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Compensatory Drift and the Evolutionary Dynamics
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ABSTRACT Dosage-balance selection preserves functionally redundant duplicates (paralogs) at the optimum for their combined
expression. Here we present a model of the dynamics of duplicate genes coevolving under dosage-balance selection. We call this the
compensatory drift model. Results show that even when strong dosage-balance selection constrains total expression to the optimum,
expression of each duplicate can diverge by drift from its original level. The rate of divergence slows as the strength of stabilizing
selection, the size of the mutation effect, and/or the size of the population increases. We show that dosage-balance selection impedes
neofunctionalization early after duplication but can later facilitate it. We fit this model to data from sodium channel duplicates in
10 families of teleost fish; these include two convergent lineages of electric fish in which one of the duplicates neofunctionalized. Using
the model, we estimated the strength of dosage-balance selection for these genes. The results indicate that functionally redundant
paralogs still may undergo radical functional changes after a prolonged period of compensatory drift.
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THE fate of duplicate genes is characterizedby twoextremes:
degeneration and the origin of biological novelty. Early

models for the evolutionary dynamics of duplicates suggested
that typically one member of a duplicate pair would quickly
degenerate into a nonfunctional pseudogene (Haldane 1933;
Ohno 1970). More rarely, a duplicate instead may evolve a
novel function in a process called neofunctionalization (Muller
1936; Ohno 1970; Ohta 1987). The time scale for either pseu-
dogenization or neofunctionalization is expected to be on the
order of a few million years (Lynch and Conery 2000).

Recent research indicates, however, that the evolutionary
dynamics for many duplicates are not so simple (Walsh 1995,
2003; Force et al. 1999; Papp et al. 2003; He and Zhang
2005; Rastogi and Liberles 2005; Scannell and Wolfe 2008;
Qian et al. 2010; Kondrashov 2012). Some genes are dosage
sensitive, meaning that a change in their copy number alters
expression and disrupts the stoichiometric balance of their
gene products with those of other genes. Duplicates of dosage-

sensitive genes typically will fix in a population only if they
originate in a whole-genome duplication (WGD), where all
interacting partners duplicate together. Selection to maintain
the stoichiometric relations between the products of duplicate
genes, termed dosage-balance selection, can preserve dupli-
cates as functionally redundant copies for prolonged periods
of time (Birchler et al. 2001, 2005; Veitia 2002; Papp et al.
2003; Aury et al. 2006; Blomme et al. 2006; Freeling and
Thomas 2006; Stranger et al. 2007; Qian and Zhang 2008;
Edger and Pires 2009; Makino and McLysaght 2010; Konrad
et al. 2011; Birchler and Veitia 2012; McGrath et al. 2014a).

Recent data on a pair of sodium channel duplicates in
teleost fish are consistent with the expectations of the dosage-
balance hypothesis (Thompson et al. 2014). The two dupli-
cates, also called paralogs, have been conserved in muscle
cells for over 300 million years since the teleost-specific
WGD. In two independent lineages of electric fish, however,
only one of the sodium channels is expressed in muscle cells.
The other duplicate neofunctionalized and now plays a key
role in the electric organ (Novak et al. 2006; Zakon et al.
2006; Arnegard et al. 2010). These convergent neofunction-
alization events happened on a very slow time scale, more
than 100 million years after duplication (Arnegard et al.
2010; Lavoué et al. 2012; Betancur-R et al. 2013). The phy-
logenetic context for the evolution of the duplicates is shown
in Figure 1.
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Thompson et al. (2014) proposed that in the teleost ances-
tor the duplicates were preserved after WGD by dosage-
balance selection. They hypothesized that under this selective
constraint, one paralog gradually drifted to lower expression
levels, while the other compensated by evolving higher expres-
sion. Eventually, one paralog contributed so little to its original
function that it could be neofunctionalized in the electric organ
without major compromise tomuscles. This mode of evolution
also may explain comparative expression patterns observed
in some ciliates (Gout and Lynch 2015) as well as some
mammals (Lan and Pritchard 2015). This hypothesis raises
theoretical and quantitative issues not previously explored.
Can dosage-balance selection in fact maintain duplicates for
hundreds of millions of years? Will this mode of evolution
produce comparative patterns in a phylogeny that are dis-
tinct from other models? And how does this evolutionary
process affect the likelihood of neofunctionalization?

Here we develop a model for the evolution of paralog
expression under dosage-balance selection. It envisions a
process, which we call compensatory drift, in which paralogs
diverge by weakly selected mutations that fix largely by drift.
The model shows how key genetic parameters determine the
time scale over which duplicates are maintained before one
is lost or neofunctionalizes. The evolutionary dynamics are
determined by just two compound parameters. The first is a
speed parameter that relates mutation, selection, and random
genetic drift to the rate at which the duplicates’ expression

diverges. The second is a threshold parameter that determines
the point at which expression of one duplicate is sufficiently
low that it is largely relieved from dosage-balance constraints
and free to evolve a novel function. The model predicts two
phases of evolution. In the initial phase, the difference in
expression between functionally identical paralogs drifts
randomly while their combined expression remains nearly
constant. In the second phase, the expression threshold is
reached, and one of the duplicates quickly accrues function-
altering substitutions.

Wefit the compensatorydriftmodel todata fromThompson
et al. (2014) on the expression of sodium channel duplicates
in 10 families of teleost fish. Our estimate for the speed pa-
rameter is consistent with what is known about the biological
parameters that feed into it, suggesting that compensatory
drift is a plausible model for sodium channel evolution. Our
estimate for the threshold parameter is, to our knowledge, the
first available. Finally, we demonstrate that dosage-balance
selection can greatly enhance the probability of neofunctional-
ization compared to the classic neutral scenario. These results
suggest thatWGD, aswell as contexts inwhich dosage-balance
selection acts, may be a particularly rich source of genetic
novelty for geologically long periods of time.

Materials and Methods

The model

After duplication, stabilizing selection favors an optimal total
expression of two paralogs. Amutation that affects expression
of either onewill either increaseor decreasefitness depending
on whether it brings total expression closer to or further from
theoptimum.Mutations also experience randomgenetic drift,
so there is a nonzero probability that both mildly deleterious
and beneficial mutations will be established.

We visualize compensatory drift as a series of fixation events
that change the expression of the duplicates. A schematic of the
process is shown in Figure 2. The two paralogs evolve in an
anticorrelated pattern. Mutations in one duplicate can move
the total expression away from its optimum. Compensatory
mutations in the other duplicate tend to move total expression
closer to the optimum. The result is that total expression re-
mains close to the optimum, while the difference in their ex-
pression fluctuates randomly. The state of the population at any
time is described by the total expression of the two duplicates
and the difference in expression between them. If expression
evolves to a point at which one of the duplicates produces the
bulk of the gene product, selection is no longer strong enough to
prevent function-altering substitutions from accruing in the
paralog with lower expression. This threshold can be inter-
preted as either the point where pseudogenization quickly oc-
curs or where the benefit of neofunctionalization outweighs the
fitness tradeoff from loss of the ancestral function.

