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ABSTRACT RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA
editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well
understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity
Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-l editing.
An allelic series in the C-to-U editing enzyme Apobec’ influences the editing efficiency of Apob and 58 additional C-to-U editing
targets. We identified 49 A-to-l editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the
shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in
proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic
variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing.
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RNA EDITING in mammals occurs through deamination of
adenosine, which is converted toinosine (A-to-Iediting), or
deamination of cytosine, which is converted to uracil (C-to-U
editing) (Davidson and Shelness 2000; Bass 2002). Other
types of editing have been reported, but these findings re-
main controversial (Bass et al. 2012; Gu et al. 2012). The two
canonical editing types, A-to-I and C-to-U editing, are medi-
ated by distinct pathways. A-to-I editing is catalyzed on
double-stranded (ds) RNA by proteins in the adenosine
deaminase, RNA-specific (ADAR) family (ADAR1 and
ADAR2) and is most common in neuronal tissues. However,
the Adar gene family is ubiquitously expressed, and editing
has been reported in many other tissues (Gu et al. 2012).
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Homozygous deletion of Adar genes is embryonic lethal in
mice, and defects in A-to-I editing have been associated with
neurodegenerative disorders and cancers (Gurevich et al.
2002; Paz et al. 2007). The C-to-U editing pathway is cata-
lyzed by apolipoprotein B messenger RNA (mRNA) editing
enzyme catalytic polypeptide 1 (Apobecl), which is expressed
primarily in small intestine and liver, where it targets the
transcript of apolipoprotein B (Apob), converting a CAA (glu-
tamine) codon within the coding sequence to a stop codon
(UAA). This editing event results in two APOB protein iso-
forms, APOB48 from the edited transcript and APOB100 from
the unedited transcript. Editing of Apob is evolutionarily con-
served and occurs in mice, humans, and other mammals. The
edited isoform APOB48 functions in the synthesis, assembly,
and secretion of chylomicrons in the small intestine; the un-
edited isoform APOB10O is expressed in the liver and gives
rise to very low-density lipoprotein (VLDL), which is con-
verted to LDL in the bloodstream. Although VLDL can contain
either APOB48 or APOB100, LDL exclusively contains
APOB100 (Davidson and Shelness 2000). Mice carrying a
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homozygous null allele of Apobecl are viable but exhibit ab-
normal lipid homeostasis (Hirano et al. 1996).

Both A-to-I and C-to-U editing alters RNA nucleotides at
specific positions in a tissue-specific manner (Nakamuta et al.
1995; Bass 2002; Dawson et al. 2004). Recent reports have
described editing events at tens to thousands of sites in hu-
mans and mice (Liet al. 2009; Rosenberg et al. 2011). Editing
is often incomplete, with only a proportion of available tran-
scripts being edited. The mechanisms that determine the
specificity and efficiency of RNA editing are not well under-
stood. Previous studies in humans have shown only limited
effects of genetic variation on RNA editing. In one study, six
A-to-I editing sites were found to be edited consistently
across 32 individuals (Greenberger et al. 2010). Another
study found evidence of genetic variation for two (of 7389)
A-to-I editing sites (Daneck et al. 2012). Still another study
found an association between RNA editing rates and genetic
variation of Apobecl (Hassan et al. 2014). The broader impact
of genetic variation on RNA editing in humans and mice
remains unclear. Identification of allelic variants that alter
the editing process could provide new insights into these
mechanisms, and this provides the motivation for our genetic
mapping study.

The Diversity Outbred (DO) population is a multiparent
outbred mouse population derived from the same eight
progenitor lines as the Collaborative Cross (CC) (Svenson
et al. 2012). The DO population provides high levels of
allelic diversity and high-resolution genetic mapping. Here
we use natural allelic variants in the DO population to
identify polymorphic loci that affect RNA editing with the
aim of understanding the genetic factors that determine
quantitative levels of editing. We consider the editing
ratio—the proportion of edited reads at a site—as a quan-
titative trait for genetic analysis. Our findings reveal distinct
modes of genetic regulation in the two editing pathways
and provide insight into evolutionary constraints on the
mechanisms that determine the specificity and efficiency
of RNA editing.

