1 0.016 0.014 0.016 0.00032 0.00032 0.0026
Time 16.34 sec 11.79 sec 78.89 sec 2.4 min 0.50 min 6.52 min

r ¼ 0:4 Strict power 1 1 1 0.93 0.93 0.98
Power 1 1 1 0.984 0.984 0.996
Type 1 0.05 0.036 0.04 0.0022 0.0022 0.0068
Time 16.82 sec 24.20 sec 158.46 sec 2.44 min 0.54 min 6.54 min

r ¼ 0:6 Strict power 1 0.98 0.99 0.94 0.94 0.99
Power 1 0.996 0.998 0.988 0.988 0.998
Type 1 0.39 0.01 0.02 0.0088 0.0085 0.0195
Time 15.96 sec 13.48 sec 80.45 sec 2.59 min 0.50 min 7.81 min

r ¼ 0:8 Strict power 1 0.94 0.98 0.94 0.96 0.99
Power 1 0.988 0.996 0.988 0.992 0.998
Type 1 0.99 0.018 0.044 0.0546 0.0287 0.0522
Time 16.17 sec 14.58 sec 79.49 sec 2.6 min 0.59 min 7.12 min

P = 1,000 P = 10,000
r ¼ 0:2 Strict power 0.74 0.72 0.92 0.37 0.57 0.99

Power 0.944 0.94 0.984 0.832 0.896 0.998
Type 1 0.00004 0.00005 0.0005 0.000007 0.000004 0.00049
Time 48.48 min 35.96 min 73.91 min 95.71 hr 422.41 hr 107.08 hr

r ¼ 0:4 Strict power 0.68 0.67 0.91 0.40 0.48 0.91
Power 0.93 0.93 0.982 0.836 0.846 0.982
Type 1 0.00003 0.0003 0.0005 0.000004 0.000006 0.0005
Time 47.34 min 33.68 min 69.86 min 97.87 hr 443.53 hr 111.42 hr

r ¼ 0:6 Strict power 0.77 0.78 0.96 0.39 0.42 0.93
Power 0.95 0.952 0.992 0.834 0.874 0.986
Type 1 0.00016 0.0002 0.001 0.000009 0.00001 0.00051
Time 48.71 min 32.50 min 72.18 min 97.57 hr 420 hr 105 hr

r ¼ 0:8 Strict power 0.68 0.69 0.89 0.40 0.43 0.93
Power 0.932 0.942 0.978 0.856 0.854 0.986
Type 1 0.0012 0.0011 0.0037 0.00003 0.000036 0.00073
Time 53.02 min 33.55 min 69.52 min 94.93 hr 379.62 hr 64.88 hr
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Manolio et al. 2009; Cule et al. 2011). The standard multiple-
regression approaches, albeit accommodating joint effects of
multiple SNPs and allowing for control of small LD, break down
when moderate-to-strong LD exists among SNPs and are in-
feasible when the number of SNPs is larger than the number
of observations (Gudmundsson et al. 2007; Haiman et al. 2007;
Sun et al. 2009). In addition, multiple-regression models in-
volve a large number of degrees of freedom and lack parsimony.
The conditional logistic regression was proposed to accommo-
date the LD effects, but does not allow for the simultaneous
quantification of each SNP individually along with the com-
bined effects of other SNPs (Zavattari et al. 2001). Principal
component analysis (PCA) or other clustering methods group
SNPs according to their LD patterns. However, these ap-
proaches may miss the truly causative variants, undervalue
the complexity of LD, and not allow the interpretation of the in-
dividual significance of each SNP. The partial least-squares (PLS)
method has been used to address the correlation among predic-
tors, but the theoretical properties of PLS (such as mean squared
error) have not been established as thoroughly as in other ap-
proaches (Frank and Friedman 1993; Hawkins and Yin 2002).

Ridge regression (RR) (Hoerl and Kennard 1970), fitting a
penalized likelihood with the penalty defined as the sum of the

squares of each coefficient, has been used extensively to deal
with the situation where the predictors are highly correlated
and the number of predictors exceeds the number of subjects
(Hoerl and Kennard 1970; Gruber 1998; Friedman et al.
2001; Hastie and Tibshirani 2004; Li et al. 2007; Zucknick
et al. 2008; Malo et al. 2008; Sun et al. 2009; Cule et al.
2011). RR has been shown to be preferable to ordinary least
squares (OLS), PCA, or other approaches in many contexts
and achieves the smallest prediction error among a number
of regression approaches after head-to-head comparisons
(Frank and Friedman 1993). Through several simulations
with varied LD strength, allele frequency, and effect size,
Malo et al. (2008) compared the performance of RR, stan-
dard multiple regression, and single-locus regression for a
continuous phenotype. They reported that RR performed
best for each combination and the advantage of RR was more
obvious when the LD was strong. They also reported that the
single-locus regression was the worst among three ap-
proaches because it failed to differentiate causative SNPs
from spurious SNPs that weremerely in LDwith the causative
SNPs. Sun et al. (2009) identified a new genetic locus asso-
ciated with a continuous trait by RR that was not detected by
the single-locus model. Cule et al. (2011) extended the

Table 2 Simulation results for MAF = 0.3

LD Strength Criteria

P = 10 P = 100

CA LRR DCRR CA LRR DCRR

r ¼ 0:2 Strict power 1 1 1 1 1 1
Power 1 1 1 1 1 1
Type 1 0.046 0.028 0.034 0.00052 0.0053 0.0034
Time 18.04 sec 12.41 sec 78.30 sec 2.43 min 0.58 min 7.56 min

r ¼ 0:4 Strict power 1 1 1 0.99 0.99 0.99
Power 1 1 1 0.998 0.998 0.998
Type 1 0.228 0 0.014 0.0086 0.0083 0.018
Time 17.93 sec 13.14 sec 80.23 sec 2.40 min 0.59 min 7.55 min

r ¼ 0:6 Strict power 1 1 1 1 1 1
Power 1 1 1 1 1 1
Type 1 0.856 0.004 0.012 0.0354 0.0341 0.0508
Time 18.43 sec 12.81 sec 77.97 sec 2.41 min 0.58 min 8.13 min

r ¼ 0:8 Strict power 1 1 0.87 1 1 1
Power 1 1 0.974 1 1 1
Type 1 1 0.006 0.028 0.1358 0.0107 0.0188
Time 17.73 sec 13.23 sec 78.09 sec 2.44 min 0.657 min 7.16 min