Assumptions

The expression levels of two duplicates are denoted as p1 and
p2. We assume that stabilizing selection acts on the sum of

Figure 1 Sodium channel expression and phylogenetic relationships of
10 teleost fish species. The families represented here span almost the
entire teleost clade. The relative expression in skeletal muscle of the
voltage-gated sodium channel genes Scn4aa and Scn4ab is represented
with pie charts for each of the 10 species. Thick red segments on the
branches leading to the two electric fish Eigenmannia veriscens and Gna-
thonemus petersii indicate the likely times when electric organs evolved
and Scn4aa neofunctionalized (Arnegard et al. 2010; Betancur-R et al.
2013).
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expression A ¼ p1 þ p2. The fitness function acting on A is
proportional to a normal distribution with mean equal to the
optimum for total expression u and with variance v2 (which
are assumed to be constant in time). The variance parameter
determines the strength of selection, where larger values of
v2 indicate weaker stabilizing selection. No selection acts on
the difference in expression D ¼ p1 2 p2.

Mutations occur in the regulatory regions of each of the
four gene copies at a rate m per generation. They evolve
according to a Fisher-Wright model of drift and selection.
Mutations enter the population at a rate of 4Nm, where N is
the population size. Their effects on expression are additive.
The effect of a givenmutation on p1 or p2, which we denote as
d, is normally distributed with mean 0 and variance s2

m. We
therefore assume that the distribution of mutational effects is
constant in time and independent of a gene’s current level of
expression. Biologically, this means that the regulation of
expression is free of complicated forms of epistasis.

Newmutations are either lost or fixed under the combined
forces of selection and drift.We assume thatmutation is weak
(4Nm � 1), so there is a negligible chance that more than
one mutation will be segregating. (We will return to this
point in the Results section, which suggests that the model
also may be a good approximation when that assumption is
violated.) Evolution thus proceeds by a series of fixation
events at the two loci. This is a Poisson process, and the
waiting time between mutations is exponentially distributed
with mean of 1=ð4NmÞ generations.

We calculate the fixation probability for each mutation
using the diffusion approximation of Kimura (1962)

Pfix ¼ 12 e22s

12 e24Ns (1)

where s is the selection coefficient of the new mutation

s � 2
d2

2v2 (2)

Equation 2 is an approximation that neglects the deviation of
the population from the optimum u. The approximation is
valid when the SD of mutational effects is large relative to
the typical deviation from the optimum. We verified the ac-
curacy of the approximation using parameter values consistent
with the data on teleost sodium channels fromThompson et al.
(2014) (Supporting Information, File S1).

We assume that when the duplication occurs, the two
paralogs have equal expression, and their total expression
is optimal (D= 0 and A= u). As evolution proceeds, expres-
sion of the duplicates eventually will fall to a threshold level,
denoted p*, while its paralog rises to u2 p*. At this point, the
paralog with lower expression rapidly either becomes a pseu-
dogene or neofunctionalizes. This threshold is represented in
our model by a critical difference in the expression of the
duplicates D* = u2 2p*. If D reaches either D* or2D*, then
one or the other duplicate loses its original function.

Evolutionary dynamics

Our goal is to determine the probability distribution for
expression levels at times following the duplication event.
Simulations reveal that under plausible parameter values,
evolutionary trajectories are confined to values of A that
are very close to u (File S1). This suggests that the dynamics
can be approximated by a one-dimensional diffusion in the
expression difference D = p1 2 p2. We write the probability
density of D at time t following the duplication as FðD; tÞ. The
evolution of the density function is described by

@

@t
FðD; tÞ ¼ 1

2
s2
D
@2

@D2 FðD; tÞ (3)

This is the heat equation (Cox andMiller 1965), where s2
D is

the diffusion parameter. This parameter determines the
speed at which D evolves, and it equals the rate of increase
in variance of the probability distribution D per generation.
File S2 shows that

s2
D ¼ k

mv3

smN3=2
(4)

where k is a constant that is independent of the model’s
parameters. It is difficult to calculate analytically, so we de-
termined its value (k � 1.543) numerically (File S2).

From Equation 4, we gain insight into the impact of bi-
ological parameters on the speed at whichD evolves. Imagine
that we follow a set of evolutionary lineages that began to

Figure 2 Schematic of the coevolution of paralog expression under com-
pensatory drift. Axes show the expression of the duplicate genes, and
fitness is represented with a gray scale. The dashed diagonal line shows
the maximal fitness where p1 + p2 = u. The dotted vertical and horizontal
lines show the expression thresholds where a duplicate loses its original
function. A sequence of several consecutive expression changes is shown
with numbered circles.
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diverge independently after the duplication event. The vari-
ance in the distribution of D initially increases at a constant
rate and is equal to s2

Dt at t generations after duplication.
Thus, the diffusion rate s2

D sets the speed of divergence, as
illustrated in Figure 3. Equation 4 shows how the biological
parameters affect this speed. The speed is reduced by larger
population sizes. Larger values of N cause a greater number
of mutations to enter the population in each generation but
also increase the efficiency of purifying selection; the net re-
sult is that a smaller number of mutations fix (see Equation
1). Equation 4 also shows that the speed of divergence in-
creases with higher mutation rates (larger m) and decreased
strengths of selection (larger v2). A somewhat counterintui-
tive result is that the speed of divergence declines as the
average effect size of mutations sm increases. This is so be-
cause larger mutations are more likely to be strongly delete-
rious and therefore very unlikely to fix.

To summarize the model, the probability density of D
evolves according to Equation 3, with initial condition D =
0 at t = 0 and with absorbing barriers at 6D*. Before doing
any further analysis, Equation 3 tells us a simple but impor-
tant fact: although the model is based on six underlying bi-
ological parameters (m, v, sm, N, u, and p*), the evolutionary
dynamics are governed by only two: the speed parameter s2

D
and the threshold D*.

The solution for the density function of D is

FðD; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

Dt
q XN

n¼2N

n
exp

�
2
ðDþ 4nD*Þ2

2s2
Dt

�

2 exp
�
2
ðDþ ð4n22ÞD*Þ2

2s2
Dt

�o
(5)

for 2D* , D , D* (Cox and Miller 1965). The probability
that one of the duplicates has either been lost as a pseudo-
gene or has neofunctionalized after t generations is

PlossðtÞ ¼ 12
RD*

2D*

FðD; tÞdD

   ¼ 4
PN
n¼0

�
F

�ð4nþ 3ÞD*ffiffiffiffiffiffiffiffi
s2
Dt

q
�
2F

�ð4nþ 1ÞD*ffiffiffiffiffiffiffiffi
s2
Dt

q
�� (6)

where F denotes the standard normal cumulative distribu-
tion function (Cox and Miller 1965).

