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ABSTRACT RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA
editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well
understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity
Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing.
An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing
targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the
shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in
proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic
variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing.
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RNA EDITING in mammals occurs through deamination of
adenosine,which is convertedto inosine(A-to-Iediting),or

deamination of cytosine, which is converted to uracil (C-to-U
editing) (Davidson and Shelness 2000; Bass 2002). Other
types of editing have been reported, but these findings re-
main controversial (Bass et al. 2012; Gu et al. 2012). The two
canonical editing types, A-to-I and C-to-U editing, are medi-
ated by distinct pathways. A-to-I editing is catalyzed on
double-stranded (ds) RNA by proteins in the adenosine
deaminase, RNA-specific (ADAR) family (ADAR1 and
ADAR2) and is most common in neuronal tissues. However,
the Adar gene family is ubiquitously expressed, and editing
has been reported in many other tissues (Gu et al. 2012).

Homozygous deletion of Adar genes is embryonic lethal in
mice, and defects in A-to-I editing have been associated with
neurodegenerative disorders and cancers (Gurevich et al.
2002; Paz et al. 2007). The C-to-U editing pathway is cata-
lyzed by apolipoprotein B messenger RNA (mRNA) editing
enzyme catalytic polypeptide 1 (Apobec1), which is expressed
primarily in small intestine and liver, where it targets the
transcript of apolipoprotein B (Apob), converting a CAA (glu-
tamine) codon within the coding sequence to a stop codon
(UAA). This editing event results in two APOB protein iso-
forms, APOB48 from the edited transcript and APOB100 from
the unedited transcript. Editing of Apob is evolutionarily con-
served and occurs in mice, humans, and other mammals. The
edited isoform APOB48 functions in the synthesis, assembly,
and secretion of chylomicrons in the small intestine; the un-
edited isoform APOB100 is expressed in the liver and gives
rise to very low-density lipoprotein (VLDL), which is con-
verted to LDL in the bloodstream. Although VLDL can contain
either APOB48 or APOB100, LDL exclusively contains
APOB100 (Davidson and Shelness 2000). Mice carrying a
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homozygous null allele of Apobec1 are viable but exhibit ab-
normal lipid homeostasis (Hirano et al. 1996).

Both A-to-I and C-to-U editing alters RNA nucleotides at
specific positions in a tissue-specific manner (Nakamuta et al.
1995; Bass 2002; Dawson et al. 2004). Recent reports have
described editing events at tens to thousands of sites in hu-
mans andmice (Li et al. 2009; Rosenberg et al. 2011). Editing
is often incomplete, with only a proportion of available tran-
scripts being edited. The mechanisms that determine the
specificity and efficiency of RNA editing are not well under-
stood. Previous studies in humans have shown only limited
effects of genetic variation on RNA editing. In one study, six
A-to-I editing sites were found to be edited consistently
across 32 individuals (Greenberger et al. 2010). Another
study found evidence of genetic variation for two (of 7389)
A-to-I editing sites (Daneck et al. 2012). Still another study
found an association between RNA editing rates and genetic
variation of Apobec1 (Hassan et al. 2014). The broader impact
of genetic variation on RNA editing in humans and mice
remains unclear. Identification of allelic variants that alter
the editing process could provide new insights into these
mechanisms, and this provides the motivation for our genetic
mapping study.

The Diversity Outbred (DO) population is a multiparent
outbred mouse population derived from the same eight
progenitor lines as the Collaborative Cross (CC) (Svenson
et al. 2012). The DO population provides high levels of
allelic diversity and high-resolution genetic mapping. Here
we use natural allelic variants in the DO population to
identify polymorphic loci that affect RNA editing with the
aim of understanding the genetic factors that determine
quantitative levels of editing. We consider the editing
ratio—the proportion of edited reads at a site—as a quan-
titative trait for genetic analysis. Our findings reveal distinct
modes of genetic regulation in the two editing pathways
and provide insight into evolutionary constraints on the
mechanisms that determine the specificity and efficiency
of RNA editing.

Materials and Methods

DO mice

We obtained DO mice (J:DO, Stock #009376; 277 in total,
143 females and 134 males) from The Jackson Laboratory.
Animals were received at 3 weeks of age and housed from
wean age with free access to either standard rodent chow
containing 6% fat by weight (73 females and 68 males;
LabDiet 5K52, Scott Distributing, Hudson, NH) or high-fat
chow containing 22% fat byweight (70 females and 66males;
TD.08811, Harlan Laboratories, Madison, WI). Animals were
phenotyped for multiple metabolic and hematologic param-
eters as described by Svenson et al. (2012) and euthanized at
26 weeks of age. Liver samples were collected from each
animal and stored in RNAlater solution (Life Technologies,
Grand Island, NY) at 280�. All procedures on DO mice were

approved by the Animal Care and Use Committee at The
Jackson Laboratory (Protocol #06006).

DO founder strains

Breeder pairs for each of the eight DO founder strains, A/J,
C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ, CAST/EiJ,
PWK/PhJ, and WSB/EiJ, were purchased from The Jackson
Laboratory and were bred to produce a total of 128 male
mice, 16 per founder strain. Male progeny mice were main-
tained on standard breeder chow (Purina LabDiet 5013) until
weaning at the University of Wisconsin–Madison. Beginning
at 4 weeks of age, half the male mice from each strain were
maintained on either a semipurified control diet containing
17% of kilocalories from fat (TD.08810) or a high-fat, high-
sucrose (HF/HS) diet containing 45% of kilocalories from fat
and 34% (by weight) sucrose (TD.08811); diets were from
Harlan Laboratories (Madison, WI). Owing to reduced litter
size or poor breeding, male CAST/EiJ and NZO/HlLtJ mice
were purchased from The Jackson Laboratory at�3 weeks of
age and switched to the control or HF/HS diet at 4 weeks.
Animals were euthanized at 26 weeks of age (except for
the NZO/HlLtJ mice). NZO/HlLtJ mice were euthanized at
20weeks of age owing to high lethality in response to the HF/
HS diet. Liver samples were collected, snap frozen, and ship-
ped on dry ice to The Jackson Laboratory for RNA-seq anal-
ysis. All animal procedures were approved by the Animal
Care and Use Committee at University of Wisconsin–Madison
(Protocol #A00757-0-07-11).

RNA sequencing

Total liver RNA was isolated using the TRIzol Plus RNA
Extraction Kit (Life Technologies) with on-column DNase
digestion. Following the Illumina TruSeq standard protocol,
indexed mRNA-seq libraries were generated from 1 mg total
RNA followed by quality control and quantitation on an Agi-
lent Bioanalyzer (Santa Clara, CA) and the KAPA Biosystems
Library quantitative PCR (qPCR) quantitation method. Fi-
nally, 100-bp single-end reads were sequenced using the Illu-
mina HiSeq 2000 (San Diego, CA). To minimize technical
variation (lane and barcode effects in sequencing), the sam-
ples were randomly assigned to lanes and multiplexed at 12
or 24 samples per lane with randomly selected barcodes.
Each DO sample was sequenced with two or four technical
replicates to obtain �10 million reads per sample. Base calling
was performed using CASAVA v1.8.0, and FASTQ files were
filtered to remove low-quality reads using the Illumina
CASAVA-1.8 FASTQFilter (http://cancan.cshl.edu/labmembers/
gordon/fastq_illumina_filter/).

RNA editing site prediction in founder strains

We constructed strain-specific transcriptomes for seven of the
eight founder strains (except C57BL/6J) using ModTools
(Huang et al. 2014). We incorporated strain-specific SNPs
and short (,50 bp) indels from the Sanger Mouse Genomes
Project (Keane et al. 2011; Yalcin et al. 2011) (REL-1303)
into the Genome Reference Consortium Mouse Genome,
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Build 38 (GRCm38) reference sequence. We constructed
MOD files and strain-specific genomes and adjusted tran-
script annotation using the vcf2mod, insilico, and modmap
utilities from the ModTools suite. We extracted the transcrip-
tome of each founder strain using rsem-prepare-reference
(RSEM v1.2.15) (Li and Dewey 2011) and built Bowtie in-
dices (Bowtie v0.12.8) (Langmead et al. 2009). We searched
for RNA editing sites using a two-tiered approach inwhichwe
searched for sites in the founder strains and then evaluated
those sites in DO mice. A detailed description of the process
with the script commands is available in Supporting Informa-
tion, File S1 and Figure S1.

All 16 replicates from each strain were aligned to their
respective strain-specific transcriptome using Bowtie with pa-
rameters -a –best –strata –v 3. We converted transcriptome
alignments to genome alignments using rsem-tbam2gbam (Li
and Dewey 2011) and adjusted the strain-specific coordinates
to GRCm38 coordinates using Lapels (Huang et al. 2014).

We piled up the reads within each transcript (Ensembl
archive 68) for each of the 16 replicates in a singleDO founder
strain. For each founder strain, we retained sites with the
following properties:

1. Exactly two alleles expressed;
2. At least two reads in at least 75% of the 16 replicates;
3. Minor allele frequency (MAF) . 5%;
4. Reference and edited allele coverage $ 160 reads;
5. No intersection with any known SNP or structural variant

(Keane et al. 2011; Yalcin et al. 2012); and
6. Occurrence within a gene that contains no noncanonical

editing sites.

Our reconstructions of founder strain and individual DO
transcriptomes are based on the current mouse reference
genome (GRCm38) and include annotated pseudogenes.
However, some of the founder strain genomes are likely to
harbor unannotated pseudogenes with paralogous SNP var-
iants that, if they are transcribed, could appear to be editing.
While we can account for known pseudogenes, unknown or
unannotated pseudogenes are more challenging. The last
filter (#6) was included to address these on the assumption
that paralogous variants are likely to produce signatures of
noncanonical editing. It is possible that some sites passing our
filters are artifacts of expression of unannotated pseudogenes
(File S2, File S3, File S4, and File S5). We have included
counts of the number of canonical and noncanonical editing
sites included throughout the process (Table S1).

We took theunionof all editing sites from the eight founder
strains and retained sites in genes with only canonical editing
in all eight strains, coverage $ 160 at the edited bases, and
less than 1% of reads in the nonedited bases. This produced a
set of putative editing sites that we then queried and filtered
in the DO samples (File S6).

RNA editing quantification in the DO samples

We built a combined transcriptome consisting of transcripts
from all eight founder strains and indexed it using Bowtie

(Langmead et al. 2009).We aligned RNA-seq reads from each
DO animal to the combined transcriptome and separated
them into individual alignments. We then converted the in-
dividual transcriptome alignments to genome alignments
and then to GRCm38 coordinates using rsem-tbam2gbam
and Lapels. Once all alignments were in the same coordinate
system, we extracted only one instance of every read across
all eight alignments and filtered any reads that were mapped
to different coordinates in any two strains. This produced a
BAM file for each DO sample representing alignments to all
eight founder strains.

We piled up the reads in each DO sample at the putative
editing sites and retained those with mean read depths$ 20
and a mean editing ratio $ 2%. We retained 186 sites (File
S7).

Previous reports havenoted that false-positiveRNAediting
sites may be due to a bias in the read position in which the
putative editing site occurs (Pickrell et al. 2012).We looked at
the position of each of the 186 editing sites in the 100-bp
reads from each founder. We counted the frequency with
which the editing site occurred at each position in the reads
in each of the eight founders. We tested whether a greater
proportion of reads occurred in the first and last 5 bp of each
read than expected by chance using a binomial test (H0: pro-
portion = 0.1). We discarded 54 editing sites that occurred
predominantly at the ends of reads and retained 102 sites
(File S8).

We queried the RADAR (Ramaswami and Li 2014) and
DARNED (Kiran et al. 2013) databases for all reported mouse
editing sites and found 8891 sites.We piled these sites up in the
DO samples and retained 98 sites with mean coverage $ 20
and a mean editing ratio $ 2% (File S9). Of these, 17 sites
were identical to the de novo sites, and we retained 81 addi-
tional editing sites from RADAR and DARNED (File S9). We
combined these with the 102 de novo sites and proceeded
with a total of 183 sites.

Genotyping and haplotype reconstruction of
DO genomes

Genotyping of the DO mice was described in our previous
study (Svenson et al. 2012). DNA was extracted from tail
biopsies and genotyped using the Mouse Universal Genotyp-
ing Array (MUGA; GeneSeek, Lincoln, NE). A total of 277
animals were genotyped. The founder haplotypes were
reconstructed using a hidden Markov model based on the
normalized intensity values from the MUGA (Gatti et al.
2014).

QTL mapping of the RNA editing ratio

The haplotype reconstruction process produced a matrix of
eight founder allele dosages for each sample at each marker.
Wefit a linearmixedmodel by regressing the edited counts on
sex, diet, and total counts with an adjustment for kinship
between animals (Gatti et al. 2014). When total counts in a
sample at an editing site were,10, we found that many false
associations were produced by low total counts in the
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denominator of the editing ratio. Therefore, we excluded
samples with total counts ,10 from the model because esti-
mates of the editing ratio became unstable. The regression
model used was

yi ¼ sibs þ dibd þ nibr þ
X8

j¼1

gijbj þ gi þ ei (1)

where yi = edited counts for animal i; bs = effect of sex; si =
sex of animal i; bd = effect of diet; di = diet for animal i; br =
effect of total counts; ni = total counts for animal i; bj = effect
of founder allele j; gij = founder allele dosage for founder j in
animal i; and gi = random effect representing the polygenic
influence of animal i. We report the LOD ratio as the mapping
statistic. We determined significance thresholds by permut-
ing the phenotype and covariate values 1000 times (Churchill
and Doerge 1994, 2008). We selected the maximum associ-
ation for each editing ratio and calculated the genome-wide
p-value from the empirical distribution of null LOD scores.
We applied a Benjamini and Hochberg false-discovery-rate
(FDR) correction (Benjamini and Hochberg 1995) to these
p-values and retained those with padj , 0.05 (File S10 and
File S11).

Quantification of different isoforms of Apobec1

Two isoforms of Apobec1 were found from the reference ge-
nome annotation. The difference between the two isoforms
consisted of differences in the length of exon 4, one with a
longer exon 4 (NM_031159) and one with a shorter exon 4
(NM_001134391). We quantified the expression of the two
known isoforms and of a new isoform discovered in this
study—the extension of exon 5. We constructed six isoforms
of Apobec1, two of which were the reference isoforms. The
remaining four isoforms were to test which of the two refer-
ence isoforms the aberrant extended isoform is derived from
and the full length of the aberrant isoform.We embedded the
six isoforms into the annotation file downloaded from
Ensembl (http://useast.ensembl.org) and then used RSEM
(Li and Dewey 2011) to quantify the six isoforms, tolerating
zero mismatches in the alignments. Transcripts per million
(TPM) and fragments per kilobase of transcript per million
aligned reads (FPKM) were used for quantification and
comparison.

Secondary-structure prediction

Full-length pre-mRNAs containing intronswere imputed from
strain-specific transcriptomes in which Sanger SNPs and
indels were incorporated into the reference sequence.
Minimum-free-energy structures were predicted for full-length
mRNAsusing theViennaRNAfold tool (http://rna.tbi.univie.
ac.at/cgi-bin/RNAfold.cgi) with default parameters (Lorenz
et al. 2011).

We calculated themost stable substructure around the edit
site using RNALfold (Hofacker et al. 2004) from the Vienna
RNA Package v2.1.7 (Lorenz et al. 2011), which calculates

the most stable substructures within a large sequence. By
running RNALfold –z, we obtained all substructures with a
Z-score # 21.0 (lower Z-scores indicate more stable struc-
tures), from which we retrieved the substructure containing
the edit site with the lowest Z-score.

We calculated the probability that the editing site occurs in
a favorable editing position (occurring in a stem or a bulge or
internal loop of size# 2) by summing the pairing and unpair-
ing probabilities of all relevant nucleotides around the edit-
ing site. For instance, the probability of the editing site being
in a stem is the sum of all base-pairing probabilities between
it and any other nucleotide (i.e., the probability of the editing
site being paired). For an editing site e to be in a bulge of size
1, the probability is that of the editing site being unpaired
(1 2 sum of all base-pairing probabilities for it) times the
probability of nucleotide e 2 1 being paired times the proba-
bility of nucleotide e + 1 being paired. An analogous calcula-
tionwas performed for internal loops and larger sizes. File S13
provides the Python code for calculating the probability of the
editing site being in a favorable position. Base-pairing proba-
bilities were calculated by running RNAfold –p on the whole
gene sequence.

Gene expression analysis

Gene expression was computed by summarizing the expres-
sion of all isoforms computed by RSEM (Li and Dewey 2011)
from the founder strains. FPKM mapped reads were used.
Similar expression results were obtained simply by summing
the number of reads aligned to all the isoforms. The expres-
sion of APOB was computed by summarizing the reads that
uniquely aligned to the Apob transcript from the eight foun-
der strains.

Motif analysis

WeusedMEME (v4.10.0) (Bailey and Elkan 1994) to analyze
the 30-nt downstream sequences adjacent to the 59 C-to-U
editing sites that mapped to chromosome 6. We used the
following settings: exactly one motif per sequence, motif
length between 10 and 12 nt, and analysis of only the current
strand. The described motif was the motif with the highest
score. We searched for the motif in the same sequences using
FIMO (v4.10.0) (Bailey and Elkan 1994), searching only on
the given strand.

Genome assembly and annotation

Weused genome coordinates fromGRCm38 (Waterston et al.
2002). We obtained SNPs, indels, and structural variants for
the eight DO founder strains from the Sanger Mouse Ge-
nomes Project v3 (Keane et al. 2011). We used the Ensembl
archive 68 transcriptome (Flicek et al. 2012).