P = 1,000 P = 10,000
r ¼ 0:2 Strict power 0.96 0.96 0.97 0.9 0.9 1

Power 0.992 0.992 0.994 0.98 0.98 1
Type 1 0.00008 0.00008 0.0006 0 0 0.0005
Time 57.32 min 36.59 min 49.36 min 9.33 hr 42.36 hr 11.21 hr

r ¼ 0:4 Strict power 0.98 0.98 0.99 1 1 1
Power 0.996 0.996 0.998 1 1 1
Type 1 0.00014 0.0001 0.0009 0.00001 0.00001 0.0005
Time 50.78 min 34.13 min 73.3 min 10.35 hr 46.21 hr 10.22 hr

r ¼ 0:6 Strict power 0.98 0.98 1 1 1 1
Power 0.996 0.998 1 1 1 1
Type 1 0.00086 0.0008 0.0027 0.00005 0.00006 0.0006
Time 49.02 min 35.33 min 71.10 min 10.94 hr 41.42 hr 10.99 hr

r ¼ 0:8 Strict power 0.97 0.97 1 1 1 1
Power 0.994 0.994 1 1 1 1
Type 1 0.0055 0.0051 0.0104 0.0004 0.0004 0.0016
Time 50.55 min 32.55 min 69.95 min 10.65 hr 38.35 hr 10.20 hr
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significance test of parameters proposed by Halawa and
El Bassiouni (2000) and proposed an asymptotic test of
significance for RR and demonstrated that the test was com-
parable to a permutation test but with much reduced com-
putational cost for both continuous and binary phenotypes.

Although RR is powerful in addressing correlation and mul-
tiple joint effects, it is extremely timeconsumingand isdesigned
only foramoderatenumberofpredictors.Manyapproachesthat
are powerful for high dimension (i.e., p. n but not p � n),
such as Lasso or elastic net penalized regression (Austin et al.
2013; Waldmann et al. 2013), either are computationally in-
feasible or perform no better than random guessing, for ultra-
high-dimensional data due to noise accumulation; and RR is no
exception (Fan and Fan 2008; Li et al. 2012b; Fan et al. 2014).
As for GWAS, the signal-to-noise ratio is often very low, with
only a small portion of SNPs contributing to a phenotype and
the number of noncausative and causative SNPs showing great
disparity. In light of these sparsity assumptions, feature screen-
ing has been proved to be highly effective and pivotal for its
speed and accuracy to handle ultrahigh-dimensional data (Fan
and Lv 2008; Hall and Miller 2009; Fan et al. 2011; Li et al.
2012a,b; Zhao and Li 2012). Feature screening forcefully filters
a large amount of noise and decreases the original large scale

to amoderate scale, overcomes noise accumulation difficulties,
improves estimation accuracy, and reduces the computational
burden. The distance correlation-based (DC) feature screening
approach has an additional theoretical sure-screening property:
all truly important predictors can be selected with the probabil-
ity tending to one as the sample size goes toN (Li et al. 2012b).
Although a feature screening approach is powerful in handling
ultrahigh-dimension data, it cannot provide any closer analysis
such as parameter estimation and significance tests for each pre-
dictor. In sum, each approach has its own benefits and pitfalls.

In this article, we propose a novel integrated Distance Cor-
relation Ridge Regression (DCRR) approach designed for case–
control cohort whole-genome data, with a binary phenotype
and 0.5–1million SNPs. The DCRRfirst extensively filters noise
with a loose threshold using DC and then intensively examines
the significance of remaining informative SNPs by ridge penal-
ized multiple logistic regression (LRR). DCRR integrates the
benefits of both DC and RR while avoiding the drawbacks of
both approaches. It is computationally efficient, reliable, and
flexible, with a goal of accommodating LD between variants at
different loci and hence differentiating the causative variants
from the spurious variants that are in LD with the causative
ones. It quantifies the significance of each SNP individually as

Table 3 Simulation results for MAF = 0.5

LD Strength Criteria

P = 10 P = 100

CA LRR DCRR CA LRR DCRR

r ¼ 0:2 Strict power 1 1 1 1 1 1
Power 1 1 1 1 1 1
Type 1 0.036 0.018 0.024 0.0015 0.0014 0.0043
Time 18.82 sec 11.95 sec 78.62 sec 2.42 min 0.57 min 7.72 min

r ¼ 0:4 Strict power 1 1 1 1 1 1
Power 1 1 1 1 1 1
Type 1 0.296 0.0006 0.048 0.0105 0.0102 0.0189
Time 17.55 sec 12.47 sec 79.92 sec 2.49 min 0.57 min 7.69 min

r ¼ 0:6 Strict power 1 1 1 1 1 1
Power 1 1 1 1 1 1
Type 1 0.908 0.008 0.036 0.0379 0.0259 0.0391
Time 18.36 sec 13.64 sec 78.46 sec 2.42 min 0.60 min 7.51 min

r ¼ 0:8 Strict power 1 1 0.81 1 1 1
Power 1 1 0.962 1 1 1
Type 1 1 0.012 0.054 0.1581 0.0124 0.0215
Time 17.91 sec 13.85 sec 78.31 sec 2.44 min 0.67 min 10.89 min

P = 1000 P = 10,000
r ¼ 0:2 Strict power 1 1 1 0.9 0.9 1

Power 1 1 1 0.98 0.98 1
Type 1 0.00005 0.00005 0.0006 0.00001 0.00001 0.0004
Time 54.31 min 35.62 min 73.38 min 10.65 hr 43.16 hr 10.68 hr

r ¼ 0:4 Strict power 1 1 1 0.9 0.9 1
Power 1 1 1 0.98 0.98 1
Type 1 0.00017 0.0002 0.0009 0.00001 0.00001 0.0006
Time 48.07 min 33.62 min 71.57 min 11.12 hr 43.24 hr 11.47 hr

r ¼ 0:6 Strict power 0.99 1 1 1 1 1
Power 0.998 1 1 1 1 1
Type 1 0.0011 0.001 0.0036 0.00006 0.00007 0.00077
Time 46.66 min 32.48 min 71.13 min 11.09 hr 39.40 hr 11.47 hr

r ¼ 0:8 Strict power 1 1 1 1 1 1
Power 1 1 1 1 1 1
Type 1 0.0011 0.001 0.0036 0.00047 0.00046 0.0020
Time 47.85 min 34.67 min 72.65 min 10.87 hr 38.91 hr 10.48 hr
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well as accounts for the joint effects of all other SNPs in a
multivariate sense and stabilizes the parameter estimates in
the presence of strong LD and an ultrahigh dimension of SNPs
in GWAS. The traditional RR involves a Oðnp2 þ p3Þ calcula-
tion (Hawkins and Yin 2002), which needs an intractable
amount of time when p approaches 1 million. The DCRR ap-
proach that we propose dramatically decreases the calculation
burden to Oðpþ n3Þ; with a substantial saving for ultrahigh-
dimension p � n; and its computational speedmainly depends
on the number of observations rather than the number of SNPs.