With Equation 6, we can infer how varying the biological
parameters in Equation 4 affect the expected life span of
duplicate genes. Figure 4 shows the result of varying each
biological parameter of the model on the time scale of dupli-
cate loss. These results imply that the time between duplica-
tion and loss can be very long, especially for large populations,
genes under strong dosage constraints (small v), and genes
with high expression (large D*). To get some idea of the time
scale, we can calculate the number of generations needed to
reach a probability of 1/2 that one of the duplicates is lost
using parameter values that are plausible for the electric

fish clades: a population size N = 104 and a mutation rate
m = 1025. The strength of stabilizing selection (v2 ¼ 81 s2

m)
is such that 90% of mutations are strongly deleterious
(jNsj. 1) and so have negligible chance of fixation. The
threshold is D* = 5sm, which means that following dupli-
cation, the threshold p* could in principle be reached with
the fixation of just five mutations of typical size. (As we will
see, however, this does not happen because most mutations
are eliminated by dosage-balance selection.) Under these
assumptions, we find from Equation 6 that after 1.7 billion
generations, there is still a 50% probability that neither
gene will have been lost. Thus, dosage-balance selection
can maintain functional paralogs for very long evolutionary
periods. If we decrease the strength of dosage-balance se-
lection such that half the mutations are nearly neutral
(v2 ¼ 2:33 103s2

m), the amount of time decreases dramat-
ically to just 11 million generations.

Figure 3 The speed of divergence in the expression of duplicate genes.
Examples of the evolution of expression difference D (= p1 2 p2) when
the diffusion parameter s2

D is small (top) and large (bottom): Each panel
shows sample trajectories and the final probability distribution for D (at
right). In the top panel, the final distribution of D is approximately normal;
neofunctionalization and pseudogenization are rare. In the bottom panel,
neofunctionalization is frequent (large rectangles outside the thresholds
at 6D*).
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Data availability

Simulation code is available upon request.

Results

Fitting the model to data

To assess the plausibility of this model and to estimate pa-
rameters of biological interest, we fit thismodel to data on the
expression of sodium channel duplicates from Thompson
et al. (2014). The data are the relative expression levels of
the two teleost-specific paralogs in 10 families of fish sampled
broadly across the entire teleost clade and the phylogenetic
relations between those families (Figure 1). The parameters
being fit are the diffusion rate s2

D and the threshold for gene
loss D*.

We used approximate Bayesian computation (ABC) be-
cause it allows inferences about models that are too compli-
cated for statistical frameworks such as likelihood (Tavare
et al. 1997; Beaumont et al. 2002; Beaumont 2010). The
basic approach is to compare summary statistics measured
from simulated data to the same statistics measured from real
data. Estimates for the parameters are given by the values
that produce simulated data sets that are most similar to the
real data. In practice, this is accomplished by choosing values
for the model parameters from prior distributions, simulating
data using the model with those values, and comparing the
summary statistics that result with those from the real data.
The parameter values used in the simulation are rejected
from the posterior distribution if the summary statistics from
the real and simulated data sets are not sufficiently similar.

We simulated the evolutionof expression on the phylogeny
under the model described earlier. The output of the simula-
tion gave the identities of the lineages (if any) that lost one of
the paralogs to muscle function and the relative expression of

the twoparalogs for those lineages thathavenot.These results
were compared to the actual data using two types of summary
statistics. The first, which is binary, is determined by whether
neofunctionalization occurred in the same locations on the
tree as observed in the data. We rejected all simulations in
which this pattern was not observed. The second kind of
summary statistic was the independent contrasts (Felsenstein
1985) at the nodes of the phylogeny for the relative expres-
sion of the duplicates in the nonelectric fish. We rejected
simulations if the Euclidean distance of the independent con-
trasts between the real and simulated data exceeded a
threshold. Further details are given in File S3.

Including the electric fish data in the analysis upwardly
biases our estimate of the probability of neofunctionalization.
(The families offish in the data set are not randomly chosen: it
intentionally includes the only two families in which neo-
functionalization is known.) To address this issue, we per-
formed ABC analysis both with the electric fish and without
them. Excluding the electric fish biases the estimate in the
opposite direction, and therefore, the two analyses give
boundaries for our estimates of model parameters.

The joint posterior distributions for the diffusion rate s2
D

and the threshold for gene loss D* from the two analyses are
shown in Figure 5. The distributions are quite similar. On a
log-log plot, the values of logs2

D and log D* are strongly
correlated. The data are consistent with either small values
of the speed parameter s2

D and the threshold D* or with
large values of both parameters.

We can use published information about absolute gene
expression levels to refine the likely range of values for these
parameters. Promoter and enhancer mutation studies sug-
gest that gene expression levels may be on the order of 10sm

to 100sm (Melnikov et al. 2012; Patwardhan et al. 2012;
Metzger et al. 2015). The data fromThompson et al. (2014), in
conjunction with estimates of the distribution of transcript
levels in eukaryotic cells (Mortazavi et al. 2008; Islam et al.
2010; Schwanhäusser et al. 2011; Marguerat et al. 2012),
suggest that a conservative lower limit for D* is 3sm (see File
S3 for details). Letting D* vary between 3sm and 102sm, we
used the linear regressions shown in Figure 5 to determine a
range of plausible values for s2

D. We estimate that if only three
substitutions of typical size are needed to reduce a paralog’s
expression to the threshold (D* = 3sm), then the expected
value of s2

D is 5.4 3 1029sm per year. If expression is much
larger, such that 100 substitutions of typical size are required
to reach threshold, then the expected value of s2

D is 1.5 3
1025sm per year.

We explored what these results imply about the biological
parameters on which the model is based. We began by esti-
mating thestrengthofdosage-balance selectiononthesodium
channels. We assumed the range of values for s2

D just de-
scribed, that m lies between 1026 and 1024 per allele per
generation, that N lies between 104 and 106, and that there
is one generation per year. Equation 4 and these parameter
values then imply that the variance of the fitness function v2

is between 11s2
m and 4:63 106s2

m. We can use plausible

Figure 4 The probability of gene loss after duplication. The thick curve
shows the probability of loss, either through pseudogenization or neo-
functionalization, over time with standard parameter values: the selection
strength is v2 = 104, the SD of the mutation effect size is sm = 1, the
population size is N = 104, the mutation rate is m = 1025, and the
expression threshold is D* = 100. Other curves show results when indi-
vidual parameter values are doubled.
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expression levels derived from the studies cited earlier to
estimate how efficient dosage-balance selection is at remov-
ing expressionmutations in terms of transcripts per cell. If the
sodium channels are expressed at 50 transcripts per cell and
sm is 5% of that expression level, for example, then the esti-
mated values of v2 imply that mutations that change sodium
channel expression by more than 5.3 transcripts per cell are
efficiently eliminated by dosage-balance selection.

Next, we asked about the properties of mutations that fix.
We simulated the compensatory drift process using the pa-
rameter values cited in the preceding paragraph (see File S1
for details). These results show that for small values of D* (=
3sm) and strong dosage-balance selection (v2 = 11s2

m), 97%
of mutations are removed by selection that otherwise would
fix. On average, mutations that fix change expression by only
0.02sm, and some 9000 substitutions occur before one of the
duplicates becomes a pseudogene or neofunctionalizes. For a
larger value of D* (100sm) and very weak selection (v2 =
4:63106s2

m), only 17% of mutations are prevented from
fixing by dosage-balance selection. The effect of the average
mutation that fixes is 0.7sm, and 8000 substitutions occur
before the threshold is reached. We emphasize that these
estimates are very rough, but they are, to our knowledge,
the first for these important evolutionary parameters.