Data availability

The FASTQ files for the founder and DO RNA-seq runs are
archived at the Gene Expression Omnibus under accession
number GSE45684 (Munger et al. 2014). The alignment
pipeline, including alignment and RNA editing site calling,
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is described in File S1, File S2, File S3, File S4, File S5, File S6,
File S7, File S8, File S9, File S10, File S11, and File S12.

Results

Our study employed liver RNA-seq data from two experi-
ments. We profiled liver RNA in males from the eight inbred
founder strains of the DO population. We also profiled liver
samples in a genetic mapping panel of 277 DO mice of both
sexes (Svenson et al. 2012). We implemented a conservative
screen to identify candidate editing sites (see Materials and
Methods). Our goal was not the exhaustive identification of
editing sites. Rather, we aimed to obtain reliable editing sites
and then to evaluate quantitative variation in editing. We
selected sites with robust evidence for editing in the DO foun-
ders (editing . 5% with at least 160 reads) and minimal ev-
idence of sequencing or alignment errors, and we identified
192 sites in 131 genes.We retained 156 of those sites (51 A-to-I
and 105 C-to-U sites) in 113 genes with mean coverage. 20
and mean editing ratio $ 2% in DO mice. We removed sites
that had an excess of editing sites in the proximal or distal 5 bp
of each read and retained 102 sites. We then queried the
RADAR (Ramaswami and Li 2014) and DARNED (Kiran et al.
2013) RNA editing site databases and found 98 sites with
mean coverage . 20 and mean editing ratio $ 2% for these
sites in DOmice. Of these, 17 overlapped the 102 editing sites
found in the de novo discovery pipeline. We retained a total of
183 sites (102 + 982 17) from the de novo discovery and the
RADAR/DARNED databases (Table S2). There were 96 A-to-I
sites and 87 C-to-U sites. Most of these sites (160) occur in the
39 UTR of genes, two in intergenic regions, three in introns,
three in noncoding RNAs or expressed pseudogenes, and 15 in
coding regions. Among the 15 coding variants, 8 are synony-
mous, 6 are nonsynonymous, and 1, awell-known site inApob,
produces a stop codon (Chen et al. 1987). In earlier work, we
had identified and confirmed 17 liver RNA editing sites (Gu
et al. 2012);wedetected 14 of these sites here, and the remain-
ing 3 sites showed evidence of editing but were removed be-
cause they fell below our minimum read coverage criteria.

We mapped the editing ratio for each of the 183 sites and
found significant associations (FDR, 5%) for 119 sites in 81
genes. Of these sites, 70 were C-to-U sites, and 59 of these
mapped to a region on chromosome 6, while 11 mapped to a
location near the edited site (Figure 1A and Table S1). The
remaining 49 mapped associations were produced by A-to-I
sites, and most of these mapped to a location near the edited
site (Figure 1B).

C-to-U editing

C-to-U editing ratios for most sites were associated with a
single region on chromosome 6. We found 59 C-to-U editing
sites with editing ratios that associated with a region of chro-
mosome 6 between 119.6 and 125.6Mb. Of these 59 sites, 50
came from the de novo pipeline, and 9 were from RADAR or
DARNED. We examined the average C-to-U editing ratio in
the DO population for these 59 sites and found that all but

three sites in the Decorin (Dcn) gene were positively corre-
lated with one another and shared a common pattern of
allelic effects, suggesting that a single pleiotropic locus is
driving variation in most C-to-U edited sites.

We averaged the editing ratios across all 59 positively
correlated sites and mapped the average editing ratio to
chromosome 6 (Figure 2A). The founder effects at the peak
locus show a complex pattern (Figure 2B). DO mice carrying
the CAST/EiJ, PWK/PhJ, and WSB/EiJ alleles have higher
mean C-to-U editing; mice carrying the A/J, 129S1, and
NOD/ShiLtJ alleles have intermediate editing; and mice car-
rying the C57BL/6J or NZO/HlLtJ alleles have low editing.
The Bayesian credible interval for the association peak spans
2.5 Mb (121.1–123.6 Mb) and contains 39 transcripts, of
which 10 are expressed in liver, Apobec1, Phc1, Slc6a12,
Slc6a13, M6pr, Mug1, Mug2, Necap1, Pex26, and Gm10319.
None of these genes has an obvious functional connection
with RNA editing with the exception of Apobec1 (apolipopro-
tein B mRNA editing enzyme catalytic polypeptide 1), the
cytidine deaminase that catalyzes C-to-U editing (Petersen-
Mahrt and Neuberger 2003). We hypothesize that Apobec1
variants are the causal factor influencing quantitative varia-
tion in C-to-U editing.

To understand the effect of segregating alleles on theC-to-U
editing ratio, we examined the canonical C-to-U editing site in
Apob, which has an association on chromosome 6 at 120.2
Mb (Figure 3A). Apob transcript levels do not have an asso-
ciation on chromosome 6 in the liver, and thus, the editing
association arises as a result of editing variation, not tran-
scriptional variation. The pattern of allele effects for Apob
C-to-U editing is similar to the pattern for the 70 C-to-U sites
shown earlier (Figure 3B), suggesting that the underlying
genetic mechanisms are similar. We imputed the founder
SNPs onto the reconstructed DO haplotypes and performed
association mapping within the support interval. We found
that SNPs with alleles shared by C57BL/6J and NZO/HlLtJ
contribute the highest LOD scores (Figure 3C). We estimated
the editing ratio for each of the 36 genotypes present in the
DO samples (Figure 3D). The genotype estimates are noisier
owing to the smaller number of animals in each genotype
class; nevertheless, there appears to be a continuous geno-
type-dependent variation of editing ratios, suggesting the
presence of multiple functional alleles segregating in the
DO samples.We examined the Apob editing ratios in the eight
founder strains and compared them with the estimated ad-
ditive effect of founder haplotypes obtained in the DO pop-
ulation (Figure 3, B and E). In both groups of animals, the
C57BL/6J and NZO/HlLtJ haplotypes are associated with the
lowest editing ratios, and the CAST/EiJ and PWK/PhJ hap-
lotypes are associated with the highest editing ratios. Editing
is somewhat elevated in the presence of the WSB/EiJ haplo-
type, while A/J, 129S1/SvlmJ, and NOD/ShiLtJ haplotypes
are intermediate.

To better understand the mechanism driving the genetic
variation in C-to-U editing, we examined SNPs and small
insertions and deletions (indels) in Apobec1 that distinguish
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four haplotype groups: (1) CAST/EiJ and PWK/PhJ, (2)
C57BL/6J and NZO/HlLtJ, (3) A/J, 129S1/SvlmJ, and
NOD/ShiLtJ, and (4) WSB/EiJ. Fourteen SNPs or indels
are shared by PWK/PhJ and CAST/EiJ, one of which creates
an amino acid substitution in Apobec1 (rs50844667, 122,
581,478 bp); a positively charged arginine (R), located near
the catalytic domain, is replaced by a neutral glutamine (Q)
(Figure 4A). The glutamine variant found in CAST/EiJ and
PWK/PhJ is shared by most species of mammals (Figure 4B).
Only humans, rats (reference strain BN/SsNMcw), and most
laboratory mouse strains, including the reference strain
C57BL/6J, share the arginine residue at this site. The high
editing ratio observed in CAST/EiJ and PWK/PhJ strains sug-
gests that the glutamine allele of APOBEC1 may have in-
creased catalytic activity.

Three Apobec1 variants were shared by C57BL/6J and
NZO/HlLtJ strains. One is a 262-nt insertion (relative to
the other six strains) in the fifth intron (122,586,456–
122,586,718 bp) (Figure 4C). Examination of RNA-seq reads
at Apobec1 in the eight founder samples shows an aberrant
splicing pattern that occurs in�50% of transcripts from these
strains; the fifth exon is extended by �1245 nt. This alterna-
tively spliced transcript introduces 15 stop codons into the
reading frame; thus, the mRNA may produce both a trun-
cated transcript and a corresponding truncated protein.
Overall, there appears to be a twofold reduction of total Apo-
bec1 expression in C57BL/6J and NZO/HlLtJ strains (Figure
S2). However, when we estimated the normalized coverage
of exon 6 alone, we found that the six strains that do not

contain the intronic insertion have three- to fivefold higher
coverage, suggesting that they may have three to five times
the number of full-length Apobec1 transcripts.

There is a single SNP shared by A/J, 129S1/SvlmJ, and
NOD/ShiLtJ strains in exon 4 (rs51979390, 122,591,220 bp)
(Figure 4C) that occurs at the splice junction and is associated
with expression of a long Apobec1 isoform (NM_031159) in
these strains. The long isoform adds an extra 56 nt to the 59
end of exon 4, which contains the 59 UTR. The SNP is 40 nt
downstream of the start of the longer exon 4 and 16 nt up-
stream of the shorter exon 4. Typically, the short isoform
(NM_001134391) accounts for .95% of the total Apobec1
mRNA (Nakamuta et al. 1995), but we observed high levels
of the long isoform in A/J, 129S1/SvlmJ, and NOD/ShiLtJ
strains. While expression of the long isoform is increased in
these three strains, the total expression level of functional
Apobec1 is reduced compared to the WSB/EiJ strain. Expres-
sion of Apobec1 is highest in WSB/EiJ (Figure S2). These
polymorphisms define an allelic series at Apobec1 with four
functionally distinct groups. They combine to form 10 dis-
tinct genotypic classes in the outbred DO mice, which is con-
sistent with the complex and continuous variation in C-to-U
editing ratio (Figure 3D).

The “mooring” sequence, where the APOBEC1 comple-
mentation factor (A1CF) binds to Apob, is thought to be im-
portant in determining specificity of Apob editing (Smith et al.
2012). We searched for the mooring sequence within a 30-nt
window downstream of the editing site in all 59 C-to-U edit-
ing sites with a strong association on chromosome 6 and

Figure 1 Mapping of C-to-U and A-to-I RNA editing reveals distinct patterns of genetic regulation. (A) Marker location (horizontal axis) vs. editing-site
location (vertical axis) for the C-to-U editing sites shows that editing variation is due to genetic variants near the editing site (diagonal band) and at a
location on chromosome 6 (vertical band). Open circles show sites from the RADAR or DARNED databases, and closed circles show sites from the de
novo editing site discover. (B) Marker location vs. editing-site location for the A-to-I edit sites shows that editing variation is primarily due to genetic
variants near the editing site. Note that some points represent multiple overlapping editing sites.
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found a consensus motif that is similar to the Apob sequence
and is similar to previous reports (Figure 4D and Table S3)
(Rosenberg et al. 2011). In Apob, the mooring sequence be-
gins 3 nt downstream of the edited base. In other genes, the
motif was found between 0 and 18 nt from the edited base.
We did not find a correlation between the distance of the
motif to the edited base and either the MEME enrichment
p-value or the mean editing ratio in the DO population. Al-
though we found SNPs in the mooring sequence of four sites
and short indels (,50 nt) between the editing site and the
distal end of the mooring sequence in two editing sites, we
did not find any correlation between these genomic variants
and the editing ratio. Thus, although A1cf may play a role in
C-to-U editing, we did not find that genetic variation within
the mooring sequence influences editing efficiency. Consis-
tent with previous work, we observed enrichment of A and
U bases adjacent to the edited base (Figure 4E) (Rosenberg
et al. 2011). We also found that the bases adjacent to the

editing site were enriched for sequences with an A in the 59
position (x2 test, p = 1.9 3 1024); 44 sites (75%) contained
an A, whereas 15 sites (25%) contained a U.

Our results suggest that variation inC-to-U editing ratios in
the DO population is regulated by an allelic series of the
editing enzyme Apobec1. These findings are consistent with
a recent report of editing variation in theAXB/BXA recombinant
inbred panel (Hassan et al. 2014). Of the remaining C-to-U
editing sites, 11 show local genetic associations that map to
the region of the edited gene. Two C-to-U editing sites map to
distant loci other than chromosome 6. Six of the 11 sites have
unusually high LOD scores (.30), and it is possible that some
of these sites are the result of errors in the data or to un-
annotated paralogous variation. Of the local QTL, three
genes with moderate but significant LOD scores, Aldh6a1,
Gramd1c, and Lamp2, showed some evidence of regulation
by the Apobec1 locus. We searched for other distant QTL that
might regulate C-to-U editing but did not find a consistent
signal around the 11 local C-to-U editing sites. Curiously, the
three sites in Dcn are anticorrelated with the pattern of allele
effects at the Apobec1 locus, an observation for which we
currently have no explanation.

A-to-I editing

A very different picture emerges from genetic analysis of the
96 A-to-I edited sites detected in this study. Although approx-
imately half (47) of these sites showed no evidence of editing
ratio variation across the founder strains, a total of 49 A-to-I
editing sites in22genes varied significantly across the founder
strains and revealed significant associations in the DO pop-
ulation. Unlike C-to-U editing, where most of the sites dis-
played a similar pattern of allele effects, A-to-I editing sites
were highly variable, suggesting independent genetic regu-
lation for each site. The only exceptions were for editing sites
located within the same gene where the pattern of allele
dependence was similar for all sites within that gene.

These observations suggest that local genetic factors drive
variation in A-to-I editing frequency. When we examined the
support interval for each association, we found that the in-
terval included the edited gene itself. It is known that the
secondary structure of targetmRNAs is an important factor for
A-to-I editing site specificity (Dawson et al. 2004; Rieder and
Reenan 2012). Thus, we hypothesized that cis-acting variants
alter mRNA secondary structure near the editing site. To test
this hypothesis, we examined the relationship between ge-
netic variants, target RNA structure, and the edited sites. To
do so, full-length target RNAs of each founder strain were
imputed from known SNPs and indels. These RNAs were
folded in silico, and their structure was examined for strain-
dependent differences.

Because A-to-I editing enzymes prefer double-stranded
regions of RNA (Lehmann and Bass 1999), we focused on
the impact of genetic variants on double-stranded regions
of the target mRNA and whether these regions were associ-
ated with edited sites. The long, noncoding (linc) RNA
0610005C13Rik contains one editing site for which the

Figure 2 Mean C-to-U editing ratios for most editing sites map to a
region on chromosome 6 at 122 Mb. (A) Genome scan of mean C-to-U
editing for 70 editing sites shows a strong association on chromosome 6.
Horizontal axis shows the mouse genome; vertical axis plots the LOD score.
Red line is the permutation-derived a = 0.05 significance threshold. (B)
Founder allele effects on chromosome 6 reveal a complex pattern of allele
effects. Horizontal axis shows chromosome 6 in Mb. Vertical axis shows the
founder allele effects.
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NZO/HlLtJ allele shows the highest editing (Figure 5, A and
B). The NZO/HlLtJ allele carries 56 SNPs and 9 structural
variants in 0610005C13Rik, and these lead to a structural
change compared to the reference sequence. In allele
C57BL/6J, there is a 45-nt region of predominantly dsRNA

around the editing site, while the NZO/HlLtJ transcript con-
tains a 120-nt dsRNA region. RNAfold simulations of the
ensemble of structures suggest that the editing site has a high
probability of occurring in the stemlike region in all strains.
However, the double-stranded feature is unusually stable in

Figure 3 Genome scan of Apob C-to-U editing shows that editing is regulated by genetic variants on chromosome 6 that overlap Apobec1. (A)
Genome scan of Apob editing shows a strong association on chromosome 6. Horizontal axis shows the mouse genome; vertical axis shows the LOD
score. Red line is the permutation-derived a = 0.05 significance threshold. (B) Founder allele effect plots for Apob C-to-U editing on chromosome 6.
Horizontal axis plots Mb along chromosome 6; vertical axis plots the founder allele effects from the linkage mapping model. Each colored line represents
the effect of one of the eight founder alleles along the genome. (C) Association mapping within the QTL support interval shows a band of SNPs with
high LOD scores (in red) that cover Rimklb, Mfap5, Aicda, Gm16556, Apobec1, Gdf3, Gm26168, and Dppa3. Apobec1 is highlighted in red because it
has been associated previously with Apob C-to-U editing. (D) Genotypes of DO mice at the location of the maximum LOD score (horizontal axis) vs. the
editing ratio (vertical axis). DO mice may have one of 36 unphased genotypes, and these are denoted by two letters, each referring to one founder,
along the horizontal axis. (E) Apob C-to-U editing ratio in the eight DO founders shows that the editing pattern is similar to the founder allele effects
near Apobec1.
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the NZO/HlLtJ strain, which shows the highest editing ratio
(Z = 213.77 for the most stable locally folded structure of
NZO/HILtJ). Given these observations and the fact that edit-
ing efficiency is known to positively correlate with dsRNA
length, we examined other A-to-I editing sites and asked
whether the editing site resided within regions of dsRNA that
varied across strains.

Lactamase b2 (Lactb2) contains nine edited sites, of which
five have significant QTL. The editing frequency at these five
sites is low compared to other strainswhen the PWK/PhJ allele
is present in DO mice (Figure 5D), and this effect is recapitu-
lated in the founder strains (Figure 5E). The computed struc-
ture of the full mRNA of PWK/PhJ contains a shorter length
of dsRNA than the reference C57BL/6J strain (Figure 5F),
and this may reduce editing efficiency. Analogous to
0610005C13Rik, the local stability of the Lact2b RNA struc-
ture trendedwith the editing ratios across strains. For example,
the most stable local structure of PWK/PhJ is the least stable
compared to the other strains, and PWK/PhJ has the low-
est editing ratio. The gene Signal Peptide Peptidase Like 2A
(Sppl2a) contains five A-to-I edited sites, and all have signif-
icant QTL. The founder allele effects in the DO population
(Figure 5G) suggest that NOD/ShiLtJ alleles will have higher
editing efficiency than CAST/EiJ alleles. Editing ratios in the
founders (Figure 5H) are somewhat similar to the DO allele
effects. NOD/ShiLtJ, which has higher editing than CAST/
EiJ, has a longer stretch of dsRNA in the full mRNA folded

structure than CAST/EiJ (Figure 5I). Recent reports have
shown evidence of cis-acting intronic dsRNA elements that in-
fluence editing (Daniel et al. 2012). We searched for promiscu-
ous editing in the three genes shown in Figure 5 but did not find
evidence of editing at sites other than the target editing sites.