We demonstrate that our approach is uniformly and consis-
tently powerful under a wide spectrum of different simulations
ofminorallele frequency (MAF), LDstrength, and thenumberof
SNPs, while controlling the false discovery rate (FDR) at,0.05.
We compare our approaches with the popular single-locus
Cochran–Armitage (CA) model and traditional LRR models and
demonstrate that the stronger the LD or larger the dimension, the
better performance of the DCRR approach, whose power persists
even for lowMAF. To further validate our approach,we reanalyze
a published GWAS data set for a binary Arabidopsis thaliana trait.

Materials and Methods

Measurement of LD

Consider two biallelic loci in the same chromosome, with A=a
representing the alleles of the first loci and B=b representing

the alleles of the second loci. These two biallelic loci
form four possible haplotypes: AB;Ab; aB; and ab: Let
f ðAÞ; f ðaÞ; f ðBÞ; and fðbÞ denote the corresponding allele
frequencies and fðABÞ; f ðAbÞ; fðaBÞ; and fðabÞ denote the
corresponding haplotype frequencies. LD, the noninde-
pendence structure of the alleles for a pair of polymor-
phic loci at a population level, is generally measured as
D ¼ fðABÞ2 fðAÞfðBÞ ¼ fðABÞf ðabÞ2 f ðAbÞf ðaBÞ (Lewontin
1964). A D value close to zero corresponds to no LD. Al-
though D quantifies howmuch haplotype frequencies deviate
from the equilibrium state, it is highly dependent on allele
frequencies and hence difficult to compare across different
regions. Therefore, the normalized measure, D9 ¼ D=Dmax is
more widely used by removing the sensitiveness of allele
frequencies (Lewontin 1964; González-Neira et al. 2004;
Mueller 2004; Kulinskaya and Lewin 2009), where

Dmax ¼
�
maxf2fðAÞ fðBÞ; 2 f ðaÞ f ðbÞg; if   D, 0
minf fðAÞ fðbÞ; f ðaÞ f ðBÞg; if   D$ 0:

The range of D9 is between 21 and 1, with
��D9�� ¼ 1 corre-

sponding to complete LD and D9 ¼ 0 corresponding to no LD.
Another widely used measure of LD is the statistical coeffi-
cient of determination, r2 (Brown 1975; Pritchard and
Przeworski 2001; González-Neira et al. 2004; Mueller
2004; Wang et al. 2005; Kulinskaya and Lewin 2009), de-
fined as

Figure 1 Strict power with varied
MAF and dimension. Shown is
the changing pattern of strict
power of three approaches as in-
creasing r under combinations of
varied MAF and dimension.
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r2 ¼ D2

fðAÞ f ðaÞ f ðBÞ f ðbÞ:

Mueller (2004) reviewed the different properties and appli-
cations of these two measures of LD. The statistical signifi-
cance test on D is performed by Pearson’s independence
testing for the 23 2 contingency table generated by the
possible combinations of the alleles of a pair of loci, which
is also equal to

x2 ¼ nD2

fðAÞ f ðaÞ f ðBÞ f ðbÞ ¼ nr2; (1)

following a x2 distribution with 1 d.f. (Weir et al. 1990;
Zaykin et al. 2008; Kulinskaya and Lewin 2009).

Distance correlation-based feature screening

The main framework of the DCRR approach is to first exten-
sively remove the noise via a distance correlation-based fea-
ture screening approach and then intensively address the
correlation structure, using a ridge penalizedmultiple logistic
regression model. Finally the significance test of each indi-
vidual SNP is performed.

Let y be the binary phenotype with 1 representing case
and 0 representing control. Let X ¼ ðX1;X2; . . . ;XpÞT be the
genotype vector of all SNPs, where p is the number of SNPs.
For each biallelic locus, the three possible genotypes can be
coded as 0 (for aa), 1 (for Aa), and 2 (for AA).

Thedependence strengthbetween two randomvectors can
bemeasuredby thedistance correlation (Dcorr) (Székely et al.
2007). Székely et al. showed that the Dcorr of two random

vectors equals zero if and only if these two random vectors
are independent. The distance covariance is defined as

dcov2 ðy;XÞ ¼
Z
R1þp

���fy;Xðt; sÞ2fyðtÞfXðsÞ
���2 wðt; sÞdtds;

(2)

where fyðtÞ and fXðsÞ are the respective characteristic func-
tions of y and X;fy;Xðt; sÞ is the joint characteristic function of
ðy;XÞ; and

wðt; sÞ ¼
n
c1 cp ktk2ksk1þp

p

o21
;

with c1 ¼ p; cp ¼ pð1þpÞ=2=Gfð1þ pÞ=2g; and k�k stands for
the Euclidean norm. Then the Dcorr is defined as

dcorr ðy;XÞ ¼ dcovðy;XÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dcovðy; yÞ  dcovðX;XÞp : (3)

From Equations 2 and 3, we confirm that the DC approach
does not assume any parametric model structure and works
well for both linear and nonlinear associations. In addition, it
works well for both categorical and continuous data without
assuming which data type.

Székely et al. (2007) gave a numerically easier estimator

of ddcov2ðy;XÞ as
ddcov2ðy;XÞ ¼ Ŝ1 þ Ŝ2 2 2Ŝ3: (4)

Let yi and Xi denote the random sample of the populations y
and X; respectively. Then

Figure 2 Strict power as dimension in-
creases. Shown is the changing pattern
of strict power of three approaches as
increasing p when MAF = 0.1 for each
LD.
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Ŝ 1 ¼ 1
n2

Xn
i¼1

Xn
j¼1

���yi 2 yj
������Xi2Xj

���
p

Ŝ2 ¼ 1
n2

Xn
i¼1

Xn
j¼1

���yi 2 yj
��� 1
n2

Xn
i¼1

Xn
j¼1

���Xi2Xj

���
p
;

Ŝ3 ¼ 1
n3

Xn
i¼1

Xn
j¼1

Xn
k¼1

���yi 2 yk
������Xj2Xk

���
p
: (5)

Finally, the point estimator ddcorrðy;XÞ can be estimated by
Equations 3–5.