Materials and Methods
DO mice

We obtained DO mice (J:DO, Stock #009376; 277 in total,
143 females and 134 males) from The Jackson Laboratory.
Animals were received at 3 weeks of age and housed from
wean age with free access to either standard rodent chow
containing 6% fat by weight (73 females and 68 males;
LabDiet 5K52, Scott Distributing, Hudson, NH) or high-fat
chow containing 22% fat by weight (70 females and 66 males;
TD.08811, Harlan Laboratories, Madison, WI). Animals were
phenotyped for multiple metabolic and hematologic param-
eters as described by Svenson et al. (2012) and euthanized at
26 weeks of age. Liver samples were collected from each
animal and stored in RNAlater solution (Life Technologies,
Grand Island, NY) at —80°. All procedures on DO mice were
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approved by the Animal Care and Use Committee at The
Jackson Laboratory (Protocol #06006).

DO founder strains

Breeder pairs for each of the eight DO founder strains, A/J,
C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HILtJ, CAST/EiJ,
PWK/PhJ, and WSB/EiJ, were purchased from The Jackson
Laboratory and were bred to produce a total of 128 male
mice, 16 per founder strain. Male progeny mice were main-
tained on standard breeder chow (Purina LabDiet 5013) until
weaning at the University of Wisconsin—-Madison. Beginning
at 4 weeks of age, half the male mice from each strain were
maintained on either a semipurified control diet containing
17% of kilocalories from fat (TD.08810) or a high-fat, high-
sucrose (HF/HS) diet containing 45% of kilocalories from fat
and 34% (by weight) sucrose (TD.08811); diets were from
Harlan Laboratories (Madison, WI). Owing to reduced litter
size or poor breeding, male CAST/EiJ and NZO/HILtJ mice
were purchased from The Jackson Laboratory at ~3 weeks of
age and switched to the control or HF/HS diet at 4 weeks.
Animals were euthanized at 26 weeks of age (except for
the NZO/HILtJ mice). NZO/HILtJ mice were euthanized at
20 weeks of age owing to high lethality in response to the HE/
HS diet. Liver samples were collected, snap frozen, and ship-
ped on dry ice to The Jackson Laboratory for RNA-seq anal-
ysis. All animal procedures were approved by the Animal
Care and Use Committee at University of Wisconsin—-Madison
(Protocol #A00757-0-07-11).

RNA sequencing

Total liver RNA was isolated using the TRIzol Plus RNA
Extraction Kit (Life Technologies) with on-column DNase
digestion. Following the Illumina TruSeq standard protocol,
indexed mRNA-seq libraries were generated from 1 pg total
RNA followed by quality control and quantitation on an Agi-
lent Bioanalyzer (Santa Clara, CA) and the KAPA Biosystems
Library quantitative PCR (qPCR) quantitation method. Fi-
nally, 100-bp single-end reads were sequenced using the Illu-
mina HiSeq 2000 (San Diego, CA). To minimize technical
variation (lane and barcode effects in sequencing), the sam-
ples were randomly assigned to lanes and multiplexed at 12
or 24 samples per lane with randomly selected barcodes.
Each DO sample was sequenced with two or four technical
replicates to obtain ~10 million reads per sample. Base calling
was performed using CASAVA v1.8.0, and FASTQ files were
filtered to remove low-quality reads using the Illumina
CASAVA-1.8 FASTQ Filter (http://cancan.cshl.edu/labmembers/
gordon/fastq_illumina filter/).

RNA editing site prediction in founder strains

We constructed strain-specific transcriptomes for seven of the
eight founder strains (except C57BL/6J) using ModTools
(Huang et al. 2014). We incorporated strain-specific SNPs
and short (<50 bp) indels from the Sanger Mouse Genomes
Project (Keane et al. 2011; Yalcin et al. 2011) (REL-1303)
into the Genome Reference Consortium Mouse Genome,
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Build 38 (GRCm38) reference sequence. We constructed
MOD files and strain-specific genomes and adjusted tran-
script annotation using the vef2mod, insilico, and modmap
utilities from the ModTools suite. We extracted the transcrip-
tome of each founder strain using rsem-prepare-reference
(RSEM v1.2.15) (Li and Dewey 2011) and built Bowtie in-
dices (Bowtie v0.12.8) (Langmead et al. 2009). We searched
for RNA editing sites using a two-tiered approach in which we
searched for sites in the founder strains and then evaluated
those sites in DO mice. A detailed description of the process
with the script commands is available in Supporting Informa-
tion, File S1 and Figure S1.