We find that if dosage-balance selection is strong (v not
very much bigger than sm), then the parameter estimates for
the sodium channels are consistent with the assumptions of
one-dimensional diffusion approximation. With weak selec-
tion, however, the approximation breaks down. This is so
because total expression can deviate substantially from the
optimum so that the dynamics are not well approximated by
a one-dimensional diffusion. Our model therefore describes
the evolutionary dynamics of these sodium channel dupli-
cates if D* and v are not very much larger than sm but would

be more accurately modeled by a two-dimensional diffusion
model if they are not. It may be difficult to develop analytic
results for this model, but it could be studied numerically.

Stochastic simulations suggest that our results are surpris-
ingly robust to theassumption thatnomore thanonemutation
segregates at any given time (i.e., 4Nm � 1). Simulations of a
Wright-Fisher model show that mutations that fix do so
largely as a neutral process. The distribution of fitness effects
for fixed mutations is shown in File S1. For the parameter
values simulated, the mean value of jNsj is between 0.15 and
0.24, and it is very rare for mutations to fix with jNsj. 1. We
ran simulations in which the mutation rate varied over more
than four orders of magnitude. When Nm= 1, the most com-
mon allele is typically at a frequency of only about 50% (File
S2). Nevertheless, the substitution rate is very close to what
our model predicts (File S3). This behavior is also consistent
with a model in which mutations that segregate at apprecia-
ble frequencies are entirely neutral. The results of the simu-
lations begin to significantly depart from the expectations of
our model only when Nm . 1. In sum, our analytic results
may apply when mutation rates are higher than the approx-
imations assume.

Neofunctionalization and compensatory drift

Because dosage-balance selection canmaintain duplicates for
long evolutionary periods, it may be more likely that neo-
functionalizationwill occur than it does when dosage balance
is weak or absent (Force et al. 1999; Papp et al. 2003; Aury
et al. 2006; Hughes et al. 2007; Scannell and Wolfe 2008;
Thompson et al. 2014; Gout and Lynch 2015). To explore this
idea further, we extended our model by adding two new
kinds of mutations. The first is a loss-of-function mutation
that renders one of the duplicates a pseudogene. The proba-
bility that it fixes is again given by the fitness function used in
the main model. The second kind of mutation neofunction-
alizes one of the duplicates. It suffers the same fitness cost as
a loss-of-function mutation but also benefits from a 0.1%
fitness gain from its new function.

We compared the frequency of neofunctionalization in
three simulated populations (File S1) evolving under dosage-
balance selection that ranged from strong to very weak:
v2 = 102s2

m, 10
4s2

m, and 106s2
m. For all three simulations,

mutations that alter expression were 10 times more frequent
than pseudogenizing mutations, and pseudogenizing muta-
tions were 103 times more frequent than neofunctionalizing
mutations. The population size was N = 104, the mutation
rate was m = 1025 mutations per allele per generation, and
the optimal expression was u = 5sm.

We found that neofunctionalization is greatly facilitated by
dosage-balance selection. Figure 6 shows that when dosage-
balance selection is stronger, duplicate genes are preserved
for longer, and more mutations occur before a duplicate is
lost. In consequence, neofunctionalization happens nearly 10
times more often than when dosage-balance selection is very
weak. Neofunctionalization is most likely when expression
falls inside a window of values in which the cost of losing

Figure 5 Joint posterior distribution of the diffusion rate parameter s2
D

and the expression threshold D* estimated from sodium channel expres-
sion in teleost fish. The joint distributions are from two ABC analyses
using the expression data from Thompson et al. (2014). In one analysis,
the two lineages of electric fish are included, and in the other, they are
not. The linear relationship between the parameters from the two anal-
yses is very similar. The regression lines are logs2

D = 2.04 log D* 220.5
with the electric fish and logs2

D = 2.06 log D* 2 21.3 without them.
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the original function is smaller than the benefit of gaining the
new function. In this window, a mutation that causes pseu-
dogenization is still too deleterious to fix. Equation 4 shows
that stronger dosage-balance selection slows the rate of com-
pensatory drift and thus increases the amount of time the
population spends in this evolutionary window. These results
suggest that dosage-balance selection greatly diminishes the
evolutionary potential of paralogs early after duplication but,
after a long period of compensatory drift, greatly facilitates
the acquisition of a new adaptive function.

Discussion

Weformalizedamodelof theevolutionaryprocess thatwecall
compensatory drift. This model shows how dosage-balance
selection on duplicate genes (paralogs) can lead to neofunc-
tionalization some tens to hundreds of millions of years after
duplication. Dosage-balance selection constrains the com-
bined expression of both paralogs to an optimum, but not
the expression of the individual genes. This allows the relative
expression of the paralogs to drift apart by the fixation of
mutations with small effects. The speed at which this diver-
gence occurs is determined by the diffusion rate s2

D, which, in
turn, is a function of several biological parameters. Our results

show that stronger dosage-balance selection and larger muta-
tional effects on expression slow divergence because a greater
fraction of mutations is strongly deleterious and so has virtu-
ally no chance of fixation. Larger populations also decrease
divergence because they enhance the efficiency of selection
and so eliminate a larger fraction of mutations.

Simulations of compensatory drift reveal that dosage-
balance selection can improve the odds that neofunctionaliza-
tion occurs rather than pseudogenization. If a novel function
yields a slight advantagewhile having a large tradeoff with the
ancestral function, dosage-balance selection can still improve
thechancesofneofunctionalization,butonlyaftera longperiod
of compensatory drift. As expression of one paralog declines,
the strength of selection to maintain its original function
diminishes. It reaches a level at which mutations that pseu-
dogenize the gene are still strongly deleterious, but mutations
that neofunctionalize are beneficial. Our results show that the
probability of neofunctionalization is increased when the
added expression of duplicates is high, dosage-balance con-
straints are strong, and population sizes are large.

We fit the model to data on sodium channel duplicates
in teleost fish. We estimate that the diffusion rate s2

D lies
between 5:43 1029s2

m and 1:53 1025s2
m per year, where

s2
m is the variance of mutation effect sizes. The square root

of s2
D is roughly equal to the amount of divergence that

accumulates in a lineage per year. This implies that duplicates
diverge between 73 1025d and 431023d per year, where
d is the average effect that a mutation has on the amount of
gene product produced by a duplicate. About 8000–9000
substitutions occur before the threshold is reached. This
number seems large, but it is not inconceivable. Summing
up all the genetic elements that can affect expression (e.g.,
promoters, enhancers, microRNAs, post-translational regula-
tors, etc.), there are many mutational targets for expression
changes. Indeed, high rates of enhancer gain and loss (en-
hancer turnover) have been seen in several taxa (Schmidt
et al. 2010; Domene et al. 2013; Paris et al. 2013; Arnold
et al. 2014). Dosage-balanced duplicates may undergo more
rapid enhancer turnover than singleton genes because com-
pensation is possible at two different loci. A last consideration
is that the time span involved is long, on the order of 108

generations. In any event, our inferences about numbers of
substitutions are very imprecise, and the actual number may
bemuch smaller. In the future, we expect that larger data sets
of comparative paralog expression will emerge andwill allow
greater precision in parameter estimates using methods of
analysis such as ABC.