There were four distant associations among the A-to-I
editing sites, and each association occurred in a different
genomic location, suggesting that unlike C-to-U editing, there
is no single gene that drives A-to-I editing in the livers of DO
mice. There are some intriguing candidate genes under these
associations. The association on chromosome 1 for Tmem245
contains transfer RNA (tRNA) splicing endonuclease 15
homolog (Tsen15). The association on chromosome 2 for
Cd200r3 contains adenosine deaminase like (Adal). While we
have no molecular evidence of distant regulation of A-to-I
editing, these associations may represent interactions between
edited transcripts and genes under the associations.

Theseobservations demonstrate that variationof theA-to-I
editing ratio in the DO population is driven primarily by local
variants. Given the strain-dependent changes in target RNA
structure, it appears that these variants play a role in modu-
lating the local RNA structure of edited nucleotides.

Discussion

We used RNA editing ratio as a quantitative trait and found
thatmost C-to-Uediting sites in our studywere controlledby a

Figure 4 Genomic variants in the DO founders fit the pattern of Apob editing. (A) A nonsynonymous SNP in exon 6 of Apobec1 contributed by CAST/EiJ
and PWK/PhJ converts an arginine (R) residue to a glutamine (Q), highlighted in red. Residues in the active site are highlighted in blue. (B) Most mammals
have a glutamine residue at this location. Shannon entropy for each base position shows that the glutamine is somewhat conserved. (C) RNA-seq pileups
of Apobec1 in the eight DO founders show transcriptional variation between alleles. C57BL/6J and NZO/HlLtJ alleles carry an insertion (shaded in red) in
the fifth intron that overlaps a retained intron. 129S1/SvImJ, A/J, and NOD/ShiLtJ alleles carry a SNP (red box) in the 59 UTR of exon 4 that has increased
expression in those strains. The y-axis shows the read depth normalized to library size. (D) Consensus mooring sequence motif for C-to-U edited genes.
(Top) The Apobec1 mooring sequence. (Bottom) The consensus binding motif discovered using MEME. (E) Sequence information content around the
edited C-to-U site shows that bases at the proximal and distal positions are either A or U. There does not appear to be sequence preference at other
nearby base positions.
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single trans-acting factor at Apboec1 that encodes an enzyme
(APOBEC1) that catalyzes C-to-U editing. It is generally
thought that APOBEC1 is positioned at the editing site by a
mooring sequence (Smith et al. 2012) that is recognized by
an APOBEC1 cofactor, A1CF. Consistent with this model,
most of our C-to-U sites contain a mooring-like motif. How-
ever, we found no evidence for linkage at the A1cf locus itself,
or linkage to variants within the mooring sequence, suggest-
ing that genetic variation within the mooring sequences or
A1cf does not drive variation in C-to-U editing in the DO
population. The DO founder strains carry only nonsynony-
mous variants in A1cf, and there is little variation in transcript
levels in the founder strains (Figure S2). Another RNA bind-

ing protein, RBM47, has been identified recently as a re-
quired APOBEC1 cofactor for C-to-U editing in vivo (Fossat
et al. 2015). However, as with A1cf, we did not find evidence
for linkage to Rbm47 for any of the C-to-U sites studied,
suggesting that neither putative cofactor of APOBEC1 is a
driver of editing variation in the DO population. Our analysis
strongly supports a role for Apobec1 in determining quantita-
tive variations in C-to-U editing. The C57BL/6J and NZO/
HlLtJ Apobec1 alleles with an alternative mRNA isoform are
associated with both lower total mRNA and lower C-to-U
editing. This outcome is particularly relevant given that most
studies of C-to-U editing in mice use C57BL/6J, which may
not be representative of murine C-to-U editing.

Figure 5 Structural differences between the founder strains may influence A-to-I editing efficiency. (A) Founder allele effects for 0610005C13Rik show
that DO mice carrying the NZO/HlLtJ allele have more edited transcripts. (B) Among the DO founder strains, NZO/HlLtJ has the highest editing ratio. (C)
RNA secondary structure of the full mRNA for 0610005C13Rik for C57BL/6J and NZO/HlLtJ shows that the NZO/HlLtJ strain contains a longer dsRNA
region around the editing sites. The location of the editing sites on the full-length RNA is circled; the nucleotides around the editing site are enlarged
and outlined by rectangles. (D) Founder allele effects for Lact2b show that DO mice carrying the PWK/PhJ allele have lower editing. (E) Among the DO
founder strains, PWK/PhJ has the lowest editing ratio. (F) Full-length mRNA for Lact2b in C57BL/6J and PWK/PhJ shows that PWK/PhJ carries a shorter
dsRNA region near the editing sites. (G) Founder allele effects for 2010106G01Rik in DO mice show a complex pattern of editing ratios, with NOD/ShiLtJ
having high editing and CAST/EiJ having low editing. (H) Editing ratios. The founders are similar to the allele effects observed in the DO population but
differ in the order of editing ratios. (I) Full-length mRNA for 2010106G01Rik shows that the dsRNA region around the editing sites is slightly shorter in
CAST/EiJ.
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Apob editing is the most well-studied C-to-U editing event.
Editing produces one of two versions of APOB, APOB48 (ed-
ited) and APOB100. APOB48 is involved in the transport of
dietary fat by chylomicrons. APOB100 contains the LDL re-
ceptor binding site and is essential for the efficient clearance
of LDL from the circulation. High levels of APOB100 are as-
sociated with atherosclerosis (Davidson and Shelness 2000).
Given the large effect of polymorphisms on editing ratios in
the DO population, it will be important to characterize how
human genetic variation in APOBEC1 affects C-to-U editing
ratios and downstream phenotypes. There are 22 SNPs
within the exon boundaries of human APOBEC1, and these
may alter the APOB48-to-APOB100 ratio as well as circulat-
ing LDL/high-density lipoprotein (HDL) ratios.

In contrast to C-to-U editing, A-to-I editing in the liver
seems to be regulated mostly by local factors. We found
associations for 49 A-to-I editing sites, all of them in the
vicinity of the edited gene. In many cases, these genetic
variants appear to affect dsRNA stability and length in the
region containing the edited sites of target RNAs. The major
ubiquitous A-to-I editing enzyme, ADAR, shows distinct and
strong preferences for long, stable dsRNA (Herbert and Rich
2001). Thus, the observed alterations in RNA structure are
consistent with a model in which variant-induced dsRNA de-
stabilization or length reduction negatively affects RNA edit-
ing efficiency. These findings are in good agreement with
studies of natural genetic variation in Drosophila showing
that local variants near the edited site are an important de-
terminant of editing efficiency (Sapiro et al. 2015). While the
Adar family of genes contain missense polymorphisms in
the DO population, these variants do not appear to influ-
ence A-to-I editing in the liver.

ADAR-mediated editing occurs in many tissues, and the
alteration of ADARs is known to be detrimental. We found
little evidence for trans-acting associations despite the exis-
tence of six polymorphisms between the eight founder strains
that alter amino acids in Adar1 and several large indels in
introns of Adarb1. While these polymorphisms may affect
other non-editing-related functions of ADARs (Ota et al.
2013), these studies show that they have little or no impact
on A-to-I editing in the liver. Our findings do not preclude the
possibility that editing in other tissues may be affected by
ADAR polymorphisms or by other proteins. In mammals,
most A-to-I editing occurs in the brain, and in Drosophila,
the fragile X mental retardation protein (FMRP) has been
shown to affect editing at distant sites (Bhogal et al. 2011).
In future studies it will be important to use natural genetic
variation in the mouse to assess long- and short-range influ-
ences on RNA editing in the brain.

We have successfully identified associations and specific
polymorphic loci that influence RNA editing. Both C-to-U and
A-to-I editing is variablewith clear underlying genetic drivers.
We mapped multiple local associations for A-to-I editing sites
and a shared distant association in Apobec1 for C-to-U editing
sites in the DO population. Most of the local A-to-I editing
associations map to SNPs in the edited transcript, and we

have identified candidate polymorphisms for some genes
that are likely to affect mRNA secondary structure. The dis-
tinct genetic architectures discovered for C-to-U and A-to-I
editingmay reflect the different functional constraints in these
two editing pathways. C-to-U editing of the transcriptome oc-
curs at low ratios at sites other than Apob, and functional
polymorphisms in the central catalytic enzyme appear to be
tolerated. In contrast, A-to-I editing is widespread, and polymor-
phisms in central enzymes (i.e. ADARs) are more likely to have
pleiotropic effects that are detrimental to the organism. Thus,
when variation in A-to-I editing is present, the causal polymor-
phisms are local, limiting the effects to a single transcript.

Acknowledgments

This work was funded by National Institutes of Health
(NIH) grants P50-GM076468 and R01-GM070683 to G.A.C.
and National Cancer Institute grant CA34196 to The
Jackson Laboratory in support of The Jackson Labora-
tory’s shared services. J.H.C. was supported by NIH grant
R21-HG007554. E.S. was supported by NIH grant K99/
R00-K99HD083521. M.K. and A.A. were supported by
NIH grants R01-DK066369, R01-DK058037, and R24-
DK091207.

Literature Cited

Bailey, T. L., and C. Elkan, 1994 Fitting a mixture model by ex-
pectation maximization to discover motifs in biopolymers. Proc.
Int. Conf. Intell. Syst. Mol. Biol. 2: 28–36.

Bass, B. L., 2002 RNA editing by adenosine deaminases that act
on RNA. Annu. Rev. Biochem. 71: 817–846.

Bass, B., H. Hundley, J. B. Li, Z. Peng, J. Pickrell et al., 2012 The
difficult calls in RNA editing. Nat. Biotechnol. 30: 1207–1209.

Benjamini, Y., and Y. Hochberg, 1995 Controlling the false dis-
covery rate: a practical and powerful approach to multiple test-
ing. J. R. Stat. Soc. B 57: 289–300.

Bhogal, B., J. E. Jepson, Y. A. Savva, A. S. Pepper, R. A. Reenan
et al., 2011 Modulation of dADAR-dependent RNA editing by
the Drosophila fragile X mental retardation protein. Nat. Neuro-
sci. 14: 1517–1524.

Chen, S. H., G. Habib, C. Y. Yang, Z. W. Gu, B. R. Lee et al.,
1987 Apolipoprotein B-48 is the product of a messenger
RNA with an organ-specific in-frame stop codon. Science 238:
363–366.

Churchill, G. A., and R. W. Doerge, 1994 Empirical threshold
values for quantitative trait mapping. Genetics 138: 963–971.

Churchill, G. A., and R. W. Doerge, 2008 Naive application of
permutation testing leads to inflated type I error rates. Genetics
178: 609–610.

Daneck, P., C. Nellåker, E. R., J. E. McIntyre, S. Buendia-Buendia,
Bumpstead et al., 2012 High levels of RNA-editing site conser-
vation amongst 15 laboratory mouse strains. Genome Biol. 13:
r26.

Daniel, C., M. T. Veno, Y. Ekdahl, J. Kjems, and M. Ohman,
2012 A distant cis-acting intronic element induces site-selec-
tive RNA editing. Nucleic Acids Res. 40: 9876–9886.

Davidson, N. O., and G. S. Shelness, 2000 APOLIPOPROTEIN B:
mRNA editing, lipoprotein assembly, and presecretory degrada-
tion. Annu. Rev. Nutr. 20: 169–193.

Genetic Architecture of RNA Editing 797



Dawson, T. R., C. L. Sansam, and R. B. Emeson, 2004 Structure
and sequence determinants required for the RNA editing of
ADAR2 substrates. J. Biol. Chem. 279: 4941–4951.

Flicek, P., M. R. Amode, D. Barrell, K. Beal, S. Brent et al.,
2012 Ensembl 2012. Nucleic Acids Res. 40: D84–D90.

Fossat, N., K. Tourle, T. Radziewic, D. Liebhold, J.B. Studdert et al.,
2014 C to U RNA editing mediated by APOBEC1 requires
RNA-binding protein RBM47. EMBO Rep. 15: 903–910.

Gatti, D. M., K. L. Svenson, A. Shabalin, L. Y. Wu, W. Valdar et al.,
2014 Quantitative trait locus mapping methods for diversity
outbred mice. G3 4: 1623–1633.

Greenberger, S., E. Y. Levanon, N. Paz-Yaacov, A. Barzilai, M. Safran
et al., 2010 Consistent levels of A-to-I RNA editing across in-
dividuals in coding sequences and non-conserved Alu repeats.
BMC Genomics 11: 608.

Gu, T., F. W. Buaas, A. K. Simons, C. L. Ackert-Bicknell, R. E. Braun
et al., 2012 Canonical A-to-I and C-to-U RNA editing is en-
riched at 39UTRs and microRNA target sites in multiple mouse
tissues. PLoS One 7: e33720.

Gurevich, I., H. Tamir, V. Arango, A. J. Dwork, J. J. Mann et al.,
2002 Altered editing of serotonin 2C receptor pre-mRNA in
the prefrontal cortex of depressed suicide victims. Neuron 34:
349–356.

Hassan, M. A., V. Butty, K. D. Jensen, and J. P. Saeij, 2014 The
genetic basis for individual differences in mRNA splicing and
APOBEC1 editing activity in murine macrophages. Genome
Res. 24: 377–389.

Herbert, A., and A. Rich, 2001 The role of binding domains for
dsRNA and Z-DNA in the in vivo editing of minimal substrates
by ADAR1. Proc. Natl. Acad. Sci. USA 98: 12132–12137.

Hirano, K., S. G. Young, R. V. Farese, Jr., J. Ng, E. Sande et al.,
1996 Targeted disruption of the mouse apobec-1 gene abol-
ishes apolipoprotein B mRNA editing and eliminates apolipopro-
tein B48. J. Biol. Chem. 271: 9887–9890.

Hofacker, I. L., B. Priwitzer, and P. F. Stadler, 2004 Prediction of
locally stable RNA secondary structures for genome-wide sur-
veys. Bioinformatics 20: 186–190.

Huang, S., J. Holt, C. Kao, L. McMillan, and W. Wang, 2014 A
novel multi-alignment pipeline for high-throughput sequencing
data. Database (Oxford), bau057: 1–12.

Keane, T. M., L. Goodstadt, P. Danecek, M. A. White, K. Wong et al.,
2011 Mouse genomic variation and its effect on phenotypes
and gene regulation. Nature 477: 289–294.

Kiran, A. M., J. J. O’Mahony, K. Sanjeev, and P. V. Baranov,
2013 Darned in 2013: inclusion of model organisms and link-
ing with Wikipedia. Nucleic Acids Res. 41: D258–D261.

Langmead, B., C. Trapnell, M. Pop, and S. L. Salzberg,
2009 Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. Genome Biol. 10: R25.

Lehmann, K. A., and B. L. Bass, 1999 The importance of internal
loops within RNA substrates of ADAR1. J. Mol. Biol. 291: 1–13.

Li, B., and C. N. Dewey, 2011 RSEM: accurate transcript quanti-
fication from RNA-seq data with or without a reference genome.
BMC Bioinformatics 12: 323.

Li, J. B., E. Y. Levanon, J. K. Yoon, J. Aach, B. Xie et al., 2009 Genome-
wide identification of human RNA editing sites by parallel DNA
capturing and sequencing. Science 324: 1210–1213.

Lorenz, R., S. H. Bernhart, C. Honer Zu Siederdissen, H. Tafer,
C. Flamm et al., 2011 ViennaRNA Package 2.0. Algorithms
Mol. Biol. 6: 26.

Munger, S. C., N. Raghupathy, K. Choi, A. K. Simons, D. M. Gatti
et al., 2014 RNA-seq alignment to individualized genomes im-
proves transcript abundance estimates in multiparent popula-
tions. Genetics 198: 59–73.

Nakamuta, M., K. Oka, J. Krushkal, K. Kobayashi, M. Yamamoto
et al., 1995 Alternative mRNA splicing and differential pro-
moter utilization determine tissue-specific expression of the
apolipoprotein B mRNA-editing protein (Apobec1) gene in
mice: structure and evolution of Apobec1 and related nucleo-
side/nucleotide deaminases. J. Biol. Chem. 270: 13042–13056.

Ota, H., M. Sakurai, R. Gupta, L. Valente, B. E. Wulff et al.,
2013 ADAR1 forms a complex with Dicer to promote micro-
RNA processing and RNA-induced gene silencing. Cell 153:
575–589.

Paz, N., E. Y. Levanon, N. Amariglio, A. B. Heimberger, Z. Ram
et al., 2007 Altered adenosine-to-inosine RNA editing in hu-
man cancer. Genome Res. 17: 1586–1595.

Petersen-Mahrt, S. K., and M. S. Neuberger, 2003 In vitro deam-
ination of cytosine to uracil in single-stranded DNA by apolipo-
protein B editing complex catalytic subunit 1 (APOBEC1). J.
Biol. Chem. 278: 19583–19586.

Pickrell, J. K., Y. Gilad, and J. K. Pritchard, 2012 Comment on
“Widespread RNA and DNA sequence differences in the human
transcriptome.” Science 335: 1302 (author reply: 1302).

Ramaswami, G., and J. B. Li, 2014 RADAR: a rigorously anno-
tated database of A-to-I RNA editing. Nucleic Acids Res. 42:
D109–D113.

Rieder, L. E., and R. A. Reenan, 2012 The intricate relationship
between RNA structure, editing, and splicing. Semin. Cell Dev.
Biol. 23: 281–288.