Let XC ¼ fXjjXj; j ¼ 1; . . . ; d; be the causative SNP, i.e.,
truly associated with the phenotype} and let
XN ¼ fXkjXk; k ¼ 1; . . . ; p2 d; be the noise SNP, i.e., not rel-
evant to the phenotype}. The idea of feature screening is to
filter XN and keep all true causative SNPs in the subset XC: By
decreasing the values of ddcorrðy;XiÞ; i ¼ 1; . . . ; p;we are able
to rank the importance of SNPs from the highest to the lowest
(Li et al. 2012b), with XC located in front of XN : Li et al.
(2012b) theoretically proved that the DC feature screening
has an additional agreeable theoretical sure-screening prop-
erty, where all truly important predictors can be selected with
the probability tending to one as the sample size goes toN; if
the tuning parameter d is sufficiently large. The watershed
between importance and unimportance, i.e., the value of d,
like other tuning parameters, is not trivial to determine. Li
et al. (2012b) suggested to either set d ¼ ½n=logn� (½�� is the
integer part) or choose the top d SNPs such that ddcorrðy;XdÞ is
greater than a prespecified constant.

Although the DC approach is very powerful at filtering
noise and recognizing the truly important SNPs frommillions
of candidates, it may neglect some important SNPs that are
individually uncorrelated yet jointly correlated with the phe-
notype, or it may highly rank some unimportant SNPs that are
spuriously correlated with the phenotype due to their strong

LD with other causative SNPs. To overcome these shortcom-
ings, we use iterative distance correlation (IDC) to address
possible complex situations of SNPs that can exist. The main
difference between DC and IDC is that DC finalizes the first
d members of XC by only one step while IDC builds up XC
gradually with several steps; i.e., XC ¼ XC1 [ XC2 [ . . . [ XCk;
with d ¼ d1 þ d2 þ . . .þ dk; where XCi stands for the mem-
bers selected at the ith step and di is the size of each set XCi;
for i ¼ 1; . . . ; k: The main idea of IDC is to iteratively adjust
residuals obtained from regressing all remaining SNPs onto
the selected members contained in XC: Regressing unselected
on selected, and adjusting residuals, effectively breaks down
original complex correlation structure among SNPs. The iter-
ative steps of IDC can be summarized as follows (Zhong and
Zhu 2014):

Step 1: Input the first d1 members into XC (i.e., XC ¼ XC1),
using DC to rank all candidates of X for y; where
d1 , d:

Step 2: Define Xr ¼
n
In 2XCðXT

CXCÞ21XT
C
o
XC
C ; where XC

C is
the complement set of XC: Then choose the second
d2 members into XC (i.e., XC ¼ XC1 [ XC2), using DC
to rank all candidates of Xr for y; where d1 þ d2 # d:

Step 3: Repeat step 2 until the size of XC reaches the pre-
specified number d.

Whether or not these di at each step exhibit a negligible
effect on the results, their magnitudes will appreciably affect
results. Theoretically, smaller di will yield better results, but
also cause a dramatically lower computational speed. There-
fore, we use a combination of DC and IDC to balance the
computational cost and model performance simultaneously.

Ridge penalized multiple logistic regression

For LRR, y is still the binary phenotype and XC the selected
(important) SNPs with moderate dimension (d ¼ ½n�). For

Figure 3 Strict power, power, and type
I error. Shown is the simultaneous chang-
ing pattern of strict power, power, and
type I error rate of three approaches as in-
creasing p when MAF = 0.1 and r ¼ 0:8:
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simplicity of notation, we use X to denote XC: To address the
correlation among SNPs, stabilize the model estimates, and
test for significance of each individual SNP while accommo-
dating the joint effects of others, we impose a ridge penalized
logistic multiple-regression model (Le Cessie and Van
Houwelingen 1992; Vago and Kemeny 2006). In tradi-
tional logistic regression, the probability of case is related
to predictors by the inverse logit function

pðyi ¼ 1jXÞ ¼ eXib

1þ eXib
:

The parameter vector bl of the ridge logistic regression can
be estimated by maximizing the log likelihood subject to a
size constraint on the L2 norm of the coefficients via the
Newton–Raphson algorithm

l
�
X;bl

� ¼Xn
i¼1

yi log
�
pðyi ¼ 1jXÞ	

þ
Xn
i¼1

ð12 yiÞlog
�
12 pðyi ¼ 1jXÞ	2 l

���b���2:
The first derivative of the penalized likelihood yields

b̂l ¼ ðXTWXþ 2lIÞ21 XTWZ;

where W ¼ diag
�
p̂ðyi ¼ 1jXÞð12 p̂ðyi ¼ 1jXÞÞ	; and Z is an

n3 1 vector with elements

zi ¼ logit
�
p̂ðyi ¼ 1jXÞ	þ yi2 p̂ðyi ¼ 1jXÞ

p̂ðyi ¼ 1jXÞð12 p̂ðyi ¼ 1jXÞÞ :

The tuning parameter l controls the strength of shrinkage of
the norm of b. A fewmethods have been proposed to choose
the tuning parameter l (Hoerl et al. 1975; Lawless and
Wang 1976; Golub et al. 1979). One common approach is
the ridge trace (Hoerl and Kennard 1970). The ridge trace is
a plot of the parameter estimates over increasing l values.
The ideal l is where all parameter estimates have stabilized.
A suitable choice of l. 0 introduces a little bias but de-
creases the variance and hence minimizes the mean squared
error (Le Cessie and Van Houwelingen 1992; Vago and
Kemeny 2006),

MSE
�
b̂
� ¼ Tr

h
Var

�
b̂
�iþ h

bias
�
b̂
�iTh

bias
�
b̂
�i
:

The asymptotic variance of b̂l can be derived as

Var

cbl

�
¼ fXTWXþ 2lIg21fXTWXgfXTWXþ 2lIg21:

Hypothesis testing

The significance of each individual SNP, while accounting for
the joint and correlated effects of other SNPs, is assessed via
the hypothesis test

H0j : b
l
j ¼ 0 vs: H1j : b

l
j 6¼ 0; for  j ¼ 1; . . . ; d: (6)

The corresponding “nonexact” test statistic is

Tl ¼ b̂
l
j

se
�
b̂
l
j
� :

Halawa and El Bassiouni (2000) investigated this nonexact
t-type test under two different l’s via simulations of 84 dif-
ferent models and concluded that it has considerably larger
powers in many cases or slightly less power in a few cases,
compared to the test of traditional regression estimates via
maximum likelihood. Cule et al. (2011) extended Halawa
and EI Bassiouni’s test from a continuous to a binary response
and claimed that the asymptotic standard normal distribu-
tion of the test statistic Tl under the null performs as well as
that of a permutation test. Therefore, we also assume
Tl � Nð0; 1Þ under the null and use standard normal distri-
bution to perform the significance test of each SNP.

Since multiple SNPs are usually tested simultaneously,
and the dimension of tests is small or moderate after the
feature screening procedure (d � p), we use the simplest
Bonferroni correction to control the family-wise error rate.
Whereas the traditional single-locus model uses p for mul-
tiple correction, we use d instead because the actual num-
ber of tests involved is d. We set the SNPs that are filtered
out by DC to have a P-value of 1 [i.e.,2logðpÞ ¼ 0] because
they are not informative and are not considered for signif-
icance testing.

Table 4 Simulation comparisons for IDC and DC for varied combinations of l and d

Candidate Subset Size Criteria

l ¼ CV l ¼ 1 l ¼ 10

DC IDC DC IDC DC IDC

d ¼ 80 Strict power 0.28 0.64 0.88 0.89 0.89 0.90
Power 0.77 0.91 0.98 0.98 0.98 0.98
Type 1 0.00033 0.00163 0.00079 0.00183 0.00371 0.00372

d ¼ 250 Strict power 0.06 0.39 0.73 0.83 0.82 0.83
Power 0.57 0.82 0.64 0.96 0.96 0.97
Type 1 0.00013 0.00032 0.00063 0.00095 0.00211 0.00216

d ¼ 500 Strict power 0.17 0.66 0.62 0.77 0.77 0.78
Power 0.67 0.92 0.91 0.95 0.95 0.95
Type 1 0.00005 0.00040 0.00041 0.00072 0.00145 0.00150
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Simulation generating

Toassess theperformanceofourapproach,weconducteda large
number of simulations to obtain the power and type I error rates
under varied combinations of the number of SNPs (p), the
correlation strength (r), and MAF. We compared our DCRR
approach with the CA approach and the traditional LRR
approach.

The correlated haplotype vector was simulated from a mul-
tivariate normal distribution with the mean vector randomly
generated fromUnifð0; 5Þ and the covariance structure designed
as ARð1Þ: The variance was fixed to be 1 and correlation param-
eter r was used to control the strength of LD among SNPs. Next,
the individual allele of each haplotype was generated by dichot-
omizing the continuous haplotype values based on theMAF and
the corresponding percentile obtained from the cumulative den-
sity function of the marginal normal distribution of each SNP.
For each SNP, we generated two independent haplotypes and
the sum of each pair of haplotypes was used to create the geno-
type, which yielded the n3 p-dimensionalmatrixX (Wang et al.
2007). To clearly describe all possible effects and roles of each
SNP, we ascribed four definitions (Meng et al. 2009): risk SNP
(rSNP), a truly causative SNP that is functionally associatedwith
the phenotype; LD.rSNP, a noncausative SNP that is not associ-
ated with the phenotype but is in LD with rSNP; a noise SNP
(nSNP) that is neither important for the phenotype nor in LD
with any rSNP; and LD.nSNP, a nSNP that is not associated with
the phenotype but is in LD with other nSNPs.

From the index set of the SNPs, S ¼ f1; . . . ; pg; we ran-
domly chose five rSNPs. Due to the property of AR(1), the
SNP in the closest neighborhood of these rSNPs was the LD.
rSNP with strongest correlations with rSNPs and hence sub-
stantially increased the difficulty in detecting the true rSNPs,
which affected both type I error and power. Among the SnrSNP
set containing all p2 5 nSNPs, those far away from these five
rSNPs had negligible LDwith the rSNP and acted as noise. The
other nSNP located in close proximity to each nSNP was the

LD.nSNP, and the correlation among noise SNPs also had the
potential to act as confounders of the rSNPs.

The binary phenotype was generated based on the geno-
type matrix X and the effect size. Setting the b values of all
five rSNPs at 1 and all other SNPs at 0, the probability of case
was computed as

logit½ pðyi ¼ 1jXÞ� ¼ Xbþ e;

where e � Nð0; 1Þ:
The four criteria used to evaluate the performance of the

models were defined as follows: strict power, the percentage
of simultaneously rejecting all five rSNPs; power, the pro-
portion of rejecting any of five rSNPs among all simulation
replicates of rSNPs; type I error, theproportionof rejectingany
of p25 LD.rSNPs, nSNPs, and LD.nSNPs among all simula-
tion replicates of these noncausative SNPs; and time, total
time required to finish 100 replicates for each simulation
setting and each approach.

Data availability

The Arabidopsis thaliana data is a public data set freely avail-
able at http://arabidopsis.gmi.oeaw.ac.at:5000/.

Results

Simulation design 1

Wesetp ¼ 10 ðsignal=noise ¼ 2Þ;  100 ðsignal=noise ¼ 20Þ;
1000 ðsignal=noise ¼ 200Þ; and 10; 000 ðsignal=noise ¼
2000Þ to consider small, medium, high, and ultrahigh dimen-
sions of SNPs. We controlled the strength of LD from small to
large as r ¼ 0:2;  0:4;  0:6;  or 0:8: A total of 48 combina-
tions of MAF (MAF ¼ 0:1;  0:3;  or 0:5), r, and p provided
a comprehensive assessment on how our model performed
under different conditions. We performed 100 replicates for
40 of the simulations, but only 10 replicates for the last 8
simulations where p ¼ 10; 000 and MAF = 0.3 or 0.5, due

Figure 4 Time. Shown is the changing pattern of computational time
(in minutes) of three approaches as increasing p.