This work builds on earlier hypotheses about the evolution
of dosage-sensitive duplicates. Aury et al. (2006) proposed
that expression of duplicates evolves by compensatory
changes, which can greatly delay the pseudogenization or
neofunctionalization of one of the pair. Later work suggested
that this process leads to a “random walk” along a line of
equal combined expression, a process that could explain com-
parative gene expression patterns observed in disparate line-
ages of organisms (Thompson et al. 2014; Gout and Lynch

Figure 6 Dosage-balance selection and the probability of neofunctional-
ization. The top panel shows the number of mutations (a proxy for time)
that occur before one of the duplicates neofunctionalizes or pseudoge-
nizes. Dots show the mean, and the whiskers show 1 SD. The bottom
panel compares the frequency of neofunctionalization for three strengths
of dosage-balance selection, from strong to very weak. Results are based
on 103 simulations.
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2015; Lan and Pritchard 2015). Other researchers suggested
that gene loss in a duplicated network would cause imbal-
ances and thus put positive selective pressure for loss of other
duplicates in the same network, leading to concerted dupli-
cate inactivation (Papp et al. 2003; Hughes et al. 2007; Konrad
et al. 2011). Under compensatory drift, the eventual loss of a
duplicate may not have much impact on other genes in its
network because its paralog will already be producing (al-
most) all the gene product needed.

Several lines of evidence are consistent with dosage-
balance selection after WGD. In contrast to classical models
in which redundant duplicates evolve neutrally (Ohno 1970;
Walsh 1995; Force et al. 1999; Lynch and Conery 2000),
dosage-balance selection will cause both genes to be essential
immediately after duplication. WGD does not disrupt dosage
balance, and therefore, many preserved duplicates originat-
ing in a WGD may evolve under dosage-balance selection.
Paramecium tetraurelia has undergone three WGDs in its
evolutionary history. In a large proportion of the duplicates
from the most recent WGD, both members of the pair are
evolving under strong purifying selection, and this propor-
tion declines over time (Aury et al. 2006). This pattern indi-
cates that many genes are dosage sensitive and evolve under
dosage-balance selection but that eventually selection to con-
serve function is lost for one of the duplicates. Other exam-
ples come from vertebrates. Some 100 million years after a
WGD in the ancestor of salmonid fish, about half the dupli-
cates are retained, and one-quarter of those are still similar in
expression and sequence (Berthelot et al. 2014). In a WGD
that happened in the ancestor of teleost fish about 300
million years ago, many duplicate pairs persisted for over
200million years before amember of the pairwas lost (Blomme
et al. 2006; Brunet et al. 2006; Sato et al. 2009). Delayed loss
of duplicates long after a WGD is also seen in Paramecium
species (McGrath et al. 2014b). Together these patterns in-
dicate that many duplicates after WGDs are dosage sensitive
and evolve in two phases: an initial prolonged phase where
both duplicates evolve under selection that conserves func-
tion and a later phase in which a duplicate is lost. This later
phase could be due to a paralog drifting to low expression
andmay be the stage at which a redundant gene is most likely
to evolve a new function.

Additional predictions flow from the compensatory drift
model. Duplicate pairs should persist longer if their total
expression is high because more mutations must fix to reach
the expression threshold p* (i.e., D* is larger). (Figure 4
shows the impact of increasing D* on the time until duplicate
loss.) Both yeast and paramecia show just this pattern: there
is a positive correlation between expression levels and the
longevity of duplicated genes following WGD (Seoighe and
Wolfe 1999; Aury et al. 2006; Gout et al. 2010; McGrath et al.
2014b). To explain this pattern, Gout et al. (2010) argued
that stabilizing selection on total expression is stronger on
dosage-sensitive duplicates that have high levels of expres-
sion. This idea is consistent with our model: the speed at
which expression of paralogs diverges becomes slower as

the strength of selection increases. The model also makes
predictions about patterns of subfunctionalization of dosage-
balanced duplicates. When duplicates are expressed in differ-
ent cell types under different regulation, compensatory drift
can occur in parallel in the two cell types, occasionally lead-
ing to subfunctionalized expression. Finally, ourmodelmakes
predictions about phylogenetic patterns. We expect the
member of a duplicate pair that has neofunctionalized in a
lineage to have lower expression than its paralog in closely
related lineages where neofunctionalization has not occurred
(Anderson and Evans 2009; Thompson et al. 2014). Recent
data support this prediction (Gout and Lynch 2015).

Compensatory drift may play an important role in two
other evolutionary contexts. Dosage-balance selection can
act on gene duplicates that do not arise by WGD. Selection
for increased expression can fix a duplicated gene in a pop-
ulation (Kondrashov 2012). Subsequently, there is stabilizing
selection favoring the new, higher-expression optimum. Once
this level is reached, the expression can diverge by compen-
satory drift, as described by our model. Second, compensa-
tory drift can act on the transcription and translation rates for
a gene evolving under stabilizing selection for expression. An
important difference with duplicate genes is that transcrip-
tion and translation rates cannot completely compensate for
each other. Qualitatively, however, we expect to see similar
evolutionary dynamics.

In our model, neofunctionalization happens after a long
period of compensatory drift. Alternatively, a novel gene
function could predate the duplication event as aminor pleio-
tropic effect that is not optimized because of tradeoffs. Under
the escape-from-adaptive-conflict model, duplicates are freed
from these tradeoffs, allowing one of them to become rapidly
optimized for the alternative function (Conant and Wolfe
2008; Des Marais and Rausher 2008). However, if one of
the gene’s functions requires both duplicates to contribute
expression, then compensatory drift would have to occur be-
fore one duplicate can escape from the adaptive conflict.

Compensatory drift is related to but distinct from quanti-
tative subfunctionalization (QS). This process describes how,
following duplication, degenerativemutations accumulate by
drift in each paralog until their total expression declines to
a minimum total level necessary for viability (Force et al.
1999, Stoltzfus 1999, Lynch and Force 2000, Hahn 2009;
Qian et al. 2010). Compensatory drift, in contrast, is the di-
vergence of expression in paralogs that have already reached
optimal expression under dosage-balance selection. A second
difference between the processes is that under compensatory
drift, half the mutations that fix increase expression, while
under QS, none of them do. Despite these differences, there
are also important similarities. Both processes can dramati-
cally increase the probability that a gene neofunctionalizes.
The two processes could operate in succession. Following the
tandem duplication of a gene, expression of each duplicate
can decline until both paralogs are necessary to produce
the minimal expression needed. The duplicates then can di-
verge through compensatory drift.
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Dosage-balance selection may provide opportunities for
adaptation long after WGD occurs. When one of a duplicate
pair of genes drifts to a low level of expression, a period of
incubation occurs during which it can evolve a new function.
As illustrated by duplicates of sodium channel genes in teleost
fish, downregulation of dosage-sensitive duplicates may be a
common preadaptation in many diversifying gene families.
Compensatory drift thus still may be facilitating adaptation
very longafter the twoWGDs thatoccurrednear the rootof the
vertebrate tree.
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File S1 

Stochastic Simulation of Compensatory Drift 

 

Stochastic simulations for the evolution of p1 and p2  

We used explicit stochastic simulations of compensatory drift to check the diffusion 

approximation and gain additional insight about the evolutionary process. In our simulations, 

expression-altering mutations appeared in diploid individuals in a population of size N at a 

mutation rate 𝜇 per allele per generation. The initial conditions were 𝑝1 =  𝑝2 and 𝑝1 +  𝑝2  =  𝜃, 

where 𝜃  is the optimal expression level. Expression evolved according to a Poisson process.  