Rosenberg, B. R., C. E. Hamilton, M. M. Mwangi, S. Dewell, and F.
N. Papavasiliou, 2011 Transcriptome-wide sequencing reveals
numerous APOBEC1 mRNA-editing targets in transcript 39
UTRs. Nat. Struct. Mol. Biol. 18: 230–236.

Sapiro, A. L., P. Deng, R. Zhang, and J. B. Li, 2015 Cis regulatory
effects on A-to-I RNA editing in related Drosophila species. Cell
Reports 11: 697–703.

Smith, H. C., R. P. Bennett, A. Kizilyer, W. M. McDougall, and K. M.
Prohaska, 2012 Functions and regulation of the APOBEC fam-
ily of proteins. Semin. Cell Dev. Biol. 23: 258–268.

Svenson, K. L., D. M. Gatti, W. Valdar, C. E. Welsh, R. Cheng et al.,
2012 High-resolution genetic mapping using the Mouse Diver-
sity outbred population. Genetics 190: 437–447.

Waterston, R. H., K. Lindblad-Toh, E. Birney, J. Rogers, J. F. Abril
et al., 2002 Initial sequencing and comparative analysis of the
mouse genome. Nature 420: 520–562.

Yalcin, B., K. Wong, A. Agam, M. Goodson, T. M. Keane et al.,
2011 Sequence-based characterization of structural variation
in the mouse genome. Nature 477: 326–329.

Yalcin, B., D. J. Adams, J. Flint, and T. M. Keane, 2012 Next-
generation sequencing of experimental mouse strains. Mamm.
Genome 23: 490–498.

Communicating editor: E. G. Petretto

798 T. Gu et al.



GENETICS
Supporting Information

www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.179481/-/DC1

Genetic Architectures of Quantitative Variation in
RNA Editing Pathways

Tongjun Gu, Daniel M. Gatti, Anuj Srivastava, Elizabeth M. Snyder, Narayanan Raghupathy,
Petr Simecek, Karen L. Svenson, Ivan Dotu, Jeffrey H. Chuang, Mark P. Keller, Alan D. Attie,

Robert E. Braun, and Gary A. Churchill

Copyright © 2016 by the Genetics Society of America
DOI: 10.1534/genetics.115.179481



46 SI  T. Gu et al. 
 

 

Figure S1.  RNASeq alignment pipeline aligns reads from each founder to a founder‐specific  transcriptome that inserts SNPs 

and Indels from the Sanger Mouse Genomes  Project into the reference sequence. 
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Figure S2. Expression levels in the DO founders for RNA editing related genes.  The y‐axis shows the upper‐quartile normalized 

total counts for each gene. 
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Table S1 

Canonical and non‐canonical editing sites during the denovo discovery process 

A/J  C57BL/6J  129S1/SvImJ NOD/ShiLtJ NZO/HlLtJ CAST/EiJ  PWK/PhJ  WSB/EiJ 

All Loci  72042664  74352911  72327688 71984593 72429702 71888532  71921235 71057464

All Hets  5863835  6074674  5983105 5950016 5721370 6122205  5853645 5596353

Hets > 
50% repl  11996  11570  11266 13280 10126 10661  9901 11808

MAF > 5%  825  743  716 861 679 1467  1278 821

Hets with 
2 alleles  813  732  703 849 667 1449  1263 801

Hets > 160 
cov  805  728  700 847 661 1439  1261 784

sites  623  591  582 680 562 1105  966 617

canonical 
sites  134  136  141 120 149 233  246 168

non‐
canonical 
sites  234  193  211 245 192 381  350 223

filter 
Sanger  94  89  95 106 94 181  206 131

non‐
canonical 
sites  119  124  114 137 104 216  217 143

 



Table S2. Location, genes, founder counts and QTL information for 183 RNA Editing sites. 
(.xls, 145 KB) 

 

Available for download as a .xlx file at 
www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.179481/-/DC1/TableS2.xls 
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Table S3. Mooring sequences of 59 C‐to‐U editing sites with QTL at the Apobec1 locus on Chr 6. The motif start is the number of bp from the 

edited C nucleotide where the mooring sequence starts. The MEME p‐value for each site represents the probability that a random sequence 

with the same length and sequence background would match the discovered motif with a score greater than or equal to the current site.  The 

table is sorted by p‐value. 

Site  Start  p‐value  Pproximal  Mooring  Distal  Ensembl  Symbol 

chrX_38420630  0  6.59E‐05 . CTCAGAGATG  GCACCAATTG  ENSMUSG00000016534 Lamp2 

chr1_139523522  0  0.000172 . CTCAATACTT  TCCTTATTTA  ENSMUSG00000026368 F13b 

chrX_139672470  12  0.000302 GAATTGGTTG ATCAGTATAT  TAGTGACAC  ENSMUSG00000031438 Rnf128 

chr15_99408620  0  0.000302 . CTTAGTGGTT  TTCTCTATTT  ENSMUSG00000023010 Tmbim6 

chr12_8008054  7  0.000302 CAATTTG ATCAGTATAT  TAAAGATAAT  ENSMUSG00000020609 Apob 

chr3_73638664  7  0.000451 CACTTAG CTCAATGACT  AATAAATAGG  ENSMUSG00000027792 Bche 

chr14_21448058  9  0.000451 CTTAGAGGG CTCAGTGCTA  CTTCTAGGAC  ENSMUSG00000039197 Adk 

chr3_57835070  0  0.000512 . CTTAGTGACG  TGGAAAATTG  ENSMUSG00000036503 Rnf13 

chr10_97517941  0  0.000512 . CTTAGTAAAG  CGTTAAAAGG  ENSMUSG00000019929 Dcn 

chr7_132557671  8  0.000687 CATTTATT TTCAGTATTT  CTTTGAATAA  ENSMUSG00000030934 Oat 

chr3_144597012  0  0.000848 . CTTAGTTTTG  CATGCTTACA  ENSMUSG00000037072 Sep15 

chr9_52088609  7  0.00103 CCTACTA ATGAGTATTT  GGTAATTTCC  ENSMUSG00000032050 Rdx 

chr19_44395692  9  0.00171 CATAGAAAA ATCACTGTAG  ATCTACTGAC  ENSMUSG00000037071 Scd1 

chr14_73362559  17  0.00217 GGATTTCAGC CTTGATGTTT  TAAT  ENSMUSG00000022108 Itm2b 

chrX_60224300  20  0.00246 AGTATTACTT TTGAGTATTT  T  ENSMUSG00000062949 Atp11c 

chr5_87555712  21  0.00246 GGCTTTATAA CACAGTATAT     ENSMUSG00000029273 Sult1d1 

chr4_107200739  0  0.00246 . CTTAGTTAGT  TGCATTGGTT  ENSMUSG00000028618 Tmem59 

chrX_36604963  9  0.00285 CATGGTGAT TTCAATATTT  AGAAAAGTTT  ENSMUSG00000006373 Pgrmc1 

chr16_21761768  10  0.00285 CAAAATGTTG CTAAGAGAAT  AATTCATAAC  ENSMUSG00000022853 Ehhadh 

chr1_58200408  9  0.00337 CATGTTTAA TTCAATATAT  TAAACGGAAT  ENSMUSG00000064294 Aox3 

chr10_97517901  7  0.00386 CTGAGTT ATCAAAGTCT  GATGTAATCA  ENSMUSG00000019929 Dcn 

chr9_72747608  1  0.00545 C TTTAATGATT  AGTATACTGC  ENSMUSG00000032216 Nedd4 

chr7_131445518  15  0.00545 TAGAAAGTAT TTTGGTGCTT  TTGCAA  ENSMUSG00000030861 Acadsb 

chr7_131445515  18  0.00545 TAGAAAGTAT TTTGGTGCTT  TTG  ENSMUSG00000030861 Acadsb 
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chr10_57515985  19  0.00545 TAGTATGCCA CTTAATTAAG  AT  ENSMUSG00000019877 Serinc1 

chr8_45306577  0  0.006 . CTTGGAAATT  CATATATCAT  ENSMUSG00000079057 Cyp4v3 

chr11_20063380  13  0.00669 AATGATGATT CTGAGAGAAA TATTTTCC  ENSMUSG00000020152 Actr2 

chr9_79769822  8  0.00752 CAGTTTAG ATTAATATGT  GCTTAAAAGA  ENSMUSG00000032328 Tmem30a 

chr9_114749171  17  0.00752 AATTACTATA CTTAAATTAT  GCTC  ENSMUSG00000032434 Cmtm6 

chr5_17783137  6  0.00752 CAAAAG ATTAATATGT  CACTATAGGC  ENSMUSG00000002944 Cd36 

chr3_121760011  0  0.00752 . CTAAGAATGT  CCTTATTCTT  ENSMUSG00000028127 Abcd3 

chr1_139810468  19  0.00752 AATATGATTT CACAAAGCAT  GT  ENSMUSG00000033898 Cfhr2 

chrX_12616481  10  0.00836 CTATGTTGAT TTCAGAAGAG  ACTAGCTTTG  ENSMUSG00000031007 Atp6ap2 

chr7_131444739  0  0.0103 . CTTAGTTCTA  AATATCAAAA  ENSMUSG00000030861 Acadsb 

chr1_139810666  18  0.0103 AAAATGCAAA AGCAGTAATT  CAA  ENSMUSG00000033898 Cfhr2 

chr10_97518033  4  0.0103 CTCT AGCAATGTAT  TAATCTCCTT  ENSMUSG00000019929 Dcn 

chr10_7768196  7  0.0103 CTATTTG ATTACTATTG  TAAGATTTTA  ENSMUSG00000040006 BC013529 

chr9_100982512  4  0.0113 CTTT TTGAATAAAT  ATTTCATTGT  ENSMUSG00000032527 Pccb 

chr8_95864156  7  0.0113 CAATAAA ATTACTATAG  ACCCAG  ENSMUSG00000031672 Got2 

chr5_145854741  12  0.0123 AAAATTTTTG ATGAAAAATG  TGAGCTCTT  ENSMUSG00000056035 Cyp3a11 

chrX_38419909  2  0.0146 CA TTTAGATTAT  ATATCGGATT  ENSMUSG00000016534 Lamp2 

chr2_122152902  11  0.0146 TTCTCATTAC TTGGATGCAG  TTACTCATCT  ENSMUSG00000060802 B2m 

chr14_73362604  8  0.0146 CTACTTTA ATTAAAATGT  GCCGTATCTT  ENSMUSG00000022108 Itm2b 

chr14_21448185  4  0.0159 CATT TTCAATTGTT  TGTAAATTCA  ENSMUSG00000039197 Adk 

chr13_95627449  16  0.0159 CACTTTCTGT ATAAAAGTAT  ATATT  ENSMUSG00000021676 Iqgap2 

chr13_93752703  2  0.0174 CA TTAGGTGTTT  GCCAATATGA  ENSMUSG00000042102 Dmgdh 

chr8_13174652  19  0.0188 AATCTGCTTT ATCAAATGTG  AA  ENSMUSG00000031447 Lamp1 

chr4_59618515  6  0.0203 CAATGC CTGGCTTTAT  TGAGCTTTCA  ENSMUSG00000028383 Hsdl2 

chr18_60391275  0  0.0203 . CTTAGATCAA  GTAATTTTAC  ENSMUSG00000054072 Iigp1 

chr7_14411655  11  0.0252 TTGTTTTTGA TTTAAGGATG  TGGCATATAA  ENSMUSG00000030378 2810007J24Rik

chr8_13174720  8  0.0271 CTATTGAA ATGACGGTGT  TAATTTTGCT  ENSMUSG00000031447 Lamp1 

chr3_119432749  3  0.0271 CAC ATAAATTCAT  TTATTCCTTC  ENSMUSG00000033308 Dpyd 

chr6_138156528  7  0.031 CAGTAGG CTCTATTCTT  TTGTATTTGG  ENSMUSG00000008540 Mgst1 

chr6_87999680  7  0.0331 CAGTAGA CACAAGAATT  ATGTACGCCT  ENSMUSG00000079477 Rab7 
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chr6_52546355  3  0.0331 CTC CAGAAAAATG  ACACCTTTAG  ENSMUSG00000029776 Hibadh 

chr6_141908813  4  0.0353 CCTC AACAATTATT  TTTTACTCAT  ENSMUSG00000041698 Slco1a1 

chrX_109161347  6  0.0424 CTTCAA ATTACTATTA  TCATCATACC  ENSMUSG00000031246 Sh3bgrl 

chr16_56016950  6  0.0621 CACATG ATTAGTTTCC  AAGGGTTACA  ENSMUSG00000071533 Pcnp 

chrX_53021282  13  0.0653 TTGATTTGCA CTATGAGCCT  ATAGGCCA  ENSMUSG00000025630 Hprt 
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File S1 

RNA Seq Alignment Pipeline 

 

Building transcriptome of CC founders (except B6) using modtools. 

 

Data needed: 

SNPs and Indels: 

Site: ftp://ftp‐mouse.sanger.ac.uk/REL‐1303‐SNPs_Indels‐GRCm38/ 

Files Downloaded:  mgp.v3.snps.rsIDdbSNPv137.vcf.gz, mgp.v3.indels.rsIDdbSNPv137.vcf.gz 

 

Note: Download the *.tbi files too 

 

Reference genome: 

ftp://ftp‐mouse.sanger.ac.uk/ref/ 

File downloaded:  GRCm38_68.fa 

Header modified: 

GRCm38_68_mod.fa (Only 1, 2, 3, 4………… present in chromosome name) 

GRCm38_68_chr.fa (chr present in chromosome name) 

 

Annotation file: 

File downloaded: ftp://ftp.ensembl.org/pub/release‐

68/gtf/mus_musculus/Mus_musculus.GRCm38.68.gtf.gz 

gunzip (Mus_musculus.GRCm38.68.gtf.gz) 

Modified file: Mus_musculus.GRCm38.68_final.gtf  

 (header “##” is removed and “chr” is added to chromosome name ; chrMT is replaced by chrM) 
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In order to modtool to work download following two files: 

Site: http://csbio.unc.edu/~sphuang/vcf2mod/ 

Files downloaded: sanger_vcf.alias, build38.meta 

 

Important Information: 

1. All Strain Name in Sanger VCF and Indel build38 files: 

129P2  129S1 
 

129S5 
 

AJ 
 

AKRJ 
 

BALBcJ 
 

C3HHeJ 
 

C57BL6NJ 
 

CASTEiJ 
 

CBAJ  DBA2J 
 

FVBNJ 
 

LPJ  NODShiLtJ 
 

NZOHlLtJ  PWKPhJ 
 

SPRETEiJ  WSBEiJ 
 

 

 

Step1: (Convert vcf files to mod file) 

 

Module requirement: 

 samtools 

 tabix 

 vcf‐tools 

 python (with modtools installed) 

Command: 

vcf2mod ‐a  sanger_vcf.alias  build38  build38.meta  \ 

129S1 mgp.v3.snps.rsIDdbSNPv137.vcf.gz \ 

mgp.v3.indels.rsIDdbSNPv137.vcf.gz 

 

Input: 

 sanger_vcf.alias  (vcf alias file with 1 for chr1, 2 for chr2 … so on; downloaded for link mentioned 

above) 
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 build38 (just type this phrase ; needed for modtools) 

 build38.meta (build38 meta‐data file; downloaded for link mentioned above) 

 CC founder strain name mentioned exactly as in Sanger vcf file; 129S1 here [See Table 1] 

 Sanger SNP file 

 Sanger Indel file 

Output: 

 129S1.mod 

 129S1.mod.tbi 

 

Step2: Using the Mod file to create the pseudogenome 

Module requirement: 

 samtools 

 tabix 

 vcf‐tools 

 python (with modtools installed) 

 

Command: 

insilico  129S1.mod \ 

GRCm38_68_mod.fa \ 

‐a sanger_vcf.alias –o 129S1_pseudo.fa 

 

Input: 

 129S1.mod  (vcf2mod file) 

 GRCm38_68_mod.fa (GRCm38_68.fa header modified file) 

 sanger_vcf.alias (alias file) 

Output: 

 129S1_pseudo.fa 
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Step3: Adjusting the annotations using modmap 

 

Module requirement: 

 samtools 

 tabix 

 vcf‐tools 

 python (with modtools installed) 

 

Command: 

1. Left Coordinate Fix: 

modmap ‐d '\t'  129S1.mod  Mus_musculus_final.GRCm38.68.gtf 

129S1_Mus_musculus_final_left_fix.GRCm38.68.gtf 1,4 

2. Right Coordinate Fix: 

modmap ‐d '\t'  129S1.mod  \     129S1_Mus_musculus_final_left_fix.GRCm38.68.gtf  

\129S1_Mus_musculus_final_left_right_fix.GRCm38.68.gtf 1,5 

3. Taking absolute value: 

Unix commands: 129S1_Mus_musculus_final_left_right_fix.GRCm38.68.gtf  \ 

>129S1_Mus_musculus_final_left_right_abs_fix.GRCm38.68.gtf 

Note: Take absolute value for negative positions [some negative position values from modmap output. 