Figure 5 Manhattan plot of real data. Shown is the Manhattan plot of
AvrRpm1 along the whole genome, based on 2log10 of genome-wide
simultaneous P-values of 216,130 SNPs against its physical chromosomal
position. Chromosomes are shown in different colors. The current find-
ings for the same data using five different approaches are compared.
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to the extremely lengthy computational time of LRR. Different
l values were chosen according to different data requirements
based on the ridge trace plots. After l’s were determined, we
used exactly the same l values to compare both DCRR and
LRR for the same data to ensure the comparisons were accu-
rate. During the DC selection procedure, we chose d ¼ 8 for
p ¼ 10; d ¼ 20 for p ¼ 100; and d ¼ n=lnðnÞ ’ 80 for
p ¼ 1000 and 10; 000: To minimize other possible factors,
equal numbers of case and control were generated and the
sample size n was fixed at 500.

Simulation results of the48settingsare summarized inTable
1 (MAF=0.1), Table 2 (MAF=0.3), and Table 3 (MAF=0.5).
When MAF = 0.3 or 0.5, all three approaches achieved satis-
factorily high power and strict power for any dimension of SNPs
and any LD strength (Figure 1). However, the high power of CA
came at the cost of an extremely inflated type I error, which
indicates that the single-SNP model neglected the correlations
and joint effects among SNPs. Comparing Table 1, Table 2, and
Table 3 simultaneously, we noted that the type I error of CA
kept increasing as r increased from 0.2 to 0.8 for any MAF and
p. In particular, when p ¼ 10 and r ¼ 0:8; the false discovery
rate of CA was as large as 100% for all three different MAF
values. Compared to CA, the type I errors of LRR and DCRRdid
not showan increasing trend as r increased, and almost all type
I errors were ,   a ¼ 0:05:

When MAF = 0.1, the possible range of D spanned from
0.01 to 0.81 and hence greatly increased the difficulty level of
SNP being detected. As a result, when comparing the power
and strict power of MAF = 0.1 with the other two MAF val-
ues, we noted that both power and strict power exhibited the
smallest value in MAF = 0.1 for all three approaches (Figure
1). In particular, when the signal-to-noise ratio or dimension
of SNPs increased dramatically, the strict power of MAF= 0.1
severely dropped for both CA and LRR for any given r (Figure
2). Indeed, the strict power of LRR and CA approximated
40% for p ¼ 10; 000 and 70% for p ¼ 1000: However, the
strict power of DCRR more than doubled compared to that
of CA and LRR for any r when MAF = 0.1 and p ¼ 10; 000
(Figure 1 and Figure 2). Figure 3 shows the comparisons of
strict power (in orange), power (in purple), and type I error (in
light blue) simultaneously for three approaches and four di-
mensions when r ¼ 0:8: The strict power and power of CA
and LRRdecreased dramatically as p increased, but strict power
and power of DCRR were relatively stable at a value .   90%:

Additionally, the type I error of CA was as high as 100% for
p ¼ 10while all other approaches had type I error rates ,   5%:

The type I error decreased as p increased for each approach
because the ratio of n.SNP to LD.rSNP was increasing.

Of the 48 combinations of varied MAF, LD strength, and
dimension, the DCRRmethodwas consistently and uniformly
more powerful than the other approaches, and the superiority
ofDCRRwas strikingunder harsh conditions such asultrahigh
dimension or complex correlations. Among the 48 simulated
comparisons, there were only two exceptions: when p ¼ 10;
r ¼ 0:8; and MAF = 0.3 or 0.5, the power and strict power of
DCRR were inferior to those of the other two approaches. This
accidental dropwas caused by one causative r.SNP thatwas not
successfully selected from the top 8, but rather ranked 9th or
10th. By choosing the tuning parameter d sufficiently large,
we were able to avoid this type of error. Since the DC fea-
ture screening approach is mainly designed for ultrahigh-
dimensional cases, a dimension as low as 10 did not leave
sufficient space for DC to select freely. We believe that the
power of DCRR will be manifested for large-dimension prob-
lems, as occurred in the other 46 simulated comparisons.

Simulation design 2

To assess the advantages of IDC over the DC during the noise-
filtering procedure andalso judge the stability of the two tuning
parameters (d and l), we chose a more difficult but computa-
tionally faster setting, with p ¼ 1000;MAF=0.1, and r ¼ 0:8:
A total of 100 simulation replications were performed for three
values of d ¼ 80; 250, and 500 and seven different values of l
varying from 0.5 to 10 (only three l values are displayed in
Table 4). We found that the tuning parameter l selected by
cross-validation (CV) provided very poor power and tended to
choose l values that were too small (Table 4). We concluded
that IDC always showed uniformly higher or equal strict power
and power than DC for all 21 combinations of d and l values.
Additionally, IDCwas robust on the selection of l values, which
is an agreeable property because the tuning parameter is often
difficult to determine in real data. For each given value of d, the
strict power and power of IDC seldom changed when l in-
creased from 0.5 to 10. The strict power of IDC was always
close to 0.89 and power was close to 0.98, nomatter whether l
was 0.5, 5, or 10. For each l, the strict power and power of
d ¼ 500 were always the lowest among the three d values,
which not only illustrated the destructive force of noise but also
provided empirical experience for choosing d.

We recorded the total computational time of each approach,
completing 100 simulation replicates for each fixed simulation
setting. From Figure 4, we noted that the computational cost of
DCRR dramatically decreased compared to LRR as dimension
increased. The computational benefits of DCRR were mani-
fested at p ¼ 1000 and became more remarkable for
p ¼ 10; 000: The computational time of DCRR was similar to

Table 5 Significant SNPs detected by DCRR based on AGI physical map (TAIR.org)

Rank Chromosome Base pair position (bp) Gene Dcorr P-value

1 3 2,227,823 RPM1 0.5846 7:64310212

2 3 2,225,899 0.5075 1:4631029

3 3 2,225,040 alba DNA/RNA 0.5075 2:6731029

22 3 2,231,452 NSN1 0.3450 2:3931028

420 M. Carlsen et al.



that of CA, which indicates that DCRR does not increase the
computation cost despite considering multiple joint effects and
correlation effects thatwere neglected by the single-SNPmodel.

Real data analysis

Our DCRR approach was applied to search for significant caus-
ative SNPs for a binary trait of the A. thaliana hypersensitive
response to the bacterial elicitor AvrRpm1, with 84 inbred lines
(28 susceptibilities and 56 resistances) and 216,130 SNPs.