The number of generations until the next mutation appeared in an individual in the population 

was drawn from an exponential distribution with rate parameter 𝜆 = 4𝑁𝜇. Mutations occurred in 

either duplicate with equal probability and changed expression of that duplicate by a random 

amount, 𝛿, drawn from a standard normal distribution. The selection coefficient for a mutation 

that changes 𝑝2 to 𝑝2  +  𝛿 was calculated as 𝑠 =
𝑊(𝑝1,𝑝2+𝛿)

𝑊(𝑝1,𝑝2)
− 1, where W() is the fitness 

function given by equation 1 in File S2.  The probability that the mutation fixed was calculated 

with Equation 1 from the main text. If the mutation fixed, then expression in the population for 

that duplicate was updated and the process began again. Absorption occurred when the 

expression of one of the duplicates fell below the threshold at 𝑝∗ or rose above the threshold 

at 𝜃 – 𝑝∗. Mutation effect size is independent of distance from the threshold. The amount of the 

mutation density that extends beyond the threshold is the probability of a mutation that 

guarantees a neofunctionalizing or pseudogenizing event. This also means that the total density 

that extends into negative expression is treated as the probability of a mutation that completely 

turns off expression. In the event the threshold is reached, regardless of which duplicate crossed 

a threshold, the duplicate with lower expression neofunctionalized or pseudogenized.  

 To check the diffusion approximation, we simulated compensatory drift within a single 

lineage for different numbers of generations and different values of the parameters (𝜇, 𝑁, 𝜔2).  

We generated empirical distributions for the difference in expression, 𝐷 =  𝑝1 − 𝑝2, and 

compared them to the diffusion approximations given by Equations 5 and 6 in the main text.  

Results showed that the simulations and diffusion approximation agreed closely. 



 We also used the simulations to confirm the assumption made by the diffusion 

approximation that the sum of expression, 𝐴 =  𝑝1 + 𝑝2, tends to stay close to the optimum 

value, 𝜃. We used the range of parameter values estimated from our ABC analysis to simulate 

expression evolution under the model and measure the standard deviation of A, which we denote 

as 𝜎𝐴. We found that 𝜎𝐴 is small compared to 𝜎𝑚 and 𝜃 when selection is at least strong enough 

to remove approximately half of expression altering mutations. 

 To gain additional insight about compensatory drift, we used the simulations to find the 

number of mutations, number of mutations that fix, and the sizes of mutations that fix.  The 

results are reported in the main text. We measured the proportion of all mutations that fix under 

these parameter values, which we call 𝛼, and used this value to measure the proportion of 

mutations that were prevented from fixing by dosage-balance selection. We calculated that 

proportion as 1 − 2𝑁𝛼. 

 

Dosage balance selection and the probability of neofunctionalization  

To study the frequency of neofunctionalization under compensatory drift, we simulated the 

dynamics as above. These simulations included two more types of mutations, pseudogenizing 

and neofunctionalizing.  We set the pseudogenization mutation rate to be 10
3
 times higher than 

the neofunctionalization rate. Ten percent of mutations were pseudogenizing, and 0.01% of 

mutations caused neofunctionalization. Neofunctionalization increased fitness by 0.1% but also 

caused a loss of fitness since expression no longer contributed to the ancestral function. The 

fitness of a pseudogenizing mutation, for example if p1 became a pseudogene leaving p2 alone to 

contribute expression, was calculated as 𝑊 = exp [
−(𝑝2−𝜃)2

2𝜔2
] and if p1 had neofunctionalized 

then 𝑊 = 1.001 × exp [
−(𝑝2−𝜃)2

2𝜔2
]. The only parameter that was varied in the simulations was the 

selection strength ω
2
, which took the values of 10

2
 𝜎𝑚

2 , 10
4
 𝜎𝑚

2 , and 10
6 𝜎𝑚

2 .  One thousand 

simulations were run for each condition. Simulations ended when either pseudogenization or 

neofunctionalization of one of the duplicates had occurred. 

 

Substitution in populations with high N𝝁 

If the mutation rate is high and/or the population size is large, the population is likely to be 

polymorphic when a mutation appears in that population, which violates the assumption of our 



analytic model. If most mutations that reach an appreciable frequency in the population are 

effectively neutral, then we expect this fact to have a negligible impact on the rate of 

substitutions. To assess this issue we performed stochastic simulations as described above and 

recorded the values of Ns for mutations that fix. We simulated populations with three strengths 

of selection, corresponding to situations in which 99%, 90%, or 50% of mutations have |Ns| > 1.  

Figure S1 shows the distribution of Ns of mutations that fixed. The mean |Ns| of mutations that 

fix was 0.24 (median = 0.15) for all three cases.  Less than 1.3% of substitutions had |Ns| > 1. In 

summary, simulations show that more than 98% of mutations that fix are nearly neutral even 

when 99% of random mutations have a large impact on fitness (|Ns| > 1). 

 

 

These results indicate that the vast majority of mutations that fix are nearly neutral, suggesting 

that the model may provide a good approximation even when population size and/or mutation are 

large.  

 To investigate this issue further, we performed individual-based simulations. If 

substitution is a Poisson process, then the mean number of substitutions will have a linear 

relationship with the mutation rate.  If high mutation rates impact the dynamics of substitution, 

then the mean number of substitution should depart from that linear relationship as Nµ becomes 

high relative to the time it takes for a mutation to fix.  

 Figure S1. Distribution of Ns for fixed mutations. Stochastic simulations of a 

population of size N = 10
4
, mutation rate µ = 10

-4
, and θ =100. Three different 

strengths of dosage balance selection were simulated. The selection parameter (ω
2
) 

value used for each simulation is indicated above each distribution. 

 



We simulated populations of N = 100 asexual haploid individuals evolving by non-

overlapping generations for 10
6
 generations. Each individual had a probability µ of mutating.  If 

mutation happened in an individual then a random variate δ was drawn from a standard Normal 

distribution and was added to the expression level of the individual. Zygotes were created for 

generation t + 1 by sampling individuals in generation t with probabilities proportional to their 

fitnesses.  Selection strength was such that 62% of mutations had |Ns| > 1. The starting condition 

was all individuals in the population had optimal expression.   