All 16 replicates from each strain were aligned to their
respective strain-specific transcriptome using Bowtie with pa-
rameters -a -best —strata —-v 3. We converted transcriptome
alignments to genome alignments using rsem-tbam2gbam (Li
and Dewey 2011) and adjusted the strain-specific coordinates
to GRCm38 coordinates using Lapels (Huang et al. 2014).

We piled up the reads within each transcript (Ensembl
archive 68) for each of the 16 replicates in a single DO founder
strain. For each founder strain, we retained sites with the
following properties:

. Exactly two alleles expressed;

. At least two reads in at least 75% of the 16 replicates;

. Minor allele frequency (MAF) > 5%;

. Reference and edited allele coverage = 160 reads;

. No intersection with any known SNP or structural variant
(Keane et al. 2011; Yalcin et al. 2012); and

. Occurrence within a gene that contains no noncanonical
editing sites.

b~ WN =

N

Our reconstructions of founder strain and individual DO
transcriptomes are based on the current mouse reference
genome (GRCm38) and include annotated pseudogenes.
However, some of the founder strain genomes are likely to
harbor unannotated pseudogenes with paralogous SNP var-
iants that, if they are transcribed, could appear to be editing.
While we can account for known pseudogenes, unknown or
unannotated pseudogenes are more challenging. The last
filter (#6) was included to address these on the assumption
that paralogous variants are likely to produce signatures of
noncanonical editing. It is possible that some sites passing our
filters are artifacts of expression of unannotated pseudogenes
(File S2, File S3, File S4, and File S5). We have included
counts of the number of canonical and noncanonical editing
sites included throughout the process (Table S1).

We took the union of all editing sites from the eight founder
strains and retained sites in genes with only canonical editing
in all eight strains, coverage = 160 at the edited bases, and
less than 1% of reads in the nonedited bases. This produced a
set of putative editing sites that we then queried and filtered
in the DO samples (File S6).

RNA editing quantification in the DO samples

We built a combined transcriptome consisting of transcripts
from all eight founder strains and indexed it using Bowtie

(Langmead et al. 2009). We aligned RNA-seq reads from each
DO animal to the combined transcriptome and separated
them into individual alignments. We then converted the in-
dividual transcriptome alignments to genome alignments
and then to GRCm38 coordinates using rsem-tbam2gbam
and Lapels. Once all alignments were in the same coordinate
system, we extracted only one instance of every read across
all eight alignments and filtered any reads that were mapped
to different coordinates in any two strains. This produced a
BAM file for each DO sample representing alignments to all
eight founder strains.

We piled up the reads in each DO sample at the putative
editing sites and retained those with mean read depths = 20
and a mean editing ratio = 2%. We retained 186 sites (File
S7).

Previous reports have noted that false-positive RNA editing
sites may be due to a bias in the read position in which the
putative editing site occurs (Pickrell et al. 2012). We looked at
the position of each of the 186 editing sites in the 100-bp
reads from each founder. We counted the frequency with
which the editing site occurred at each position in the reads
in each of the eight founders. We tested whether a greater
proportion of reads occurred in the first and last 5 bp of each
read than expected by chance using a binomial test (Hy: pro-
portion = 0.1). We discarded 54 editing sites that occurred
predominantly at the ends of reads and retained 102 sites
(File S8).

We queried the RADAR (Ramaswami and Li 2014) and
DARNED (Kiran et al. 2013) databases for all reported mouse
editing sites and found 8891 sites. We piled these sites up in the
DO samples and retained 98 sites with mean coverage = 20
and a mean editing ratio = 2% (File S9). Of these, 17 sites
were identical to the de novo sites, and we retained 81 addi-
tional editing sites from RADAR and DARNED (File S9). We
combined these with the 102 de novo sites and proceeded
with a total of 183 sites.

Genotyping and haplotype reconstruction of
DO genomes

Genotyping of the DO mice was described in our previous
study (Svenson et al. 2012). DNA was extracted from tail
biopsies and genotyped using the Mouse Universal Genotyp-
ing Array (MUGA; GeneSeek, Lincoln, NE). A total of 277
animals were genotyped. The founder haplotypes were
reconstructed using a hidden Markov model based on the
normalized intensity values from the MUGA (Gatti et al.
2014).