A. thaliana has a genome of �120 Mb and a SNP density of 1
SNP/500 bp (Atwell et al. 2010). Five statistical models have
been tested on these same data and reported that this AvrRpm1
trait was monogenically regulated by the gene RPM1; i.e., the
bacterial avirulence gene AvrRpm1 directly identified the corre-
sponding resistance gene RESISTANCE TO P.SYRINGAW PV
MACULICOLA 1 (PRM1) (Grant et al. 1995). Atwell et al.
(2010) compared two single-SNP approaches: Fisher’s exact
test without correcting for background confounding SNPs and

Figure 6 Manhattan plot of critical re-
gion in real data analysis. Shown is a
magnification of the genome region
surrounding RPM1. The current findings
for the same region using three differ-
ent approaches are compared. The top
and middle panels are reprinted from
Shen et al. (2013) only for comparison
purposes. Permission for it through
Genetic Society of America. The bottom
panel is constructed by us.
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a mixed model implemented in efficient mixed-model associa-
tion (EMMA) to correct for confounding SNPs (supplementary
figure 36 on p. 52 of Atwell et al. 2010). Shen et al. (2013)
proposed a heteroscedastic effects model (HEM), determined
5% genome-wide significance thresholds via a permutation test,

and claimed that the HEM successfully eliminated many spuri-
ous associations and improved the traditional ridge regression
(SNP-BLUP) approach (figure 2 of Shen et al. 2013). Our DCRR
model effectively also identified the RPM1 gene in exactly the
same position [chromosome (Chr) 3, 2,227,823 bp], with a
significance level 10212 on the highest peak. Figure 5 demon-
strates theManhattan plot of the AvrRpm1 trait along thewhole
genome, based on 2log10 of genome-wide simultaneous
P-values of 216,130 SNPs against its physical chromosomal po-
sition. The blue horizontal line corresponds to a 5% genome-
wide simultaneous significance threshold with Bonferroni
correction for 250,000 tests. The red horizontal line repre-
sents the proposed multiple-correction threshold for the
5% genome-wide simultaneous threshold with a Bonferroni
correction for only d ¼ 189 tests.

The four significant causative polymorphisms that passed
the DCRR threshold (Figure 5, in red) also passed the thresh-
olds of other approaches (Figure 5, in blue) and are summa-
rized in Table 5. Using the Arabidopsis Genome Initiative
(AGI) genetic map and the Arabidopsis information resource
(TAIR.org, verified on May 7, 2015) GBrowse database, we
matched our significant findings with three genes. The rank 1
SNP lay within the single large exon of RPM1 (2,229,024–
2,225,952). The rank 2 SNP lay�50 bp past the 39 end of the
RPM1 region. The rank 3 SNP lay within an intron in the
neighboring alba DNA/RNA-binding protein (2,225,254–
2,223,001), and the rank 22 SNP lay within exon 4 of the
neighboring NSN1 gene (nucleostemin-like 1, 2,232,361–
2,229,590). Additionally, the DCRR eliminated many nomi-
nally significant associations. Indeed, the shrinkage effect of
the DCRR approach was much stronger than that of the other
four approaches. We noted a reduction in number of moderate
associations in the whole genome, and those with significance
levels from 1023 to 1026 in EMMA and Fisher disappeared
from DCRR. Additionally, one slightly significant SNP in Chr
5 in EMMA and some highly significant SNPs closely neighbor-
ing RPM1 in EMMA and Fisher were all eliminated in DCRR.

We noted a second peak (0.1 Mb away from RPM1) that
was detected as highly significant by both the Fisher model

Table 6 The pairwise LD strength of the point located in Chr 3 with
position number 2,337,844 bp with several surrounding SNPs

Chromosome Base pair position (bp) x2 P-value

3 2,227,823a 41.9792 9:223 10211

3 2,225,899a 29.9614 4:4131028

3 2,231,452a 24.9712 5:8131027

3 2,225,040a 18.9063 1:3731025

3 2,334,985 64.3782 9:993 10216

3 2,335,305 60.2751 8:213 10215

3 2,332,822 46.5432 8:963 10212

3 2,333,137 49.6274 1:853 10212

3 2,332,597 49.6274 1:853 10212

3 2,334,723 38.4016 5:753 10210

3 2,336,637 28.7376 8:2831028

3 2,336,926 31.2202 2:3031028

3 2,336,966 28.7376 8:2831028

3 2,334,909 31.7913 1:7131028

3 2,291,826 28.7225 8:3531028

3 2,295,084 28.7225 8:3531028

3 2,320,691 28.7225 8:3531028

3 2,294,447 26.2953 2:9231027

3 2,331,847 27.2956 1:7431027

3 2,336,077 27.2956 1:7431027

3 2,302,458 26.2953 2:9231027

3 2,302,750 26.2953 2:9231027

3 2,304,433 23.9354 9:9631027

3 2,304,563 26.2953 2:9231027

3 2,305,255 26.2953 2:9231027

3 2,306,492 26.2953 2:9231027

3 2,308,001 26.2953 2:9231027

3 2,310,061 26.2953 2:9231027

3 2,325,609 21.7285 3:1431026

3 2,261,331 20.7359 5:2731026

3 2,318,129 18.5587 1:6431025

3 2,326,014 17.2805 3:2231025

3 2,327,593 18.6292 1:5831025

a The P-value is obtained from a x2 test with 1 d.f.

Figure 7 Haploview heatmap. Shown is a plot of the surrounding SNPs in the RPM1 gene region. Left, medium range of 28.1 kb involving 100
neighboring SNPs; right, short range of 7.3 kb involving 20 neighboring SNPs.
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and the HEM, judging from Figure 6 (Atwell et al. 2010; Shen
et al. 2013). However, DCRR results indicated that it was a
spurious signal confounded by strong background LD. If the
process was limited to ranking by DC, that SNP indeed
ranked high with a similar pattern to that of the Fisher model
and HEM. However, the iterative DC that adjusted residuals
to break down the original correlation structures reduced that
SNP to an extremely low rank, 156; 997th among all candidates
with a Dcorr value of just 0.0444. Therefore, it was highly un-
likely that this SNP (Chr 3, 2,337,844 bp) was associated with
the phenotype. To further verify this conclusion, we examined
the LD of this SNPwith several surrounding SNPs. After a x2 test
using Equation 1, we found that this SNP was in strong LD with
.50 other polymorphisms (Table 6). As observed in Table 6,
footnote a, it was highly correlated with all four significant SNPs
reported in Table 5, especially having a P-value of 10211 with
RPM1. It was also highly correlated with many other noncausa-
tive SNPs; for example, it showed a P-value of 10216 with posi-
tion 2,334,985 and a P-value of 10215 with position 2,335,305.