Simulations were run for values of Nµ over the range [10
-4

, 10]. We determined the allele 

frequency spectra by sampling the simulations every 10
3
 generations, and calculated the 

substitution rates. The results for the allele frequency spectra are shown in Figure S2.  With Nµ = 

0.1, the most common allele was typically at a frequency around 85%, and no more than four 

alleles segregated.  With Nµ = 1, the major allele frequency is typically 50%, and up to 12 alleles 

segregate.  

The relationship between Nµ and the substitution rate is shown in Figure S3.  The 

relation at higher mutation rates is very close to what is expected from extrapolating from the 

lowest mutation rates (the regime where our Poisson process approximation holds).  At the very 

highest mutation rates (Nµ > 1), we begin to see departures from linearity, but the departures are 

still not large even with Nµ = 10.  We conclude that our model provides good approximations for 

mutation rates that are somewhat higher than are justified by our assumption that only one 

mutation segregates at a time. 



 

 

Figure S3. Substitution rate and mutation rate.  Each point shows the mean 

number of substations in 10
3
 replicate simulations for 40 different values of Nµ. A 

line of slope 1 was fit to the results of simulations with the lowest Nµ between 10
-4

 

and 10
-2

 where independent mutations largely do not co-segregate in the population. 

Departure from this line at higher Nµ indicates that interference between mutations 

co-segregating in the population is impacting the substitution rate.  The deviation is, 

however, not large over this range of parameters. 

 

 

Figure S2. Frequency spectrum of segregating alleles. The results of two 

simulations with Nµ = 0.1 (red triangles) and 1 (black circles). The population was 

sampled every 10
3
 generations over the course of 10

5
 generations. Each point is the 

frequency of an allele in the population with a particular frequency ranking. The 

most common allele is ranked 1, the second most common ranked 2, etc. The lines 

indicate the mean allele frequency of a given ranking for the whole simulation. 

 



File S2 

Compensatory drift and the evolutionary dynamics of dosage-sensitive duplicate genes 

 

The model 

Stabilizing selection acts on the total expression of two paralogous genes. The expression levels 

of the genes are denoted p1 and p2. The fitness function is: 

 

 𝑊 = exp [
−(𝑝1+𝑝2−𝜃)2

2𝜔2 ] (1) 

 

where 𝜃 is the optimum for the sum 𝑝1 + 𝑝2, and 𝜔2
 is the width (variance) of the fitness 

function, and so larger values imply weaker selection.  (Equation (1) can be viewed as an 

approximation for a wide range of stabilizing fitness functions, including asymmetric ones, if 𝜔2
 

is chosen to produce the same curvature along the diagonal.  The approximation will be best 

when parameters are such that total gene expression stays near the optimum:  𝑝1 + 𝑝2 ≈ 𝜃). In 

graphical form the fitness function looks like this: 

  

We assume that there is a threshold of expression. Above this threshold, a paralog cannot 

become a pseudogene or neofunctionalize because the fitness cost to its original function would 

be too great. Below the threshold, however, neofunctionalization or pseudogenization is 

guaranteed to happen, and it happens on a fast timescale relative to the speed at which the ps 

change. We denote the threshold as p*. 

When a mutation that changes expression occurs, one of the two loci is chosen at random 

to mutate. We assume that the distribution of mutational effects on expression, denoted 𝑓𝜇(), is 



normal with mean 0 and variance 𝜎𝑚
2 . The probability that a mutation with an effect 𝛿 on either 

p1 or p2 fixes is denoted 𝑃𝑓𝑖𝑥(𝛿).  There is a probability 𝜇 per generation that a mutation affecting 

expression will occur at each of the two gene copies at each of the two paralogs. The waiting 

time until the next mutation appears in the population is exponentially-distributed with mean 

1/(4𝑁𝜇). The evolutionary dynamics therefore proceed as a random walk in p1 and p2.  

 

A diffusion approximation 

It is useful to work in terms of the sum A and the difference D in expression at the two loci:  

 

  𝐴 =  𝑝1 + 𝑝2 

    𝐷 =  𝑝1 − 𝑝2   (2) 

 

There are two reasons for this change of variables. Stabilizing selection acts on A but is 

indifferent to D, and that fact simplifies the derivation below. Second, our data are on D (see File 

S3), and so this parameterization focuses our attention in the model on the quantity of empirical 

interest. 

In the absence of boundary conditions (that is, with no neofunctionalization), the density 

function for A and D can be written as the product of independent density functions: 

 

 𝑓𝐴,𝐷 = 𝑓𝐴(𝐴)𝑓𝐷(𝐷)    (3) 

 

That relation also holds approximately when neofunctionalization does happen if stabilizing 

selection is strong relative to drift. Then the value of A will stay very close to its optimal value. 

The evolutionary dynamics then lie (almost) along a single dimension in which 𝐴 = 𝜃 and the 

difference in expression, D diverges with time. This is the key approximation to what follows. 

We will therefore assume this situation holds, and proceed to develop a partial differential 

equation (PDE) for the density function fD(). Simulations described in File S1 validate the 

accuracy of this approximation over the parameter values of biological interest to us. The PDE 

for D follows that of simple Brownian motion: 

 

 𝜕𝑡𝑓𝐷 =
1

2
𝜎𝐷

2𝜕𝐷,𝐷𝑓𝐷   (4) 



 

The diffusion coefficient 𝜎𝐷
2 determines the evolutionary rate at which D will diverge in the 

paralogs. 

 

Calculating the diffusion coefficient 

The diffusion coefficient is defined as the instantaneous rate of increase in the variance of D, the 

difference of expression in the paralogs. We calculate that rate as 

 

  𝜎𝐷
2 = ∫(𝛿 − 𝛿̅)

2
[4𝑁𝜇𝑓𝜇(𝛿)]𝑃𝑓𝑖𝑥(𝛿)𝑑𝛿 (5) 

 

where 𝛿̅ is the mean effect of mutations that fix, which is approximately 0. The term in square 

brackets represents the number of new mutations with effect 𝛿 entering the population each 

generation. 𝑃𝑓𝑖𝑥(𝛿) is the probability that a mutation with effect 𝛿 fixes, for which we use 

Kimura’s (1964) approximation: 

  

  𝑃fix(𝛿)  =  
1−exp [−2𝑠(𝛿)]

1−exp [−4𝑁𝑠(𝛿)]
 (6) 

 

Here 𝑠(𝛿) is the relative fitness of a mutation with an effect 𝛿 on expression: 

 

 𝑠(𝛿) ≈
𝑊(𝛿)

𝑊(0)
− 1 (7) 

 ≈ exp [
−𝛿2

2𝜔2] − 1 ≈  
−𝛿2

2𝜔2 (8) 

 

Equation (7) makes use of the earlier assumption that selection is sufficiently strong relative to 

drift that A is typically very close to 𝜃. 