QTL mapping of the RNA editing ratio

The haplotype reconstruction process produced a matrix of
eight founder allele dosages for each sample at each marker.
We fit a linear mixed model by regressing the edited counts on
sex, diet, and total counts with an adjustment for kinship
between animals (Gatti et al. 2014). When total counts in a
sample at an editing site were <10, we found that many false
associations were produced by low total counts in the
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denominator of the editing ratio. Therefore, we excluded
samples with total counts <10 from the model because esti-
mates of the editing ratio became unstable. The regression
model used was

8

Yi = siBs +din+niBr+Zgiij +vi+g €]
=

where y; = edited counts for animal i; B = effect of sex; s; =
sex of animal i; B4 = effect of diet; d; = diet for animal i; B, =
effect of total counts; n; = total counts for animal i; B; = effect
of founder allele j; g;; = founder allele dosage for founder j in
animal i; and +y; = random effect representing the polygenic
influence of animal i. We report the LOD ratio as the mapping
statistic. We determined significance thresholds by permut-
ing the phenotype and covariate values 1000 times (Churchill
and Doerge 1994, 2008). We selected the maximum associ-
ation for each editing ratio and calculated the genome-wide
p-value from the empirical distribution of null LOD scores.
We applied a Benjamini and Hochberg false-discovery-rate
(FDR) correction (Benjamini and Hochberg 1995) to these
p-values and retained those with p,q; < 0.05 (File S10 and
File S11).

Quantification of different isoforms of Apobec1

Two isoforms of Apobecl were found from the reference ge-
nome annotation. The difference between the two isoforms
consisted of differences in the length of exon 4, one with a
longer exon 4 (NM_031159) and one with a shorter exon 4
(NM_001134391). We quantified the expression of the two
known isoforms and of a new isoform discovered in this
study—the extension of exon 5. We constructed six isoforms
of Apobecl, two of which were the reference isoforms. The
remaining four isoforms were to test which of the two refer-
ence isoforms the aberrant extended isoform is derived from
and the full length of the aberrant isoform. We embedded the
six isoforms into the annotation file downloaded from
Ensembl (http://useast.ensembl.org) and then used RSEM
(Li and Dewey 2011) to quantify the six isoforms, tolerating
zero mismatches in the alignments. Transcripts per million
(TPM) and fragments per kilobase of transcript per million
aligned reads (FPKM) were used for quantification and
comparison.

Secondary-structure prediction

Full-length pre-mRNAs containing introns were imputed from
strain-specific transcriptomes in which Sanger SNPs and
indels were incorporated into the reference sequence.
Minimum-free-energy structures were predicted for full-length
mRNAs using the Vienna RNAfold tool (http://rna.tbi.univie.
ac.at/cgi-bin/RNAfold.cgi) with default parameters (Lorenz
et al. 2011).

We calculated the most stable substructure around the edit
site using RNALfold (Hofacker et al. 2004) from the Vienna
RNA Package v2.1.7 (Lorenz et al. 2011), which calculates
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the most stable substructures within a large sequence. By
running RNALfold -z, we obtained all substructures with a
Z-score = —1.0 (lower Z-scores indicate more stable struc-
tures), from which we retrieved the substructure containing
the edit site with the lowest Z-score.

We calculated the probability that the editing site occurs in
a favorable editing position (occurring in a stem or a bulge or
internal loop of size =< 2) by summing the pairing and unpair-
ing probabilities of all relevant nucleotides around the edit-
ing site. For instance, the probability of the editing site being
in a stem is the sum of all base-pairing probabilities between
it and any other nucleotide (i.e., the probability of the editing
site being paired). For an editing site e to be in a bulge of size
1, the probability is that of the editing site being unpaired
(1 — sum of all base-pairing probabilities for it) times the
probability of nucleotide e — 1 being paired times the proba-
bility of nucleotide e + 1 being paired. An analogous calcula-
tion was performed for internal loops and larger sizes. File S13
provides the Python code for calculating the probability of the
editing site being in a favorable position. Base-pairing proba-
bilities were calculated by running RNAfold —p on the whole
gene sequence.