This is because the requested position has no corresponding position in the pseudogenome (due to 

deletion). In this case, as suggested by author of modtools, we can take the absolute value of that 

negative position value, and this will give us the nearest corresponding position in the psedogenome] 

 

Input: 

Mus_musculus_final.GRCm38.68.gtf (location given above) 

 

Output: 

Mus_musculus_final_left_right_abs_fix.GRCm38.68.gtf 
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Step4: extract transcriptome and build bowtie index 

 

Module requirement: 

samtools 

rsem/1.2.15 

bowtie/0.12.8 

 

Commands: 

rsem‐prepare‐reference  \ 

‐‐gtf 129S1_Mus_musculus_final_left_right_abs_fix.GRCm38.68.gtf \ 

‐‐no‐polyA  \ 

‐‐bowtie  129S1_pseudo.fa  129S1_pseudo 

 

Input: 

gtf file: 129S1_Mus_musculus_final_left_right_abs_fix.GRCm38.68.gtf    

pseudogenome file: 129S1_pseudo.fa   

basename for bowtie index: 129S1_pseudo 

 

Output: 

 129S1_pseudo.1.ebwt 

 129S1_pseudo.2.ebwt 

 129S1_pseudo.3.ebwt 

 129S1_pseudo.4.ebwt 

 129S1_pseudo.chrlist 

 129S1_pseudo.fa 

 129S1_pseudo.grp 

 129S1_pseudo.idx.fa 

 129S1_pseudo.n2g.idx.fa 

 129S1_pseudo.rev.1.ebwt 
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 129S1_pseudo.rev.2.ebwt 

 129S1_pseudo.seq 

 129S1_pseudo.ti 

 129S1_pseudo.transcripts.fa 

 

Note: Step1 to Step4 Needed for each founder strain except B6 

 

B6 Transcriptome building: 

 samtools 

 tabix 

 rsem/1.2.15 

 bowtie/0.12.8 

 

Commands: 

 

rsem‐prepare‐reference ‐‐gtf Mus_musculus.GRCm38.68_final.gtf   ‐‐no‐polyA  ‐‐bowtie  

GRCm38_68_chr.fa   GRCm38_68_chr 

Input: 

gtf file: Mus_musculus.GRCm38.68_final.gtf    

pseudogenome file: GRCm38_68_chr.fa    

basename for bowtie index: GRCm38_68_chr 

 

Output: 

 GRCm38_68_chr.1.ebwt 

 GRCm38_68_chr.2.ebwt 

 GRCm38_68_chr.3.ebwt 

 GRCm38_68_chr.4.ebwt 

 GRCm38_68_chr.chrlist 

 GRCm38_68_chr.fa 

 GRCm38_68_chr.fa.fai 

 GRCm38_68_chr.grp 
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 GRCm38_68_chr.idx.fa 

 GRCm38_68_chr.n2g.idx.fa 

 GRCm38_68_chr.rev.1.ebwt 

 GRCm38_68_chr.rev.2.ebwt 

 GRCm38_68_chr.seq 

 GRCm38_68_chr.ti 

 GRCm38_68_chr.transcripts.fa 



8 SI  T. Gu et al. 
 

File S2 

Pileup Ensembl Genes in DO Founders 

######################################################################
########## 
# Pileup the BAM files for each founder separately. Save locations 
with > 1 
# read and at least one heterozygous read in one founder. 
# This is intended to cast a wide net and retain locations that can be 
filtered 
# in downstream steps. 
# PileupParams: minBaseQual = 20 
#               maxDepth = 1e7 
# 
# Daniel Gatti 
# dan.gatti@jax.org 
# Nov. 5, 2014 
# Ensembl 68 
# Sanger v3 
######################################################################
########## 
library(GenomicRanges) 
library(Rsamtools) 
 
strain = commandArgs(trailingOnly = T) 
 
setwd("/hpcdata/dgatti/RNAediting/") 
 
# Load in the ensembl 68 GTF. 
load("/hpcdata/cgd/ensembl/release68/Mus_musculus.GRCm38.68.Rdata") 
 
# Add 'chr' to the chromosome names to match the BAM files. 
ensembl = keepSeqlevels(x = ensembl, value =  
          seqlevels(ensembl)[-grep("JH|GL", seqlevels(ensembl))]) 
ensembl = renameSeqlevels(x = ensembl, value = paste0("chr", 
seqlevels(ensembl))) 
sl = sub("MT", "M", seqlevels(ensembl)) 
ensembl = renameSeqlevels(x = ensembl, value = sl) 
 
# Keep only unique exons and UTRs. 
length(unique(ensembl$gene_id)) 
ensembl = ensembl[ensembl$feature == "exon"] 
keys = paste0(seqnames(ensembl), start(ensembl), end(ensembl)) 
ensembl = ensembl[!duplicated(keys)] 
length(unique(ensembl$gene_id)) 
 
# Get the BAM files in Anuj's directory. 
bamdir = 
"/hpcdata/anuj/Projects/Investigator/Gary_ChurChill/RNA_editing/Final_
DataSet/FounderBams" 
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bamfiles = dir(path = bamdir, pattern = "bam$", full.names = T) 
bamfiles = bamfiles[grep(strain, bamfiles)] 
 
# Make a list of PileupFiles by strain. 
pufiles = PileupFiles(bamfiles) 
 
# Make the pileup function. 
pufxn = function(x) { 
          dimnames(x$seq)[[3]] = x$pos 
          x$seq 
        } # pufxn() 
 
param = ApplyPileupsParam(minBaseQual = 20L, maxDepth = 1e7, 
        what = "seq", which = ensembl) 
 
setwd("founders") 
 
print(paste(strain, date())) 
 
# Pileup all 16 replicates. 
pileup = applyPileups(files = pufiles, FUN = pufxn, param = param) 
names(pileup) = paste(ensembl$gene_id, ensembl$transcript_id,  
                      ensembl$exon_number, sep = "_") 
 
save(pileup, file = paste0("_1_", strain, "_pileup.Rdata")) 
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File S3 

Filter Sites by Coverage and Minor Allele Frequency 

######################################################################
########## 
# Read in the pileups for each strain and filter by: 
# minimum coverage per site in each sample > 1% of total reads 
# alternate allele present in > 50% of samples 
# total coverage across all 16 samples >= 160 
# 
# 
# Daniel Gatti 
# dan.gatti@jax.org 
# Nov. 5, 2014 
# Ensembl 68 
# Sanger v3 
######################################################################
########## 
library(GenomicRanges) 
library(Rsamtools) 
library(BSgenome.Mmusculus.UCSC.mm10) 
 
strain = commandArgs(trailingOnly = T) 
 
print(paste(strain, date())) 
 
setwd("/hpcdata/dgatti/RNAediting/") 
 
# Load in the ensembl 68 GTF. 
load("/hpcdata/cgd/ensembl/release68/Mus_musculus.GRCm38.68.Rdata") 
 
# Add 'chr' to the chromosome names to match the BAM files. 
ensembl = keepSeqlevels(x = ensembl, value =  
          seqlevels(ensembl)[-grep("JH|GL", seqlevels(ensembl))]) 
ensembl = renameSeqlevels(x = ensembl, value = paste0("chr", 
seqlevels(ensembl))) 
sl = sub("MT", "M", seqlevels(ensembl)) 
ensembl = renameSeqlevels(x = ensembl, value = sl) 
 
# Load in the pileup file for this strain. 
setwd("founders") 
# This loads in a list called 'pileup'. 
# Each element is a 3D array: num_alleles x num_samples x 
num_positions. 
load(file = paste0("_1_", strain, "_pileup.Rdata")) 
 
################################################ 
# Adjust these parameters to change the filters. 
varMAF = 0.05 
minCov = 2 
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replicateAlleleFreq = 0.75 
totalCov = 160 
 
# Keep only loci with sum > 0. 
pileup = pileup[sapply(pileup, sum) > 0] 
 
print(paste("ALL LOCI:", sum(sapply(pileup, dim)[3,]))) 
 
# Keep only positions with more than one allele call. 
pileup = lapply(pileup, function(z) { 
            keep = matrix(F, dim(z)[1], dim(z)[3]) 
            # For each position, sum the number of expressed alleles. 
            for(j in 1:dim(z)[3]) { keep[,j] = rowSums(z[,,j]) > 0 } 
            z[,,colSums(keep) > 1, drop = F] 
         }) 
 
pileup = pileup[sapply(pileup, sum) > 0] 
print(paste("ALL HETS:", sum(sapply(pileup, dim)[3,]))) 
 
# Set alleles which do not have minCov reads in at least 75% of 
replicates = 0. 
length(pileup) 
pileup = lapply(pileup, function(z) { 
           # Set cells with cov <= 2 in < 75% of replicates = 0. 
           keep = apply(z > minCov, 3, rowMeans) > replicateAlleleFreq 
           z = sweep(z, c(1,3), keep, "*") 
           # Remove positions with 0 reads. 
           for(j in 1:dim(z)[3]) { keep[,j] = rowSums(z[,,j]) > 0 } 
           z[,,colSums(keep) > 1, drop = F] 
         }) 
 
pileup = pileup[sapply(pileup, sum) > 0] 
print(paste("HETS in > 50% repl:", sum(sapply(pileup, dim)[3,]))) 
 
# Sum reads across all replicates. This produces matrices with 
# dimensions num_alleles * num_positions. 
pileup = lapply(pileup, apply, c(1,3), sum) 
 
# Set cells with variant minor allele frequency <= varMAF = 0. 
length(pileup) 
pileup = lapply(pileup, function(z) { 
           # Zero out cells with MAF < 5%. 
           z = t(z) 
           keep = z / rowSums(z) > varMAF 
           z = z * keep 
           # Keep only het positions. 
           t(z[rowSums(z > 0) > 1,,drop = F]) 
         }) 
 
pileup = pileup[sapply(pileup, sum) > 0] 
print(paste("HETS w/ MAF > 5%:", sum(sapply(pileup, ncol)))) 
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# Remove sites that have more than 2 alleles. 
pileup = lapply(pileup, function(z) { 
           z[,colSums(z > 0) == 2, drop = F] 
         }) 
 
pileup = pileup[sapply(pileup, sum) > 0] 
print(paste("HETS w/ 2 alleles:", sum(sapply(pileup, ncol)))) 
 
# Filter by total coverage at each site. 
length(pileup) 
pileup = lapply(pileup, function(z) {  
           z[,colSums(z) >= totalCov, drop = F] 
         }) 
pileup = pileup[sapply(pileup, sum) > 0] 
 
print(paste("HETS >= totalCov:", sum(sapply(pileup, ncol)))) 
 
# Condense the data into a table with chr, position, gene ID and 
# counts. 
len = sapply(pileup, ncol) 
df = data.frame(chr = rep(NA, sum(len)), 
                pos = rep(0, sum(len)), 
                siteid = rep(NA, sum(len)), 
                gene_id = rep(NA, sum(len)), 
                symbol = rep(NA, sum(len)), 
                strand = rep(NA, sum(len)), 
                ref = rep(NA, sum(len)), 
                A = rep(0, sum(len)),  
                C = rep(0, sum(len)),  
                G = rep(0, sum(len)),  
                T = rep(0, sum(len))) 
 
len = c(0, cumsum(len)) 
names = strsplit(names(pileup), split = "_") 
for(i in 1:length(pileup)) { 
 
  rng = (len[i] + 1):len[i+1] 
  df$gene_id[rng] = rep(names[[i]][1], length(rng)) 
 
  ens = ensembl[ensembl$gene_id == names[[i]][1]] 
  df$chr[rng] = rep(as.character(runValue(seqnames(ens))[1]), 
length(rng)) 
  df$pos[rng] = as.numeric(colnames(pileup[[i]])) 
  df$symbol[rng] = rep(ens$gene_name[1], length(rng)) 
  df$strand[rng] = rep(as.character(runValue(strand(ens))[1]), 
length(rng)) 
  df[rng,(ncol(df) - 3):ncol(df)] = t(pileup[[i]][-5,]) 
 
} # for(i) 
 
# Add the reference base. 
grtmp = GRanges(seqnames = df$chr,  
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        ranges = IRanges(start = df$pos, width = 1), strand = 
df$strand) 
df$ref = as.character(getSeq(BSgenome.Mmusculus.UCSC.mm10, grtmp)) 
rm(grtmp) 
 
# Change the counts for genes on the '-' strand to their complementary 
bases. 
minus = which(df$strand == "-") 
df[minus,(ncol(df) - 3):ncol(df)] = df[minus, ncol(df):(ncol(df) - 3)] 
 
# Set the site ID. 
df$siteid = paste(df$chr, df$pos, sep = "_") 
 
# Keep only unique sites. 
sites = df[!duplicated(df$siteid),] 
rm(df) 
 
# Remove sites where the reference base does not have any reads. 
# Is this due to differenes in the source of the reference? 
keep = rep(T, nrow(sites)) 
for(i in 1:nrow(sites)) { 
  keep[i] = sites[i,sites$ref[i]] > 0 
} # for(i) 
sites = sites[keep,] 
 
print(paste("Unique sites:", nrow(sites))) 
 
save(sites, file = paste0("_2_", strain, "_het_sites.Rdata")) 
 
print(paste(strain, date())) 
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File S4 

Filter out non‐canonical editing sites 

###################################################################### 
# Filter the sites for each strain by removing all sites for any gene 
# that has a non-canonical editing site. 
# 
# Daniel Gatti 
# Dan.Gatti@jax.org 
# Nov. 14, 2014 
# Ensembl 68 
# Sanger v3 
######################################################################
########## 
library(GenomicRanges) 
library(Rsamtools) 
library(BSgenome.Mmusculus.UCSC.mm10) 
 
strain = commandArgs(trailingOnly = T) 
 
print(paste(strain, date())) 
 
setwd("/hpcdata/dgatti/RNAediting/founders/") 
 
# Load in the ensembl 68 GTF. 
load("/hpcdata/cgd/ensembl/release68/Mus_musculus.GRCm38.68.Rdata") 
 
# Add 'chr' to the chromosome names to match the BAM files. 
ensembl = keepSeqlevels(x = ensembl, value =  
          seqlevels(ensembl)[-grep("JH|GL", seqlevels(ensembl))]) 
ensembl = renameSeqlevels(x = ensembl, value = paste0("chr", 
seqlevels(ensembl))) 
ensembl = renameSeqlevels(x = ensembl, value = sub("MT", "M", 
seqlevels(ensembl))) 
 
# Load in the het sites for this strain. This loads in a data.frame  
# called 'sites'. 
load(file = paste0("_2_", strain, "_het_sites.Rdata")) 
 
edit.type = rep("", nrow(sites)) 
for(i in 1:nrow(sites)) { 
 
    wh = which(sites[i,8:11] > 0) 
    edit.type[i] = paste(sort(colnames(sites)[8:11][wh]), collapse = 
"") 
 
} # for(i) 
 
sites = data.frame(sites, edit.type) 
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# Split up the sites by gene. 
sites = split(sites, sites$gene_id) 
 
# Keep the sites that only have cannonical editing. 
keep = rep(F, length(sites)) 
for(i in 1:length(sites)) { 
  keep[i] = all(sites[[i]]$edit.type %in% c("AG", "CT")) 
} # for(i) 
 
# Keep non-canonical sites. 
noncanon.sites = sites[!keep] 
 
# Keep canonical sites. 
sites = sites[keep] 
 
# Join the sites back together. 
sites = unsplit(sites, rep(names(sites), sapply(sites, nrow))) 
noncanon.sites = unsplit(noncanon.sites, rep(names(noncanon.sites), 
                 sapply(noncanon.sites, nrow))) 
noncanon.sites = noncanon.sites[!noncanon.sites$edit.type %in% c("AG", 
"CT"),] 
 
print(paste("Canonical edit sites:", nrow(sites))) 
print(paste("Non-canonical edit sites:", nrow(noncanon.sites))) 
print(paste("Unique genes:", length(unique(sites$gene_id)))) 
 
save(sites, file = paste0("_3_", strain, 
"_canonical_edit_sites.Rdata")) 
save(noncanon.sites, file = paste0("_3_", strain, 
"_non_canonical_edit_sites.Rdata")) 
 
print(paste(strain, date())) 
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File S5 

Remove sites that intersect with genomic variants in the founders 

 

######################################################################
########## 
# Intersect the heterozygous positions for each strain with the Sanger 
SNPs 
# Indels and SVs. 
# 
# Daniel Gatti 
# dan.gatti@jax.org 
# Nov. 5, 2014 
# Ensembl 68 
# Sanger v3 
######################################################################
########## 
library(GenomicRanges) 
library(Rsamtools) 
 
strain = commandArgs(trailingOnly = T) 
 
print(paste(strain, date())) 
 
# Set the paths to the Sanger variant files. 
snpfile = "/hpcdata/cgd/Sanger/REL-1410/mgp.v4.snps.dbSNP.vcf.gz" 
indelfile = "/hpcdata/cgd/Sanger/REL-1410/mgp.v4.indels.dbSNP.vcf.gz" 
svfile = "/hpcdata/cgd/Sanger/REL-1302/18strains.REL-1302-SV-
GRCm38.sdp.tab.gz" 
 
setwd("/hpcdata/dgatti/RNAediting/founders/") 
 
# Load in the filtered het sites. 
# This loads in a data.frame called 'sites'. 
load(file = paste0("_3_", strain, "_canonical_edit_sites.Rdata")) 
 
# The Sanger variant files do not contain the mitochondrial 
chromosome.  
# Remove it from our data. 
rng = which(sites$chr != "chrM") 
 
# Turn the sites into a GRanges object. 
gr = GRanges(seqnames = sub("^chr", "", sites$chr[rng]),  
             ranges = IRanges(start = sites$pos[rng], width = 1), 
             strand = sites$strand[rng], mcols = 
sites[rng,c(3:5,7:11)]) 
colnames(mcols(gr)) = sub("^mcols\\.", "", colnames(mcols(gr))) 
 
###### 
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# SNPs 
tf = TabixFile(snpfile) 
 
# Get the column names. 
hdr = headerTabix(tf) 
cn = strsplit(hdr$header[length(hdr$header)], split = "\t")[[1]] 
cn = sub("^#", "", cn) 
 
# Get the Sanger SNPs. 
snps = scanTabix(file = tf, param = gr) 
names(snps) = gr$siteid 
 
# Keep only the ones with length > 0. 
length(snps) 
snps = snps[sapply(snps, length) > 0] 
length(snps) 
 
# Parse the SNPs into a data.frame. 
snps = lapply(snps, strsplit, split = "\t") 
snps = lapply(snps, "[", 1) 
snps = matrix(unlist(snps), ncol = length(cn), byrow = T,  
       dimnames = list(names(snps), cn)) 
 