Combining these expressions gives us 

 

  𝜎𝐷
2 =

4𝑁𝜇

√2𝜋𝜎𝑚
∫ 𝛿2exp [

−𝛿2

2𝜎𝑚
2 ] (

exp[
𝛿2

𝜔2]−1

exp[
2𝛿2𝑁

𝜔2 ]−1
) 𝑑𝛿 (9) 

 



That integral cannot be solved analytically. We can, however, determine its value using the 

following combination of analytic and numerical arguments. The probability that a mutation 

fixes is close to that for a neutral mutation (= 1/2N) if the magnitude of its selection coefficient is 

sufficiently small, while the probability becomes negligible if the selection coefficient is larger 

than that. From basic population genetics, we know that this critical value for the selection 

coefficient is c/2N, where c is an unknown constant that is approximately equal to 1 (Crow and 

Kimura, 1970). Using 𝛿∗ to denote the mutational effect corresponding to that selection 

coefficient, we find from Equation (8) that 

 

 𝛿∗ = √
𝑐𝜔2

𝑁
. (10) 

 

Now assume that the average size of mutational effects is much greater than 𝛿∗, in which case 

 𝑓𝜇(𝛿) ≈ 𝑓𝜇(0)  for −𝛿∗ < 𝛿 < 𝛿∗.  Equation (9) for the diffusion coefficient is now 

 

 𝜎𝐷
2 ≈ 4𝑁𝜇 ∫ 𝛿2𝑓𝜇(𝛿) (

1

2𝑁
) 𝑑𝛿

𝛿∗

−𝛿∗  (11) 

 ≈ 𝑘
𝜇𝜔3

𝜎𝑚𝑁3/2  , (12) 

 

where k is a numerical constant that is independent of all of the model’s parameters. 

The last element needed is the value of k. While we could resort to further analytic 

approximations, we chose to determine the value for k using stochastic simulations. We 

simulated a random walk in p1 and p2 (or equivalently, in A and D) in the absence of absorbing 

boundaries at p = p* and 𝜃 −  𝑝∗. We calculated the variance among replicate simulations at 

time t and fit k using the fact that under Equation (4) we expect 

 

 𝑉𝑎𝑟[𝐷] = 𝜎𝐷
2𝑡. (13) 

 

We find that k ≈ 1.543. We verified that consistent results are obtained from simulations using 

different values for 𝜇, 𝜔2, 𝜎𝑚
2 , and N so long as the resulting value for 𝜎𝐷

2 as given by Equation 

(12) is unaltered. 
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File S3 

ABC analysis of the sodium channel expression data 

 

 We estimated the posterior distributions of the two model parameters, 𝜎𝐷
2 and D* from 

the comparative expression data in Thompson et al. (2014) using Approximate Bayesian 

Computation, or ABC.  The approach follows three steps.  First, model parameters (e.g. 𝜎𝐷
2 and 

D*) are drawn from prior distributions.  Second, data is simulated using the model and selected 

parameter values.  Third, results from the simulation are compared to the real dataset using 

summary statistics; parameters that yield results sufficiently similar to the real data are retained, 

while the others are rejected from the posterior distribution.  

 We implemented ABC by simulating the diffusion approximation described in the text.  

We first selected uninformative prior distributions for the two model parameters. For 𝜎𝐷
2 the 

prior distribution was 𝑓(𝜎𝐷
2)  =  1/(11 𝑙𝑛(10) 𝜎𝐷

2 ) which is a truncated Jeffrey’s prior for a 

scale parameter (Gelman et al. 2004) where 10
-11 

< 𝜎𝐷
2 < 1. This range was determined through 

preliminary ABC analysis. To simulate random values of D*, we drew random values of 𝜃 and 

p* as a proportion of 𝜃 which we denote as 𝛾 (where 𝛾 = 𝑝∗/ 𝜃), from prior distributions.  We 

then used the relationship 𝐷∗ = 𝜃(1– 2𝛾) to find the random value of D* to feed into the model.  

Several empirical studies investigating the distribution of mutation effect size on 

expression indicate that the typical effect size is in the range 0.1% to 10% of expression 

(Metzger et al. 2015; Patwardhan et al. 2012; Melnikov et al. 2012). Since we scale expression 

units by 𝜎𝑚this means that 𝜃 is likely greater than 4 𝜎𝑚.  We therefore used a prior distribution 

for 𝜃 that is uniform between 4 and 10
3
. For 𝛾, we found from the data that the threshold must be 

less than 0.12 𝜃, and experimental data from several vertebrate cell types indicate that there are 

fewer than 10
4
 mRNA transcripts of any given gene per cell (Mortazavi et al. 2008, Islam et al. 

2010, Schwannhauser et al. 2011). We consider less than one transcript per cell as the loss of 

expression, which corresponds to a value of 𝛾 less than 1/10
4
. We conservatively set the prior for 

the log γ as a uniform distribution with 10−5 < 𝛾 < 0.12. 

 Once random values for 𝜎𝐷
2 and D* were drawn from their prior distributions, evolution 

of D was simulated on the phylogenetic tree for the species taken from Betancur-R et al. (2013) 

(Figure 1).  To discern the impact of ascertainment bias, we performed two analyses, one that 

excluded the electric fish and one that included them.  The initial value at the root of the tree was 



D = 0. We then proceeded through the tree from each node to its daughter nodes, with times 

between nodes specified by the tree.  The value of D at a daughter node was determined by first 

asking if absorption had occurred at D* or –D* using Equation 6.  If absorption did not occur, 

then a random value of D between –D* and D* was drawn from the conditional distribution for 

D using Equation 5. This process was repeated until the tips of the tree were reached. We then 

recorded which nodes (if any) had reached absorption and the values of D for those that had not. 

 The ABC rejection algorithm was implemented in two steps. First, the phylogenetic 

pattern of absorption was compared between the real data and each simulation. Simulations were 

rejected if the pattern of absorption on each of the two trees simulated did not match that of the 

two datasets (with and without the electric fish). In the second step, we used independent 

contrasts (IC) (Felsenstein 1985) to compare the remaining simulations to the data.  The data 

from Thompson et al. (2014) is the expression ratio R = Scn4aa/Scn4ab, but D in the model is 

the expression difference.  To compare those numbers, we used the equation  

 

  𝑅 =
1+𝐷 𝜃⁄

1−𝐷/𝜃
  (1) 

 

where 𝜃 is the optimal expression (see File S2). The independent contrasts of log R from the real 

data and each simulation were calculated at each node on the tree. We used the pic function in 

the R package ape to calculate vectors of IC. The Euclidean distance between the IC of each 

simulation and the real data was measured and used to reject > 99% of the remaining 

simulations. This threshold was determined by progressively narrowing the threshold of 

difference between simulation IC and data IC until convergence on a stable posterior distribution 

was achieved. We used the abc function in the R package abc to calculate the joint posterior 

distribution for the two parameters, 𝜎𝐷
2, and D* and local linear regression with an Epanechnikov 

kernel to correct for correlation between the statistic and each parameter value in the posterior 

distribution (Beaumont 2010). For the ABC analysis on the data containing the electric fish, 5 x 

10
9
 simulations were run with the electric fish and the posterior distribution contained 3135 

simulations. For the data without the electric fish, 5 x 10
5
 simulations were run with 322 

simulations remaining in the posterior distribution. 
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