Gene expression analysis

Gene expression was computed by summarizing the expres-
sion of all isoforms computed by RSEM (Li and Dewey 2011)
from the founder strains. FPKM mapped reads were used.
Similar expression results were obtained simply by summing
the number of reads aligned to all the isoforms. The expres-
sion of APOB was computed by summarizing the reads that
uniquely aligned to the Apob transcript from the eight foun-
der strains.

Motif analysis

We used MEME (v4.10.0) (Bailey and Elkan 1994) to analyze
the 30-nt downstream sequences adjacent to the 59 C-to-U
editing sites that mapped to chromosome 6. We used the
following settings: exactly one motif per sequence, motif
length between 10 and 12 nt, and analysis of only the current
strand. The described motif was the motif with the highest
score. We searched for the motif in the same sequences using
FIMO (v4.10.0) (Bailey and Elkan 1994), searching only on
the given strand.

Genome assembly and annotation

We used genome coordinates from GRCm38 (Waterston et al.
2002). We obtained SNPs, indels, and structural variants for
the eight DO founder strains from the Sanger Mouse Ge-
nomes Project v3 (Keane et al. 2011). We used the Ensembl
archive 68 transcriptome (Flicek et al. 2012).

Data availability

The FASTQ files for the founder and DO RNA-seq runs are
archived at the Gene Expression Omnibus under accession
number GSE45684 (Munger et al. 2014). The alignment
pipeline, including alignment and RNA editing site calling,
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is described in File S1, File S2, File S3, File S4, File S5, File S6,
File S7, File S8, File S9, File S10, File S11, and File S12.

Results

Our study employed liver RNA-seq data from two experi-
ments. We profiled liver RNA in males from the eight inbred
founder strains of the DO population. We also profiled liver
samples in a genetic mapping panel of 277 DO mice of both
sexes (Svenson et al. 2012). We implemented a conservative
screen to identify candidate editing sites (see Materials and
Methods). Our goal was not the exhaustive identification of
editing sites. Rather, we aimed to obtain reliable editing sites
and then to evaluate quantitative variation in editing. We
selected sites with robust evidence for editing in the DO foun-
ders (editing > 5% with at least 160 reads) and minimal ev-
idence of sequencing or alignment errors, and we identified
192 sites in 131 genes. We retained 156 of those sites (51 A-to-I
and 105 C-to-U sites) in 113 genes with mean coverage > 20
and mean editing ratio = 2% in DO mice. We removed sites
that had an excess of editing sites in the proximal or distal 5 bp
of each read and retained 102 sites. We then queried the
RADAR (Ramaswami and Li 2014) and DARNED (Kiran et al.
2013) RNA editing site databases and found 98 sites with
mean coverage > 20 and mean editing ratio = 2% for these
sites in DO mice. Of these, 17 overlapped the 102 editing sites
found in the de novo discovery pipeline. We retained a total of
183 sites (102 + 98 — 17) from the de novo discovery and the
RADAR/DARNED databases (Table S2). There were 96 A-to-I
sites and 87 C-to-U sites. Most of these sites (160) occur in the
3’ UTR of genes, two in intergenic regions, three in introns,
three in noncoding RNAs or expressed pseudogenes, and 15 in
coding regions. Among the 15 coding variants, 8 are synony-
mous, 6 are nonsynonymous, and 1, a well-known site in Apob,
produces a stop codon (Chen et al. 1987). In earlier work, we
had identified and confirmed 17 liver RNA editing sites (Gu
etal 2012); we detected 14 of these sites here, and the remain-
ing 3 sites showed evidence of editing but were removed be-
cause they fell below our minimum read coverage criteria.

We mapped the editing ratio for each of the 183 sites and
found significant associations (FDR < 5%) for 119 sites in 81
genes. Of these sites, 70 were C-to-U sites, and 59 of these
mapped to a region on chromosome 6, while 11 mapped to a
location near the edited site (Figure 1A and Table S1). The
remaining 49 mapped associations were produced by A-to-I
sites, and most of these mapped to a location near the edited
site (Figure 1B).