# Keep only the header and DO founder columns. 
snps = snps[,c(1:7, 14, 11, 30, 32, 22, 34, 37)] 
 
# Keep the allele call strings for each founder. 
snps[,(ncol(snps)-6):ncol(snps)] = substring(snps[,(ncol(snps)-
6):ncol(snps)], 1, 3) 
 
# Keep only the polymorphic snps. (NOTE: 0/0 is reference call) 
dim(snps) 
snps = snps[rowSums(snps[,(ncol(snps)-6):ncol(snps)] == "0/0") < 7,] 
dim(snps) 
 
# Remove sites that intersect with these SNPs. 
removed = sites[sites$siteid %in% rownames(snps),] 
dim(sites) 
sites = sites[!sites$siteid %in% rownames(snps),] 
dim(sites) 
 
 
######## 
# Indels 
tf = TabixFile(indelfile) 
 
# Get the column names. 
hdr = headerTabix(tf) 
cn = strsplit(hdr$header[length(hdr$header)], split = "\t")[[1]] 
cn = sub("^#", "", cn) 
 
# Get the Sanger Indels. 
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indels = scanTabix(file = tf, param = gr) 
names(indels) = gr$siteid 
 
# Keep only the ones with length > 0. 
length(indels) 
indels = indels[sapply(indels, length) > 0] 
length(indels) 
 
# Parse the Indels into a data.frame. 
indels = lapply(indels, strsplit, split = "\t") 
indels = lapply(indels, "[", 1) 
indels = matrix(unlist(indels), ncol = length(cn), byrow = T,  
       dimnames = list(names(indels), cn)) 
 
# Keep only the header and DO founder columns. 
indels = indels[,c(1:7, 14, 11, 30, 32, 22, 34, 37)] 
 
# Keep the allele call strings for each founder. 
indels[,(ncol(indels)-6):ncol(indels)] =  
       substring(indels[,(ncol(indels)-6):ncol(indels)], 1, 3) 
 
# Keep only the polymorphic Indels. (NOTE: ./. is reference call) 
dim(indels) 
indels = indels[rowSums(indels[,(ncol(indels)-6):ncol(indels)] == 
"./.") < 7,] 
dim(indels) 
 
# Remove sites that intersect with these indels. 
removed = sites[sites$siteid  %in% rownames(indels),] 
dim(sites) 
sites   = sites[!sites$siteid %in% rownames(indels),] 
dim(sites) 
 
##### 
# SVs 
tf = TabixFile(svfile) 
 
# Get the column names. 
hdr = headerTabix(tf) 
cn = strsplit(hdr$header[length(hdr$header)], split = "\t")[[1]] 
cn = sub("^#", "", cn) 
 
###### 
# The Sanger SV file does not contain the Y chromosome. 
# Remove it. 
gr = gr[seqnames(gr) != "Y",] 
 
# Get the Sanger SVs. 
svs = scanTabix(file = tf, param = gr) 
names(svs) = gr$siteid 
 
# Keep only the ones with length > 0. 
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length(svs) 
svs = svs[sapply(svs, length) > 0] 
length(svs) 
 
# Parse the SVs into a data.frame. 
svs = lapply(svs, strsplit, split = "\t") 
svs = lapply(svs, "[", 1) 
svs = matrix(unlist(svs), ncol = length(cn), byrow = T,  
       dimnames = list(names(svs), cn)) 
 
# Keep only the header and DO founder columns. 
svs = svs[,c(1:4, 8, 6, 18, 19, 13, 20, 22)] 
 
# Keep only the polymorphic SVs. (NOTE: 0 is reference call) 
dim(svs) 
svs = svs[rowSums(svs[,(ncol(svs)-6):ncol(svs)] == "0") < 7,] 
dim(svs) 
 
# Remove sites that intersect with these svs. 
removed = sites[sites$siteid  %in% rownames(svs),] 
dim(sites) 
sites   = sites[!sites$siteid %in% rownames(svs),] 
dim(sites) 
 
print(paste(nrow(sites), "sites in", length(unique(sites$gene_id)), 
"genes.")) 
 
save(sites, file = paste0("_4_", strain, 
"_het_sites_sanger_removed.Rdata")) 
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File S6 

Gather common denovo editing sites in the DO founders 

######################################################################
########## 
# Read in the filtered pileups for each strain and get the union of 
all 
# edit sites. 
# 
# Daniel Gatti 
# dan.gatti@jax.org 
# Nov. 5, 2014 
# Ensembl 68 
# Sanger v3 
######################################################################
########## 
library(GenomicRanges) 
library(Rsamtools) 
library(BSgenome.Mmusculus.UCSC.mm10) 
 
setwd("/hpcdata/dgatti/RNAediting/") 
 
# Load in the ensembl 68 GTF. 
load("/hpcdata/cgd/ensembl/release68/Mus_musculus.GRCm38.68.Rdata") 
 
# Keep the autosomes, X, Y and M. 
ensembl = keepSeqlevels(x = ensembl, value =  
          seqlevels(ensembl)[-grep("JH|GL", seqlevels(ensembl))]) 
 
# Keep only unique exons and UTRs. 
length(unique(ensembl$gene_id)) 
ensembl = ensembl[ensembl$feature == "exon"] 
keys = paste0(seqnames(ensembl), start(ensembl), end(ensembl)) 
ensembl = ensembl[!duplicated(keys)] 
length(unique(ensembl$gene_id)) 
 
# Load in the filtered pileups for the DO founders. 
setwd("founders") 
 
files = dir(pattern = "^_4_|het_sites_sanger_removed.Rdata$") 
tmp = vector("list", length(files)) 
names(tmp) = sub("_4_het_sites_sanger_removed.Rdata$", "", files) 
for(i in 1:length(files)) { 
  # This loads in an object called 'sites'. 
  load(file = files[i]) 
  tmp[[i]] = sites 
} # for(i) 
sites = tmp 
rm(tmp) 
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# Create GRanges objects from the locations and take thier union. 
gr = GRanges(seqnames = sites[[1]]$chr,  
             ranges = IRanges(start = sites[[1]]$pos, width = 1), 
             strand = sites[[1]]$strand) 
for(i in 2:length(sites)) { 
 
  gr2 = GRanges(seqnames = sites[[i]]$chr,  
               ranges = IRanges(start = sites[[i]]$pos, width = 1), 
               strand = sites[[i]]$strand) 
 
  gr = union(gr, gr2) 
 
} # for(i) 
 
# The union() method condenses adjacent sites into a single range. 
Remake the 
# GRanges object with each site distinct. 
pos = unlist(sapply(1:length(gr), function(z) { 
start(gr)[z]:end(gr)[z] })) 
gr = GRanges(seqnames = rep(as.character(seqnames(gr)), width(gr)), 
              ranges = IRanges(start = pos, width = 1), 
              strand = rep(as.character(strand(gr)), width(gr))) 
gr = renameSeqlevels(gr, sub("chr", "", seqlevels(gr))) 
gr = renameSeqlevels(gr, sub("M", "MT", seqlevels(gr))) 
 
print(paste("Union of editing sites:", length(gr))) 
 
# Get the ensembl genes associated with each editing site. 
ol = findOverlaps(query = gr, subject = ensembl) 
ol = ol[!duplicated(queryHits(ol))] 
 
gr$gene_id = ensembl$gene_id[subjectHits(ol)] 
gr$symbol  = ensembl$gene_name[subjectHits(ol)] 
gr$ref = rep(NA, length(gr)) 
gr$edit.type = rep(NA, length(gr)) 
 
# We have to change the seqlevels for the mitochondrial chromosome to  
# get the reference alleles from the BSGenome. 
grtmp = gr 
grtmp = renameSeqlevels(grtmp, paste0("chr", seqlevels(grtmp))) 
grtmp = renameSeqlevels(grtmp, sub("MT", "M", seqlevels(grtmp))) 
seq = as.character(getSeq(BSgenome.Mmusculus.UCSC.mm10, grtmp)) 
gr$ref = seq 
rm(grtmp) 
 
stopifnot(all(as.character(strand(gr)) == 
as.character(strand(ensembl)[subjectHits(ol)]))) 
stopifnot(all(width(gr) == 1)) 
 
 
### 
# Go back into the BAM files and pile up these editing sites. 
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# Get the BAM files in Anuj's directory. 
bamdir = 
"/hpcdata/anuj/Projects/Investigator/Gary_ChurChill/RNA_editing/Final_
DataSet/FounderBams" 
bamfiles = dir(path = bamdir, pattern = "bam$", full.names = T) 
 
# Make a list of PileupFiles by strain. 
pufiles = PileupFiles(bamfiles) 
 
# Make the pileup function. 
pufxn = function(x) { 
          dimnames(x$seq)[[3]] = x$pos 
          x$seq 
        } # pufxn() 
 
# Add "chr" to the seqlevels of the sites. 
gr = renameSeqlevels(gr, paste0("chr", sub("MT", "M", seqlevels(gr)))) 
param = ApplyPileupsParam(minBaseQual = 20L, maxDepth = 1e7, 
        what = "seq", which = gr) 
 
# Pileup all 128 samples. 
pileup = applyPileups(files = pufiles, FUN = pufxn, param = param) 
names(pileup) = paste(seqnames(gr), start(gr), sep = "_") 
 
stopifnot(all(sapply(pileup, dim)[3,] == 1)) 
 
save(pileup, file = "all_founder_pileup.Rdata") 
 
# Get the strain names for the pileups. 
samples = 
gsub("^/hpcdata/anuj/Projects/Investigator/Gary_ChurChill/RNA_editing/
Final_DataSet/FounderBams/|\\.(lapel|unique.sorted).bam$",  
          "", colnames(pileup[[1]])) 
strains = factor(sapply(strsplit(samples, split = "_"), "[", 1)) 
 
# Create a large 3D matrix from the pileup values. 
mat = array(unlist(pileup), c(nrow(pileup[[1]]), ncol(pileup[[1]]), 
length(pileup)), 
      dimnames = list(rownames(pileup[[1]]), colnames(pileup[[1]]), 
names(pileup))) 
 
# Complementary bases for genes on the "-" strand. 
compl = c("A", "C", "G", "T") 
names(compl) = c("T", "G", "C", "A") 
 
# Condense the pileups at each site down to 8 values, one for each 
founder. 
founders = matrix(0, nrow = dim(mat)[3], ncol = 
length(levels(strains)) * 4, 
           dimnames = list(dimnames(mat)[[3]],  
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           paste(rep(levels(strains), each = 4), c("A","C","G","T"), 
sep = "_"))) 
for(i in 1:dim(mat)[3]) { 
 
  agg = aggregate(t(mat[-5,,i]), list(strains), sum) 
  rownames(agg) = agg[,1] 
  agg = as.matrix(t(agg[,-1])) 
 
  if(as.character(strand(gr)[i]) == "-") { 
 
    rownames(agg) = compl[rownames(agg)] 
    agg = agg[order(rownames(agg)),] 
 
  } # if(as.character(strand(ens)[1]) == "-") 
 
  founders[i,] = agg 
 
} # for(i) 
 
# Add gene name, strand, editing type. 
mcols(gr) = data.frame(mcols(gr), founders) 
 
# Determine the editing type by getting the two highest  
# expressed alleles. 
for(i in 1:length(gr)) { 
  ed = matrix(unlist(mcols(gr)[i,-(1:4)]), nrow = 4, dimnames = 
       list(c("A", "C", "G", "T"), NULL)) 
  ed = rowSums(ed) 
  ed = names(ed)[order(ed)][3:4] 
  ed = ed[!ed %in% gr$ref[i]] 
  gr$edit.type[i] = paste0(gr$ref[i], ed) 
} # for(i) 
 
# Remove genes with more than one non-canonical editing site per gene. 
# We beleive that mulitple non-canonical editing sites are alignment 
artifacts. 
non.canon = gr$edit.type != "AG" & gr$edit.type != "CT" 
spl = split(non.canon, gr$gene_id) 
spl = sapply(spl, sum) 
 
# Keep genes with 0 non-canonical editing sites. 
keep = names(spl)[spl <= 0] 
gr = gr[gr$gene_id %in% keep,] 
 
# Now get rid of the non-canonical editing sites. 
length(gr) 
gr = gr[gr$edit.type %in% c("AG", "CT")] 
length(gr) 
 
# Make sure that all strains have non-canonical counts < 1% of total. 
keep = rep(F, length(gr)) 
tmp = as.matrix(mcols(gr)[,-(1:4)]) 
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counts = matrix(0, length(gr), 2, dimnames = list(gr$symbol, c("AG", 
"CT"))) 
for(i in 1:length(gr)) { 
  ag.sum = tmp[i,seq(1, ncol(tmp), 4)] + tmp[i,seq(3, ncol(tmp), 4)] 
  ct.sum = tmp[i,seq(2, ncol(tmp), 4)] + tmp[i,seq(4, ncol(tmp), 4)] 
  counts[i,] = c(sum(ag.sum), sum(ct.sum)) 
  if(gr$edit.type[i] == "AG") { 
    keep[i] = all(ct.sum / (ag.sum + ct.sum) < 0.01, na.rm = TRUE) 
  } else if(gr$edit.type[i] == "CT") { 
    keep[i] = all(ag.sum / (ag.sum + ct.sum) < 0.01, na.rm = TRUE) 
  } # else if(gr$edit.type[i] == "CT") 
} # for(i) 
 
length(gr) 
gr = gr[keep] 
length(gr) 
 
print(paste("Num. sites:", length(gr))) 
print(paste("Num. genes:", length(unique(gr$gene_id)))) 
print(table(gr$edit.type)) 
 
# This file contains the putative editing sites in the DO founders. 
write.csv(as.data.frame(gr), file = "_5_founder_editing_union.csv") 
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File S7 

Pile up denovo sites in DO 

######################################################################
## 
# Pile up the denovo editing sites found in the founders in the DO. 
# Daniel Gatti 
# dan.gatti@jax.org 
# Sept. 5, 2015 
######################################################################
## 
library(Rsamtools) 
library(GenomicRanges) 
options(stringsAsFactors = F) 
setwd("/hpcdata/dgatti/RNAediting/") 
 
# Read in the denovo editing sites from the founders. 
sites = read.csv("founders/_5_founder_editing_union.csv") 
sites = GRanges(seqnames = sites$seqnames, range = IRanges(start = 
        sites$start, width = 1), strand = sites$strand, mcols =  
        sites[,-(1:6)]) 
colnames(mcols(sites)) = sub("^mcols\\.", "", colnames(mcols(sites))) 
names(sites) = paste(seqnames(sites), start(sites), sep = "_") 
 
# Get the DO BAM files in Anuj's directory. 
bamdir = 
"/hpcdata/anuj/Projects/Investigator/Gary_ChurChill/RNA_editing/DO_Ana
lysis/Analysis_Dir" 
bamfiles = dir(path = bamdir, pattern = "bam$", recursive = T, 
full.names = T) 
bamfiles = bamfiles[-grep("test", bamfiles)] 
stopifnot(length(bamfiles) == 277) 
 
# Create PileupFiles. 
pufiles = PileupFiles(bamfiles) 
 
# Make the pileup function. 
pufxn = function(x) { 
          dimnames(x$seq)[[3]] = x$pos 
          x$seq 
        } # pufxn() 
 
param = ApplyPileupsParam(minBaseQual = 20L, maxDepth = 1e7, 
        what = "seq", which = sites) 
 
# Pileup all 277 samples at each edit site. 
pileup = applyPileups(files = pufiles, FUN = pufxn, param = param) 
names(pileup) = names(sites) 
 
save(pileup, file = "DO/DO_pileup_denovo_sites.Rdata") 
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print(paste(length(pileup), "sites in DO.")) 
 