We further visually examined the genetic patterns for the
region surrounding gene RPM1, using a haploview heatmap
with a short range of 7.3 kb and a medium range of 28.1 kb
(Figure 7). All pairwise r2 among SNPs in the region were
computed, with nine color schemes representing the varied
levels of LD strengths (red denotes strong LD, yellow denotes
medium LD, andwhite denotes negligible LD). The LD patterns
among the closest SNPs to the right side of the causative SNP
were very strong (.   0:9), while the majority of SNPs were in
medium LD (r2 from 0.4 to 0.7). A close inspection of the 20
closest surrounding SNPs highlighted that the LD pattern in the
neighborhood of RPM1 varied substantially, with 8 SNPs show-
ing strong LD, 6 SNPs havingmedium LD, and 6 SNPs unlinked
(i.e., 70% closest SNPs had medium to strong LD with RPM1).

Thetotalcomputation timefor thesedatacomprised6hrona
Windows operating system with a 2.10-Ghz Intel Xeon pro-
cessor and 32 GB of RAM. The top d ¼ 189 important SNPs
were selected by the iterative DC procedure, after which all
noise SNPs whose Dcorr values were,0.25 were filtered (Fig-
ure 8).We choose l ¼ 2 for our analysis (Figure 9). The results

were relatively stable, and negligible differenceswere observed
when we changed l to any other number from 1 to 3.

Discussion

High-throughput genotyping techniques and large data re-
positories of case–control sample consortia provide opportu-
nities for GWAS to unravel the genetic etiology of complex
traits. With the number of SNPs per DNA array growing from
10,000 to 1 million (Altshuler et al. 2008), the ultrahigh di-
mension of data sets is one of the grand challenges in GWAS.

We proposed a novel DCRR approach to address the
complex LD, multiple joint genetic effects, and ultrahigh di-
mension problems inherent in whole-genome data. We con-
sidered an A. thaliana whole-genome data set that Atwell
et al. (2010) reported as carrying several challenges: false-
positive rates or spurious significant associations were pre-
sent due to confounding effects of high population structure.
The true-positive signal was difficult to identify because the a
priori candidates were overrepresented by surrounding SNPs
in the vicinity through complex diffuse “mountain range”-like
peaks covering a broad and complex region without a clear
center. Sometimes the true causal polymorphism did not have

Figure 8 Dcorr value and location. Shown is a plot of
the top d ¼ 189 important SNPs selected by the iter-
ative DC procedure for AvrRpm1.

Figure 9 Ridge trace. Shown is a plot of the 189 important SNPs using
LRR for the AvrRpm1 data.
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a stronger signal than the spurious ones, which could have
occurred when r.SNPs were positively correlated with other r.
SNPs or with genomic background SNPs. The sample size was
relatively small (n ¼ 84), which may have limited the power
of statistical significance. The natural selection on each locus
may have been strong, such that the allele frequency distri-
butions of the causative loci were very different from those of
background noise loci. Those distributions may have further
disabled many statistical approaches that address genome-
wide associations. Finally, a single-SNP model may have
caused model misspecification. As was stated by Atwell
et al. (2010, p. 630), “At least for complex traits, the problem
is better thought of as model misspecificaiton: when we carry
out GWA analysis using a single SNP at a time (as was done
here and in most other previous GWA studies), we are in
effect modeling a multifactorial trait as if it were due to a
single locus. The polygenic background of the trait is ignored,
as are other unobserved variables.”

Our approach solved the challenges mentioned by Atwell
et al. (2010). By breaking down the complex LDs among
causative and noncausal SNPs, the causative effects were
reinforced while the nominally spurious signals shrank to-
ward zero. The shrinkage effect of the DCRR approach pre-
sented herein was more robust and accurate than that of
previous approaches (Figure 5 and Figure 6), and the false-
positive rates were decreased dramatically while the true-
positive rates (power) increased. After filtering the majority
of noise and reducing the SNPs from millions to hundreds,
the problems caused by ultrahigh dimension were removed.
After generating the MAF of all loci randomly from a
Unifð0:05; 0:95Þ distribution, which imitated strong natural
selection effects and also considered the effects of rare al-
leles, the DCRR approach still successfully detected the caus-
ative SNPs. By considering multiple joint effects with
complex correlation structures that were neglected by the
single-SNP model, the power of DCRR is uniformly better
than that of the other approaches in all simulations while
the type I error of DCRR is higher than that of the other
approaches but it is still controlled to be ,0.05.

Malo et al. (2008) applied ridge regression to handle LD
among genetic associations. Their work focused on continu-
ous phenotypes and a moderate dimension (p. n but not
p � n) of SNP markers. Cule et al. (2011) proposed the
asymptotic significance test approaches in ridge regression
for both binary and continuous phenotypes, but their approach
mainly focused on moderate dimensions as well. The advan-
tages of DCRRwere assessed extensively in a previous section
and the DCRR approach can be easily extended to continuous
phenotypes. Since a binary response tends to have fewer
statistical properties, i.e., the prediction errors tend to be
much higher for binary than for continuous outcomes, we
expect that the performance of our DCRR approach for con-
tinuous traits will only improve.

Methods to increase the signal-to-noise ratio are critical for
successful GWAS and the challenges of GWAS are not specific
to the data set from Atwell et al. (2010). The monogenetic

control with one causative locus in the AvrRpm1 data set may
not fully highlight the power of the DCRR approach. In future
work, we will apply the DCRR approach to polygenic traits
such as human diseases or traits in organisms with agricul-
tural importance. For organisms under artificial selection for
trait improvement, such as agricultural crops, spurious or
extraneous SNPs in a marker-assisted selection scheme could
add cost and time in genotyping as well as possibly misdirect
selection priorities. Therefore, the DCRR approach has the
potential to provide improved efficiency and accuracy to re-
searchers to design their experiments with applied outcomes
wisely.
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