C-to-U editing

C-to-U editing ratios for most sites were associated with a
single region on chromosome 6. We found 59 C-to-U editing
sites with editing ratios that associated with a region of chro-
mosome 6 between 119.6 and 125.6 Mb. Of these 59 sites, 50
came from the de novo pipeline, and 9 were from RADAR or
DARNED. We examined the average C-to-U editing ratio in
the DO population for these 59 sites and found that all but

three sites in the Decorin (Dcn) gene were positively corre-
lated with one another and shared a common pattern of
allelic effects, suggesting that a single pleiotropic locus is
driving variation in most C-to-U edited sites.

We averaged the editing ratios across all 59 positively
correlated sites and mapped the average editing ratio to
chromosome 6 (Figure 2A). The founder effects at the peak
locus show a complex pattern (Figure 2B). DO mice carrying
the CAST/EiJ, PWK/PhJ, and WSB/EiJ alleles have higher
mean C-to-U editing; mice carrying the A/J, 129S1, and
NOD/ShiLtJ alleles have intermediate editing; and mice car-
rying the C57BL/6J or NZO/HILtJ alleles have low editing.
The Bayesian credible interval for the association peak spans
2.5 Mb (121.1-123.6 Mb) and contains 39 transcripts, of
which 10 are expressed in liver, Apobecl, Phcl, Slc6al2,
Slc6al3, Mépr, Mugl, Mug2, Necapl, Pex26, and Gm10319.
None of these genes has an obvious functional connection
with RNA editing with the exception of Apobec1 (apolipopro-
tein B mRNA editing enzyme catalytic polypeptide 1), the
cytidine deaminase that catalyzes C-to-U editing (Petersen-
Mahrt and Neuberger 2003). We hypothesize that Apobecl
variants are the causal factor influencing quantitative varia-
tion in C-to-U editing.

To understand the effect of segregating alleles on the C-to-U
editing ratio, we examined the canonical C-to-U editing site in
Apob, which has an association on chromosome 6 at 120.2
Mb (Figure 3A). Apob transcript levels do not have an asso-
ciation on chromosome 6 in the liver, and thus, the editing
association arises as a result of editing variation, not tran-
scriptional variation. The pattern of allele effects for Apob
C-to-U editing is similar to the pattern for the 70 C-to-U sites
shown earlier (Figure 3B), suggesting that the underlying
genetic mechanisms are similar. We imputed the founder
SNPs onto the reconstructed DO haplotypes and performed
association mapping within the support interval. We found
that SNPs with alleles shared by C57BL/6J and NZO/HILtJ
contribute the highest LOD scores (Figure 3C). We estimated
the editing ratio for each of the 36 genotypes present in the
DO samples (Figure 3D). The genotype estimates are noisier
owing to the smaller number of animals in each genotype
class; nevertheless, there appears to be a continuous geno-
type-dependent variation of editing ratios, suggesting the
presence of multiple functional alleles segregating in the
DO samples. We examined the Apob editing ratios in the eight
founder strains and compared them with the estimated ad-
ditive effect of founder haplotypes obtained in the DO pop-
ulation (Figure 3, B and E). In both groups of animals, the
C57BL/6J and NZO/HILtJ haplotypes are associated with the
lowest editing ratios, and the CAST/EiJ and PWK/PhJ hap-
lotypes are associated with the highest editing ratios. Editing
is somewhat elevated in the presence of the WSB/EiJ haplo-
type, while A/J, 129S1/SvlmJ, and NOD/ShiLtJ haplotypes
are intermediate.

To better understand the mechanism driving the genetic
variation in C-to-U editing, we examined SNPs and small
insertions and deletions (indels) in Apobecl that distinguish
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four haplotype groups: (1) CAST/EiJ and PWK/PhJ, (2)
C57BL/6J and NZO/HILtJ, (3) A/J, 129S1/SvimJ, and
NOD/ShiLtJ, and (4) WSB/EiJ. Fourteen SNPs or indels
are shared by PWK/PhJ and CAST/EiJ, one of which creates
an amino acid substitution in Apobecl (rs50844667, 122,
581,478 bp); a positively charged arginine (R), located near
the catalytic domain, is replaced by a neutral glutamine (Q)
(Figure 4A). The glutamine variant found in CAST/EiJ and
PWK/PhJ is shared by most species of mammals (Figure 4B).
Only humans, rats (reference strain BN/SsNMcw), and most
laboratory mouse strains, including the reference strain
C57BL/6J, share the arginine residue at this site. The high
editing ratio observed in CAST/EiJ and PWK/PhJ strains sug-
gests that the glutamine allele of APOBEC1 may have in-
creased catalytic activity.