# Keep sites with mean coverage >= 20. 
coverage = sapply(pileup, colSums) 
keep = which(colMeans(coverage) >= 20) 
pileup = pileup[keep] 
sites  = sites[keep] 
 
print(paste(length(pileup), "sites with coverage >= 20 in DO.")) 
 
compl = c("A", "C", "G", "T") 
names(compl) = c("T", "G", "C", "A") 
 
# Keep sites with mean edit ratio >= 0.02. 
keep = rep(FALSE, length(pileup)) 
for(i in 1:length(pileup)) { 
 
  if(as.character(strand(sites)[i]) == "+") { 
 
    ref = sites$ref[i] 
    alt = sub(sites$ref[i], "", sites$edit.type[i]) 
 
  } else { 
 
    ref = compl[sites$ref[i]] 
    alt = compl[sub(sites$ref[i], "", sites$edit.type[i])] 
 
  } # else 
 
  er = mean(pileup[[i]][alt,,1] / (pileup[[i]][ref,,1] +  
       pileup[[i]][alt,,1]), na.rm = T) 
  keep[i] = er >= 0.02   
 
} # for(i) 
 
print(paste(sum(keep), "sites with mean edit ratio > 0.02 of",  
      length(sites), "sites")) 
 
sites  = sites[keep] 
pileup = pileup[keep] 
 
save(sites, pileup, file = "DO/_6_denovo_edit_sites.Rdata") 
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File S8 

Remove sites that occur predominantly at the ends of reads 

######################################################################
########## 
# For each of the discovered editing sites, record the bp position in 
each 
# read in the founders. 
# 
# Daniel Gatti 
# dan.gatti@jax.org 
# Aug. 11, 2015 
# Ensembl 68 
# Sanger v3 
######################################################################
########## 
library(GenomicRanges) 
library(GenomicAlignments) 
library(Rsamtools) 
library(foreach) 
library(doParallel) 
library(BSgenome.Mmusculus.UCSC.mm10) 
mm10 = BSgenome.Mmusculus.UCSC.mm10 
 
setwd("/hpcdata/dgatti/RNAediting/") 
 
# Read in the denovo founder editing sites. 
load(file = "DO/_6_denovo_edit_sites.Rdata") 
 
# Get the founder BAM files in Anuj's directory. 
bamdir = 
"/hpcdata/anuj/Projects/Investigator/Gary_ChurChill/RNA_editing/Final_
DataSet/FounderBams" 
bamfiles = dir(path = bamdir, pattern = "bam$", full.names = T) 
 
cl = makeCluster(10) 
registerDoParallel(cl) 
 
readpos = foreach(bf = iter(bamfiles),  
                  .packages = c("Rsamtools", "GenomicRanges", 
"GenomicAlignments"), 
                  .export = "sites") %dopar% { 
 
  # Get the alignments from the BAM. 
  param = ScanBamParam(which = sites) 
  ga = readGAlignments(BamFile(bf), use.names = TRUE, param = param, 
       with.which_label = TRUE) 
  mcols(ga)$which_label = sub("\\-[0-9]+$", "", mcols(ga)$which_label) 
  mcols(ga)$which_label = sub(":", "_", mcols(ga)$which_label) 
  names = as.character(runValue(mcols(ga)$which_label)) 
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  ga = split(x = ga, f = mcols(ga)["which_label"]) 
  names(ga) = names 
  retval = vector("list", length(ga)) 
  names(retval) = names(ga) 
 
  compl = c("A", "C", "G", "T", "N") 
  names(compl) = c("T", "G", "C", "A", "N") 
 
  # Loop through the reads that align to each site. 
  # We only have M, D, I and N in these files. Widths range from 100+. 
  for(i in 1:length(ga)) { 
 
    curr.site = sites[names(ga)[i]] 
    site.pos = rep(0, length(ga[[i]])) 
    strand = as.character(strand(curr.site)) 
    ref = curr.site$ref 
    alt = sub(ref, "", curr.site$edit.type) 
 
    # Get the bp calls for the reads. 
    param = ScanBamParam(what = c("qname", "strand", "pos", "cigar", 
"qwidth",  "seq"), 
            which = curr.site) 
    reads = scanBam(file = bf, param = param)[[1]] 
 
    # Get the read locations on reference coordinates. This should 
    # parse up the reads using the CIGAR string. 
    tmp = extractAlignmentRangesOnReference(cigar = reads$cigar, pos = 
reads$pos) 
      
    ops = explodeCigarOps(reads$cigar) 
    len = explodeCigarOpLengths(reads$cigar) 
    optypes = colSums(cigarOpTable(reads$cigar)) 
 
    # If we have only "M", then skip the special processing. 
    if(sum(optypes[2:9]) == 0) { 
 
      site.pos = start(curr.site) - as.integer(start(tmp)) + 1 
 
    } else { 
 
      for(j in 1:length(tmp)) { 
 
        # When there is a "D", the alignment isn't broken up. 
        if(length(grep("D", ops[[j]])) > 0) { 
 
           st = c(reads$pos[j], reads$pos[j] + sum(len[[j]][1:2])) 
           en = c(reads$pos[j] + len[[j]][1] - 1, reads$pos[j] + 
sum(len[[j]][1:3]) - 1) 
           tmp[[j]] = IRanges(start = st, end = en) 
 
        } # if(length(grep("D", ops[[j]])) > 0) 
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        ol = findOverlaps(tmp[[j]], ranges(curr.site)) 
        hit = queryHits(ol) 
 
        # Not sure why scanBam() is returning reads that don't overlap 
the 
        # editing sites... 
        if(length(hit) > 0) { 
          site.pos[j] = start(curr.site) - start(tmp[[j]])[hit] + 1 
          if(hit > 1) { 
            site.pos[j] = site.pos[j] + sum(width(tmp[[j]])[1:(hit-
1)]) 
          } # if(queryHits(ol) > 1) 
        } # if(length(hit) > 0) 
 
      } # for(j) 
 
    } # else 
 
    keep = which(site.pos > 0) 
    allele = as.character(subseq(reads$seq[keep], start = 
site.pos[keep],  
             width = 1)) 
    if(strand == "-") { 
      allele = compl[allele] 
    } # if(strand == "-") 
 
    if(any(!allele %in% c(ref,alt))) { 
      print(paste(i, "Expected", paste(ref, alt, sep = ","), 
"Observed",  
           paste(unique(allele), collapse = ","))) 
    } # if(any(!allele %in% c(ref,alt))) 
 
    # Save the positions and put the allele calls in the names of 
retval. 
    retval[[i]] = site.pos[keep] 
    names(retval[[i]]) = allele 
 
  } # for(i) 
 
  retval 
 
} # for(bf) 
 
stopCluster(cl) 
 
names(readpos) = 
sub("^/hpcdata/anuj/Projects/Investigator/Gary_ChurChill/RNA_editing/F
inal_DataSet/FounderBams/", 
                 "", bamfiles) 
save(readpos, file = "founders/_7_edit_site_read_position.Rdata") 
 
### 
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# Load in 'readpos'. 
load(file = "founders/_7_edit_site_read_position.Rdata") 
 
# Compile the read positions in each of the either founders for each 
of  
# the 192 sites. 
strains = substring(names(readpos), 1, 3) 
readpos = split(readpos, strains) 
ref.pos.by.founder = vector("list", length(readpos)) 
names(ref.pos.by.founder) = names(readpos) 
alt.pos.by.founder = vector("list", length(readpos)) 
names(alt.pos.by.founder) = names(readpos) 
 
for(i in 1:length(readpos)) { 
 
  ref.pos = matrix(0, nrow = length(sites), ncol = 100, dimnames =  
            list(names(sites), 1:100)) 
  alt.pos = matrix(0, nrow = length(sites), ncol = 100, dimnames =  
            dimnames(ref.pos)) 
 
  # Loop through each replicate and sum the positions for each site. 
  for(s in 1:length(readpos[[i]])) { 
 
    m = match(names(readpos[[i]][[s]]), rownames(ref.pos)) 
    ref = sites[names(readpos[[i]][[s]])]$ref 
 
    for(j in 1:length(readpos[[i]][[s]])) { 
 
      alt = sub(sites[names(readpos[[i]][[s]][j])]$ref, "", 
            sites[names(readpos[[i]][[s]][j])]$edit.type) 
      fac = factor(readpos[[i]][[s]][[j]], levels = 1:100) 
      tbl = table(fac[names(fac) == ref[j]]) 
      ref.pos[m[j],] = ref.pos[m[j],] + tbl 
      tbl = table(fac[names(fac) == alt]) 
      alt.pos[m[j],] = alt.pos[m[j],] + tbl 
 
    } # for(j) 
  } # for(s) 
 
  ref.pos.by.founder[[i]] = ref.pos 
  alt.pos.by.founder[[i]] = alt.pos 
 
} # for(i) 
 
pos.by.founder = ref.pos.by.founder 
for(i in 1:length(pos.by.founder)) { 
  pos.by.founder[[i]] = pos.by.founder[[i]] + alt.pos.by.founder[[i]] 
} # for(i) 
 
pdf("edit_pos_in_reads.pdf", width = 10, height = 8) 
for(i in 1:nrow(pos.by.founder[[1]])) { 
  layout(matrix(1:8, 2, 4, byrow = TRUE)) 
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  par(plt = c(0.1, 0.9, 0.1, 0.88)) 
  for(j in 1:length(pos.by.founder)) { 
    plot(pos.by.founder[[j]][i,], main = 
paste(names(pos.by.founder)[j], 
         rownames(pos.by.founder[[j]])[i]), ylab = "", las = 1) 
  } # for(j) 
} # for(i) 
dev.off() 
 
# Filter the reads based on whether most of the edit site positions 
# occur at this distal ends of the reads. 
keep = rep(FALSE, nrow(pos.by.founder[[1]])) 
names(keep) = rownames(pos.by.founder[[1]]) 
 
# For each site.... 
pv = matrix(NA, nrow(pos.by.founder[[i]]), 8, dimnames =  
     list(rownames(pos.by.founder[[1]]), names(pos.by.founder))) 
for(i in 1:length(pos.by.founder)) { 
 
  tot = rowSums(pos.by.founder[[i]]) 
  ends = rowSums(pos.by.founder[[i]][,c(1:5, 95:100)]) 
  for(j in 1:nrow(pos.by.founder[[i]])) { 
   if(tot[j] > 0) { 
     tst = binom.test(x = ends[j], n = tot[j], p = 0.1, 
           alternative = "greater", conf.level = 0.8) 
     pv[j,i] = tst$p.value 
   } # if(tot[j] > 0) 
  } # for(j) 
 
} # for(i) 
 
# Apply a Holm correction to the p-values. 
pv.adj = matrix(p.adjust(pv, method = "holm"), nrow(pv), 
         dimnames = dimnames(pv)) 
 
# If any site has an adjusted p-value < 0.05, remove it. 
keep = which(apply(pv.adj, 1, min) >= 0.05) 
remove = which(apply(pv.adj, 1, min) < 0.05) 
 
discarded.sites = sites[remove] 
sites = sites[keep] 
 
print(paste("Discarded", length(discarded.sites), "of", nrow(pv.adj))) 
print(paste("Keeping", length(sites), "of", nrow(pv.adj))) 
 
save(sites, file = 
"founders/_8_denovo_editing_sites_read_pos_filtered.Rdata") 
write.csv(as.data.frame(discarded.sites), 
"founders/_8_denovo_editing_sites_discarded.csv") 
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File S9 
RADAR and DARNED pileup in DO 

######################################################################
########## 
# Pileup the DARNED and RADAR sites in the DO. 
# PileupParams: minBaseQual = 20 
#               maxDepth = 1e7 
# 
# Daniel Gatti 
# dan.gatti@jax.org 
# Aug. 11, 2015 
# Ensembl 68 
# Sanger v3 
######################################################################
########## 
options(stringsAsFactors = FALSE) 
library(GenomicRanges) 
library(GenomicAlignments) 
library(Rsamtools) 
library(rtracklayer) 
library(foreach) 
library(doParallel) 
library(DOQTL) 
 
# Load in the ensembl 68 GTF. 
load("/hpcdata/cgd/ensembl/release68/Mus_musculus.GRCm38.68.Rdata") 
 
# Keep the autosomes, X, Y and M. 
ensembl = keepSeqlevels(x = ensembl, value =  
          seqlevels(ensembl)[-grep("JH|GL", seqlevels(ensembl))]) 
 
# Keep only unique exons and UTRs. 
length(unique(ensembl$gene_id)) 
ensembl = ensembl[ensembl$feature == "exon"] 
keys = paste0(seqnames(ensembl), start(ensembl), end(ensembl)) 
ensembl = ensembl[!duplicated(keys)] 
length(unique(ensembl$gene_id)) 
 
setwd("/hpcdata/dgatti/RNAediting/") 
 
# First read in the RADAR sites (which are on mm9 for some reason) and 
lift 
# them over to mm10. 
radar.mm9 = read.delim("RADAR_DARNED/Mouse_AG_all_mm9_RADARv2.txt") 
radar.mm9 = GRanges(seqnames = radar.mm9$chromosome, ranges = 
IRanges(start = 
            radar.mm9$position, width = 1), strand = radar.mm9$strand, 
            gene = radar.mm9$gene, inchr = "A", inrna = "I") 
chain = import.chain("RADAR_DARNED/mm9ToMm10.over.chain") 
radar.mm10 = liftOver(radar.mm9, chain) 
radar.mm10 = stack(radar.mm10) 
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mcols(radar.mm10) = mcols(radar.mm10)[colnames(mcols(radar.mm10)) != 
"sample"] 
rm(radar.mm9) 
 
# Read in the DARNED data (whcih is on mm10 coordinates) and combine 
with 
# the RADAR data. 
darned = read.delim("RADAR_DARNED/darned_mm10.txt") 
darned = darned[(darned$inchr == "C" & darned$inrna == "U") |  
                (darned$inchr == "A" & darned$inrna == "I"),] 
darned = GRanges(seqnames = paste0("chr", darned$chrom), ranges =  
         IRanges(start = darned$coordinate, width = 1), strand = 
darned$strand, 
         gene = darned$gene, inchr = darned$inchr, inrna = 
darned$inrna) 
 
sites = GRangesList(radar.mm10, darned) 
sites = stack(sites) 
sites = sites[order(start(sites))] 
sites = sites[order(seqnames(sites))] 
sites = sites[!duplicated(paste0(seqnames(sites), start(sites)))] 
names(sites) = paste(sites$gene, as.character(seqnames(sites)),  
                     start(sites), sep = "_") 
length(sites) 
save(sites, file = "RADAR_DARNED/radar_darned_sites_combined.Rdata") 
 
# Get the DO BAM files in Anuj's directory. 
bamdir = 
"/hpcdata/anuj/Projects/Investigator/Gary_ChurChill/RNA_editing/DO_Ana
lysis/Analysis_Dir" 
bamfiles = dir(path = bamdir, pattern = "bam$", recursive = T, 
full.names = T) 
bamfiles = bamfiles[-grep("test", bamfiles)] 
stopifnot(length(bamfiles) == 277) 
 
# Create PileupFiles. 
pufiles = PileupFiles(bamfiles) 
 
# Make the pileup function. 
pufxn = function(x) { 
          dimnames(x$seq)[[3]] = x$pos 
          x$seq 
        } # pufxn() 
 
param = ApplyPileupsParam(minBaseQual = 20L, maxDepth = 1e7, 
        what = "seq", which = sites) 
 
# Pileup all 277 samples at each edit site. 
pileup = applyPileups(files = pufiles, FUN = pufxn, param = param) 
names(pileup) = names(sites) 
 
save(pileup, file = "DO/DO_pileup_radar_darned.Rdata") 
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###### 
# Loads in 'sites'. 
load(file = "RADAR_DARNED/radar_darned_sites_combined.Rdata") 
radar.sites = sites 
load(file = "DO/DO_pileup_radar_darned.Rdata") 
radar.pileup = pileup 
 
# Sum the reads across all DO samples.  
alleles  = sapply(radar.pileup, rowSums) 
coverage = sapply(radar.pileup, colSums) 
mean.coverage = sapply(coverage, mean) 
mean.coverage[is.nan(mean.coverage)] = 0 
 
# Filter the sites to keep only those with > 0 reads. 
print(paste("Total sites:", ncol(alleles))) 
print(paste("Sites with 0 reads:", sum(colSums(alleles) == 0))) 
 
alleles = alleles[,mean.coverage > 0] 
mean.coverage = mean.coverage[mean.coverage > 0] 
print(paste("Sites with > 0 reads:", ncol(alleles))) 
 
alleles = alleles[,mean.coverage > 20] 
mean.coverage = mean.coverage[mean.coverage > 20] 
print(paste("Sites with > 20 reads:", ncol(alleles))) 
 
# Verify that the sites that we retain have the same 
# editing type as the databases. 
radar.sites = radar.sites[colnames(alleles)] 
radar.pileup = radar.pileup[colnames(alleles)] 
stopifnot(names(radar.sites) == colnames(alleles)) 
 
# Sort the counts for each site. 
sorted.alleles = split(t(alleles), colnames(alleles)) 
sorted.alleles = sorted.alleles[names(radar.sites)] 
sorted.alleles = lapply(sorted.alleles, function(z) {  
                   names(z) = rownames(alleles); z }) 
sorted.alleles = lapply(sorted.alleles, sort, decreasing = TRUE) 
sorted.alleles.names = sapply(sorted.alleles, names) 
stopifnot(names(sorted.alleles) == names(radar.sites)) 
 
# Get the expected and observed alleles. 
tmp = data.frame(expchr = radar.sites$inchr, exprna = 
radar.sites$inrna,  
      strand = as.character(strand(radar.sites)),  
      major = sorted.alleles.names[1,], minor = 
sorted.alleles.names[2,], 
      stringsAsFactors = FALSE) 
 
# Change the I to G. 
tmp$exprna[tmp$exprna == "I"] = "G" 
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# Change the U to T. 
tmp$exprna[tmp$exprna == "U"] = "T" 
 
# Get the complement of the alleles on the - strand. 
compl = c("A", "C", "G", "T") 
names(compl) = c("T", "G", "C", "A") 
minus = which(tmp$strand == "-") 
tmp$expchr[minus] = compl[tmp$expchr[minus]] 
tmp$exprna[minus] = compl[tmp$exprna[minus]] 
 
# Keep only the sites where the DO observed alleles match the  
# expected alleles. 
keep = which((tmp$expchr == tmp$major & tmp$exprna == tmp$minor) | 
             (tmp$expchr == tmp$minor & tmp$exprna == tmp$major)) 
print(paste(nrow(tmp) - length(keep), "sites have different 
alleles.")) 
print(paste(length(keep), "sites have the same alleles.")) 
radar.sites = radar.sites[keep] 
alleles = alleles[,keep] 
sorted.alleles = sorted.alleles[keep] 
 
# Now verify that we don't have > 2% non-canonical reads. 
total.cov = colSums(alleles) 
noncanon  = colSums(sapply(sorted.alleles, "[", 3:5)) 
noncanon.ratio = noncanon / total.cov 
keep = which(noncanon.ratio <= 0.02) 
radar.sites = radar.sites[keep] 
alleles = alleles[,keep] 
sorted.alleles = sorted.alleles[keep] 
print(paste(length(keep), "sites have <= 2% non-canonical reads.")) 
 
# Keep sites with a MAF >= 0.05. 
maf = sapply(sorted.alleles, "[", 2) / colSums(sapply(sorted.alleles, 
"[", 1:2)) 
keep = which(maf >= 0.05) 
radar.sites = radar.sites[keep] 
alleles = alleles[,keep] 
sorted.alleles = sorted.alleles[keep] 
radar.pileup = radar.pileup[names(radar.sites)] 
print(paste(length(keep), "sites have >= 5% MAF.")) 
 