Three Apobecl variants were shared by C57BL/6J and
NZO/HILtJ strains. One is a 262-nt insertion (relative to
the other six strains) in the fifth intron (122,586,456—
122,586,718 bp) (Figure 4C). Examination of RNA-seq reads
at Apobec] in the eight founder samples shows an aberrant
splicing pattern that occurs in ~50% of transcripts from these
strains; the fifth exon is extended by ~1245 nt. This alterna-
tively spliced transcript introduces 15 stop codons into the
reading frame; thus, the mRNA may produce both a trun-
cated transcript and a corresponding truncated protein.
Overall, there appears to be a twofold reduction of total Apo-
becl expression in C57BL/6J and NZO/HILtJ strains (Figure
S2). However, when we estimated the normalized coverage
of exon 6 alone, we found that the six strains that do not
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contain the intronic insertion have three- to fivefold higher
coverage, suggesting that they may have three to five times
the number of full-length Apobec] transcripts.

There is a single SNP shared by A/J, 129S1/SvlmJ, and
NOD/ShiLtJ strains in exon 4 (rs51979390, 122,591,220 bp)
(Figure 4C) that occurs at the splice junction and is associated
with expression of a long Apobec1 isoform (NM_031159) in
these strains. The long isoform adds an extra 56 nt to the 5’
end of exon 4, which contains the 5’ UTR. The SNP is 40 nt
downstream of the start of the longer exon 4 and 16 nt up-
stream of the shorter exon 4. Typically, the short isoform
(NM_001134391) accounts for >95% of the total Apobecl
mRNA (Nakamuta et al. 1995), but we observed high levels
of the long isoform in A/J, 129S1/SvimJ, and NOD/ShiLtJ
strains. While expression of the long isoform is increased in
these three strains, the total expression level of functional
Apobecl is reduced compared to the WSB/FEiJ strain. Expres-
sion of Apobecl is highest in WSB/EiJ (Figure S2). These
polymorphisms define an allelic series at Apobecl with four
functionally distinct groups. They combine to form 10 dis-
tinct genotypic classes in the outbred DO mice, which is con-
sistent with the complex and continuous variation in C-to-U
editing ratio (Figure 3D).

The “mooring” sequence, where the APOBEC1 comple-
mentation factor (A1CF) binds to Apob, is thought to be im-
portant in determining specificity of Apob editing (Smith et al.
2012). We searched for the mooring sequence within a 30-nt
window downstream of the editing site in all 59 C-to-U edit-
ing sites with a strong association on chromosome 6 and


http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.179481/-/DC1/FigureS2.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.179481/-/DC1/FigureS2.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.179481/-/DC1/FigureS2.pdf

A 2541 2 3 4 5 6 7 8 9 10 11 12 13 14 1516171819 X
20+
154
(]
(@)
=
10
5,
0
B Al
— ey
vim
0.044 — NOD/ShiLt
0 —— NZO/HILt)
= —— CAST/EN
3 — PWK/PhJ
= — WSB/ELJ
W 0.02-
o
o
<
% 0.00
°
c
S
(o]
L_0.02-

20 40 60 80 100 120 140
Chr 6 (Mb)

Figure 2 Mean C-to-U editing ratios for most editing sites map to a
region on chromosome 6 at 122 Mb. (A) Genome scan of mean C-to-U
editing for 70 editing sites shows a strong association on chromosome 6.
Horizontal axis shows the mouse genome; vertical axis plots the LOD score.
Red line is the permutation-derived o = 0.05 significance threshold. (B)
Founder allele effects on chromosome 6 reveal a complex pattern of allele
effects. Horizontal axis shows chromosome 6 in Mb. Vertical axis shows the
founder allele effects.