# Load in the DO edit sites and make sure that we don't already have 
# these sites. 
# Loads in 'sites' 
load(file = 
"founders/_7_denovo_editing_sites_read_pos_filtered.Rdata") 
denovo.sites  = sites 
denovo.pileup = pileup 
rm(sites, pileup) 
 
site.ol = findOverlaps(query = radar.sites, subject = denovo.sites) 
print(paste("Sites already mapped =", length(site.ol))) 
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# Remove the sites that we already mapped. 
remove = queryHits(site.ol) 
radar.sites  = radar.sites[-remove] 
radar.pileup = radar.pileup[names(radar.sites)] 
print(paste("Sites from DB to map = ", length(radar.sites))) 
 
# Write out the data that we have. 
save(denovo.sites, radar.sites, denovo.pileup, radar.pileup, 
     file = "DO/_8_denovo_radar_darned_sites.Rdata") 
 
 
# Pile up the reads in the founders and record this. 
bamdir = 
"/hpcdata/anuj/Projects/Investigator/Gary_ChurChill/RNA_editing/Final_
DataSet/FounderBams" 
bamfiles = dir(path = bamdir, pattern = "bam$", full.names = T) 
 
# Make a list of radar.pileupFiles by strain. 
pufiles = PileupFiles(bamfiles) 
 
# Make the pileup function. 
pufxn = function(x) { 
          dimnames(x$seq)[[3]] = x$pos 
          x$seq 
        } # pufxn() 
 
param = ApplyPileupsParam(minBaseQual = 20L, maxDepth = 1e7, 
        what = "seq", which = radar.sites) 
 
# Pileup all samples. 
founder.pileup = applyPileups(files = pufiles, FUN = pufxn, param = 
param) 
names(founder.pileup) = names(radar.sites) 
 
save(founder.pileup, file = 
paste0("RADAR_DARNED/_8_radar_darned_founder_pileup.Rdata")) 
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File S10 
Combine the denovo, RADAR and DARNED sites and prepare QTL data 

 
######################################################################
########## 
# Merge the denovo and RADAR/DARNED edit sites into one table. 
# Daniel Gatti 
# dan.gatti@jax.org 
# Sept. 4, 2015 
######################################################################
########## 
options(stringsAsFactors = F) 
library(DOQTL) 
setwd("/hpcdata/dgatti/RNAediting") 
 
# Load in the ensembl 68 GTF. 
load("/hpcdata/cgd/ensembl/release68/Mus_musculus.GRCm38.68.Rdata") 
 
# Add 'chr' to the chromosome names to match the BAM files. 
ensembl = keepSeqlevels(x = ensembl, value =  
          seqlevels(ensembl)[-grep("JH|GL", seqlevels(ensembl))]) 
ensembl = renameSeqlevels(x = ensembl, value = paste0("chr", 
seqlevels(ensembl))) 
sl = sub("MT", "M", seqlevels(ensembl)) 
ensembl = renameSeqlevels(x = ensembl, value = sl) 
 
# Keep only unique exons and UTRs. 
length(unique(ensembl$gene_id)) 
ensembl = ensembl[ensembl$feature == "exon"] 
keys = paste0(seqnames(ensembl), start(ensembl), end(ensembl)) 
ensembl = ensembl[!duplicated(keys)] 
length(unique(ensembl$gene_id)) 
 
load(file = "RADAR_DARNED/_8_radar_darned_founder_pileup.Rdata") 
load(file = "DO/_8_denovo_radar_darned_sites.Rdata") 
 
# Create a summary file for the RADAR/DARNED sites like the one for 
denovo sites. 
strains = factor(substring(colnames(founder.pileup[[1]]), 1, 3)) 
site.pileup = matrix(0, length(founder.pileup), 4 * 
length(levels(strains)), 
              dimnames = list(names(founder.pileup),  
              paste(rep(levels(strains), each = 4), 
c("A","C","G","T"), sep = "_"))) 
 
for(i in 1:length(founder.pileup)) { 
 
  agg = aggregate(data.frame(t(founder.pileup[[i]][,,1])), 
list(strains), sum)    
  agg = as.matrix(agg[,-c(1,6)]) 
  if(as.character(strand(radar.sites)[i]) == "-") { 
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    tmp = agg[,c(1,3)] 
    agg[,c(1,3)] = agg[,c(2,4)] 
    agg[,c(2,4)] = tmp 
 
  } # if(as.character(strand(radar.sites)[i]) == "-") 
 
  site.pileup[i,] = as.vector(t(agg)) 
 
} # for(i) 
 
# Combine the data and make the column names the same as the denovo 
sites 
radar.sites = cbind(as.data.frame(radar.sites), site.pileup) 
colnames(radar.sites) = sub("inchr", "ref", colnames(radar.sites)) 
colnames(radar.sites) = sub("inrna", "edit.type", 
colnames(radar.sites)) 
colnames(radar.sites) = sub("gene", "symbol", colnames(radar.sites)) 
colnames(radar.sites) = sub("sample", "gene_id", 
colnames(radar.sites)) 
radar.sites$edit.type[radar.sites$edit.type == "U"] = "T" 
radar.sites$edit.type[radar.sites$edit.type == "I"] = "G" 
radar.sites$edit.type = paste0(radar.sites$ref, radar.sites$edit.type) 
ensid = ensembl$gene_id[match(radar.sites$symbol, ensembl$gene_name)] 
radar.sites$gene_id = ensid 
 
radar.sites = GRanges(seqnames = radar.sites$seqnames, range = 
IRanges( 
              start = radar.sites$start, width = 1), strand = 
radar.sites$strand, 
              mcols = radar.sites[,-(1:5)]) 
colnames(mcols(radar.sites)) = sub("^mcols\\.", "", 
colnames(mcols(radar.sites))) 
 
write.csv(as.data.frame(radar.sites), file = 
"RADAR_DARNED/_9_darned_radar_edit_sites.csv", 
          quote = FALSE) 
 
colnames(mcols(radar.sites)) = colnames(mcols(denovo.sites)) 
sites  = c(denovo.sites, radar.sites) 
pileup = c(denovo.pileup, radar.pileup) 
 
sites$source = rep(c("denovo", "radar"), c(length(denovo.sites), 
length(radar.sites))) 
names(sites) = paste(seqnames(sites), start(sites), sep = "_") 
 
write.csv(as.data.frame(sites), file = 
"_9_all_edit_sites_for_mapping.csv", 
          quote = F) 
save(sites, pileup, file = "_9_all_edit_sites.Rdata") 
 
# Gather the data for QTL mapping. 
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edit  = matrix(0, ncol(pileup[[1]]), length(sites), dimnames = list( 
        colnames(pileup[[1]]), names(sites))) 
rownames(edit) = sub("\\.final\\.sorted\\.bam", "", rownames(edit)) 
total = matrix(0, nrow(edit), ncol(edit), dimnames = dimnames(edit)) 
compl = c("A", "C", "G", "T") 
names(compl) = c("T", "G", "C", "A") 
for(i in 1:length(sites)) { 
 
  ref = sites$ref[i] 
  alt = sub(ref, "", sites$edit.type[i]) 
 
  if(as.character(strand(sites)[i]) == "-") { 
    ref = compl[ref] 
    alt = compl[alt] 
  } # if(as.character(strand(sites)[i]) == "-") 
 
  edit[i,]  = pileup[[i]][alt,,1] 
  total[i,] = pileup[[i]][alt,,1] + pileup[[i]][ref,,1] 
 
} # for(i) 
 
# Read in the genotype probabilities and assemble the mapping data. 
load("/hpcdata/cgd/DO_genoprobs/MUGA_founder_probs_v2.Rdata") 
probs = model.probs[grep("^KLS", rownames(model.probs)),,] 
rm(model.probs) 
rownames(probs) = sub("^KLS", "", rownames(probs)) 
probs = probs[rownames(edit),,] 
 
stopifnot(all(rownames(edit) == rownames(probs))) 
 
# Read in the MUGA markers. 
load(url("ftp://ftp.jax.org/MUGA/muga_snps.Rdata")) 
snps = muga_snps[muga_snps[,1] %in% dimnames(probs)[[3]],] 
probs = probs[,,snps[,1]] 
 
# Create a list of kinship matrices. 
K = kinship.probs(probs = probs, snps = snps, bychr = T) 
 
# Load in the sex and diet covariates. 
covar = read.csv("QTL/svenson_277_covar.csv") 
rownames(covar) = covar[,1] 
covar = as.matrix(covar[,-1]) 
covar = covar[rownames(edit),] 
 
covar = covar[rownames(probs),] 
total = total[rownames(probs),] 
edit  = edit[rownames(probs),] 
probs = probs[rownames(probs),,] 
 
stopifnot(nrow(probs) == nrow(total)) 
stopifnot(all(rownames(probs) == rownames(total))) 
stopifnot(nrow(probs) == nrow(edit)) 
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stopifnot(all(rownames(probs) == rownames(edit))) 
stopifnot(all(rownames(K[[1]]) == rownames(total))) 
 
# Save this data for mapping. 
save(sites, total, edit, covar, probs, K, covar, snps, 
     file = "QTL/_9_RNAediting_QTL_mapping.Rdata") 
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File S11 

QTL mapping of editing ratios 

######################################################################
########## 
# Read in the RNA editing sites in the DO and map them. 
# Daniel Gatti 
# Dan.Gatti@jax.org 
# Nov. 19, 2014 
######################################################################
########## 
library(DOQTL) 
setwd("/hpcdata/dgatti/RNAediting/QTL/") 
 
args = commandArgs(trailingOnly = T) 
 
# Load in the mapping data. 
load("_9_RNAediting_QTL_mapping.Rdata") 
 
i = as.numeric(args) 
 
print(date()) 
 
# Set low denominator samples = 0. 
total[total < 10] = NA 
 
# Map editing counts with total counts as a covariate. 
pheno = matrix(edit[,i], ncol = 1, dimnames = list(rownames(edit), 
        colnames(edit)[i])) 
addcovar = cbind(covar, total = total[,i]) 
addcovar[addcovar[,3] == 0,] = NA 
 
qtl = scanone(pheno = pheno, pheno.col = 1, probs = probs, K = K, 
      addcovar = addcovar, snps = snps) 
 
perms = scanone.perm(pheno = pheno, pheno.col = 1, probs = probs, 
        addcovar = addcovar, snps = snps) 
 
save(qtl, perms, file = 
paste0(colnames(edit)[i],"_RNAediting_QTL.Rdata")) 
 
print(date()) 
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File S12 

Harvest maximum QTL peaks 

######################################################################
########## 
# Harvest the QTL by taking the maximum peak and determining if it it 
over 
# the 0.05 treshold. 
# Daniel Gatti 
# dan.gati@jax.org 
# Sept. 14, 2015 
######################################################################
########## 
options(stringsAsFactors = FALSE) 
library(DOQTL) 
 
setwd("/hpcdata/dgatti/RNAediting/QTL/") 
 
load("_9_RNAediting_QTL_mapping.Rdata") 
 
files = dir(pattern = "_RNAediting_QTL.Rdata$") 
 
# Get the chromosome lengths. 
chrlen = get.chr.lengths() 
chrlen = c(0, chrlen) 
 
result = NULL 
 
for(i in 1:length(files)) { 
 
  # Get the site. 
  site = sites[sub("_RNAediting_QTL.Rdata$", "", files[i])] 
 
  # Add the DO editing ratio to the end of the site. 
  site$DO.total = mean(total[,names(site)], na.rm = TRUE) 
  site$DO.ratio = mean(edit[,names(site)] / total[,names(site)], na.rm 
= TRUE) 
 
  # Load in the QTL and perms. 
  load(files[i]) 
  # Get the 0.05 threshold. 
  thr = quantile(perms, 0.95) 
 
  # Plot the genome scan. 
  png(sub("\\.Rdata$", ".png", files[i]), width = 1000, height = 800, 
res = 128) 
  plot(qtl, sig.thr = thr, main = names(site)) 
  site.chr = as.character(sub("^chr", "", seqnames(site))) 
  if(site.chr == "X") { 
    site.pos = start(site) * 1e-6 + sum(chrlen[1:20]) 
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  } else if(site.chr == "Y") { 
    site.pos = -100 
  } else { 
    site.pos = start(site) * 1e-6 + 
sum(chrlen[1:as.numeric(site.chr)]) 
  } # else 
  points(site.pos, 0, pch = 17, cex = 2, col = 2) 
  dev.off() 
 
  spl = split(qtl$lod$A, qtl$lod$A[,2]) 
  spl$X = qtl$lod$X 
  max.lod = lapply(spl, function(z) { z[which.max(z[,7]),] }) 
  max.lod = unsplit(max.lod, names(spl)) 
 
  # Only keep cis-QTL on X. 
  if(as.character(seqnames(site)) == "chrX") { 
    if(max.lod[max.lod[,2] == "X",7] < 2 * thr) { 
      max.lod = max.lod[max.lod[,2] != "X",] 
    } # if(max.lod[max.lod[,2] == "X",7] < 2 * thr) 
  } else if(as.character(seqnames(site)) == "chrY") { 
    # Nothing 
  } else { 
    max.lod = max.lod[max.lod[,2] != "X",] 
  } # else 
 
#  max.lod = max.lod[max.lod[,7] >= thr,,drop = FALSE] 
   max.lod = max.lod[which.max(max.lod[,7]),,drop = FALSE] 
   max.lod = cbind(max.lod, p.gw = mean(perms >= max.lod[,7])) 
   result = rbind(result, cbind(as.data.frame(site), max.lod)) 
 
   for(j in 1:nrow(max.lod)) { 
 
    png(sub("_QTL\\.Rdata$", paste0("_coef_chr", max.lod[j,2], 
".png"), files[i]),  
        width = 1000, height = 800, res = 128) 
    if(max.lod[j,2] == "X") { 
#        coefplot(qtl, chr = max.lod[j,2], sex = "F", main = 
names(site)) 
    } else { 
      coefplot(qtl, chr = max.lod[j,2], main = names(site)) 
    } # else 
    dev.off() 
 
  } # for(j) 
 
} # for(i) 
 
result = cbind(result, p.adj = p.adjust(p = result$p.gw, method = 
"BH")) 
 
save(result, file = "_11_RNAediting_qtl_results.Rdata") 
write.csv(result, file = "_11_RNAediting_qtl_results.csv") 
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File S13 

Calculating the probability that the editing site occurs in a dsRNA region 

#####Input Data ##### 

#P – Base pairing probability matrix as returned by RNAfold –p 

#uP – Array with the probabilities of each nucleotide of being unpaired 

#pos – Position of the edit site 

#n – Length of the RNA sequence for the whole gene 

################## 

 

def probOfPosFavorable(P,uP,pos,n): 

  # Prob of stem: 

  sum = 0.0 

  for i in range(1,n+1): 

    sum += P[pos][i] 

 

  punp = 1.0‐sum 

 

  #Left Bulge 

  sumLB = 0.0 

  for i in range(pos+7,n): 

    sumLB += P[pos+1][i]*P[pos‐1][i+1] 

  for i in range(pos+8,n): 

    sumLB += P[pos+2][i]*P[pos‐1][i+1]*uP[pos+1] 

  for i in range(pos+7,n): 

    sumLB += P[pos+1][i]*P[pos‐2][i+1]*uP[pos‐1,n] 

 

  #Right Bulge 

  sumRB = 0.0 

  for i in range(pos‐7,2,‐1): 

    sumRB += P[pos‐1][i]*P[pos+1][i‐1] 

  for i in range(pos‐8,2,‐1): 

    sumRB += P[pos‐2][i]*P[pos+1][i‐1]*uP[pos‐1] 

  for i in range(pos‐7,2,‐1): 

    sumRB += P[pos‐1][i]*P[pos+2][i‐1]*uP[pos+1] 
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  #Left IL 

  sumLIL = 0.0 

  for i in range(pos+7,n‐1): 

    sumLIL += P[pos+1][i]*P[pos‐1][i+2]*uP[i+1] 

  for i in range(pos+8,n‐1): #2x1 a 

      sumLIL += P[pos+2][i]*P[pos‐1][i+2]*uP[pos+1]*uP[i+1] 

  for i in range(pos+7,n‐1): #2x1 b 

      sumLIL += P[pos+1][i]*P[pos‐2][i+2]*uP[pos‐1]*uP[i+1] 

  for i in range(pos+8,n‐2): #2x2 a 

      sumLIL += P[pos+2][i]*P[pos‐1][i+3]*uP[pos+1]*uP[i+1]*uP[i+2] 

  for i in range(pos+7,n‐2): #2x2 b 

      sumLIL += P[pos+1][i]*P[pos‐2][i+3]*uP[pos‐1]*uP[i+1]*uP[i+2] 

  #Right IL 

  sumRIL = 0.0 

  for i in range(pos‐7,3,‐1): 

    sumRIL += P[pos‐1][i]*P[pos+1][i‐2]*uP[i+1] 

  for i in range(pos‐8,3,‐1): #1x2 a 

    sumLIL += P[pos‐2][i]*P[pos+1][i‐2]*uP[pos‐1]*uP[i‐1] 

  for i in range(pos‐7,3,‐1): #1x2        

    sumLIL += P[pos‐1][i]*P[pos+2][i‐2]*uP[pos+1]*uP[i‐1] 

  for i in range(pos‐8,4,‐1): #2x2 a 

    sumLIL += P[pos‐2][i]*P[pos+1][i‐3]*uP[pos‐1]*uP[i‐1]*uP[i‐2] 

  for i in range(pos‐7,4,‐1): #2x2 b 

    sumLIL += P[pos‐1][i]*P[pos+2][i‐3]*uP[pos+1]*uP[i‐1]*uP[i‐2] 

 

  sum2 = punp*(sumLB+sumRB+sumLIL+sumRIL) 

  

  return sum + sum2 

 

 

 