found a consensus motif that is similar to the Apob sequence
and is similar to previous reports (Figure 4D and Table S3)
(Rosenberg et al. 2011). In Apob, the mooring sequence be-
gins 3 nt downstream of the edited base. In other genes, the
motif was found between 0 and 18 nt from the edited base.
We did not find a correlation between the distance of the
motif to the edited base and either the MEME enrichment
p-value or the mean editing ratio in the DO population. Al-
though we found SNPs in the mooring sequence of four sites
and short indels (<50 nt) between the editing site and the
distal end of the mooring sequence in two editing sites, we
did not find any correlation between these genomic variants
and the editing ratio. Thus, although Alcf may play a role in
C-to-U editing, we did not find that genetic variation within
the mooring sequence influences editing efficiency. Consis-
tent with previous work, we observed enrichment of A and
U bases adjacent to the edited base (Figure 4E) (Rosenberg
et al. 2011). We also found that the bases adjacent to the

editing site were enriched for sequences with an A in the 5’
position (x2 test, p = 1.9 X 10™4); 44 sites (75%) contained
an A, whereas 15 sites (25%) contained a U.

Our results suggest that variation in C-to-U editing ratios in
the DO population is regulated by an allelic series of the
editing enzyme Apobecl. These findings are consistent with
arecent report of editing variation in the AXB/BXA recombinant
inbred panel (Hassan et al. 2014). Of the remaining C-to-U
editing sites, 11 show local genetic associations that map to
the region of the edited gene. Two C-to-U editing sites map to
distant loci other than chromosome 6. Six of the 11 sites have
unusually high LOD scores (>30), and it is possible that some
of these sites are the result of errors in the data or to un-
annotated paralogous variation. Of the local QTL, three
genes with moderate but significant LOD scores, Aldh6al,
Gramdlc, and Lamp2, showed some evidence of regulation
by the Apobec1 locus. We searched for other distant QTL that
might regulate C-to-U editing but did not find a consistent
signal around the 11 local C-to-U editing sites. Curiously, the
three sites in Dcn are anticorrelated with the pattern of allele
effects at the ApobecI locus, an observation for which we
currently have no explanation.

A-to-I editing

A very different picture emerges from genetic analysis of the
96 A-to-I edited sites detected in this study. Although approx-
imately half (47) of these sites showed no evidence of editing
ratio variation across the founder strains, a total of 49 A-to-I
editing sites in 22 genes varied significantly across the founder
strains and revealed significant associations in the DO pop-
ulation. Unlike C-to-U editing, where most of the sites dis-
played a similar pattern of allele effects, A-to-I editing sites
were highly variable, suggesting independent genetic regu-
lation for each site. The only exceptions were for editing sites
located within the same gene where the pattern of allele
dependence was similar for all sites within that gene.

These observations suggest that local genetic factors drive
variation in A-to-I editing frequency. When we examined the
support interval for each association, we found that the in-
terval included the edited gene itself. It is known that the
secondary structure of target mRNAs is an important factor for
A-to-I editing site specificity (Dawson et al. 2004; Rieder and
Reenan 2012). Thus, we hypothesized that cis-acting variants
alter mRNA secondary structure near the editing site. To test
this hypothesis, we examined the relationship between ge-
netic variants, target RNA structure, and the edited sites. To
do so, full-length target RNAs of each founder strain were
imputed from known SNPs and indels. These RNAs were
folded in silico, and their structure was examined for strain-
dependent differences.

Because A-to-I editing enzymes prefer double-stranded
regions of RNA (Lehmann and Bass 1999), we focused on
the impact of genetic variants on double-stranded regions
of the target mRNA and whether these regions were associ-
ated with edited sites. The long, noncoding (linc) RNA
0610005C13Rik contains one editing site for which the
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near Apobec].

NZO/HILtJ allele shows the highest editing (Figure 5, A and
B). The NZO/HILtJ allele carries 56 SNPs and 9 structural
variants in 0610005C13Rik, and these lead to a structural
change compared to the reference sequence. In allele
C57BL/6J, there is a 45-nt region of predominantly dsRNA
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around the editing site, while the NZO/HILtJ transcript con-
tains a 120-nt dsRNA region. RNAfold simulations of the
ensemble of structures suggest that the editing site has a high
probability of occurring in the stemlike region in all strains.
However, the double-stranded feature is unusually stable in
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the NZO/HILtJ strain, which shows the highest editing ratio
(Z = —13.77 for the most stable locally folded structure of
NZO/HILtJ). Given these observations and the fact that edit-
ing efficiency is known to positively correlate with dsRNA
length, we examined other A-to-I editing sites and asked
whether the editing site resided within regions of dsRNA that
varied across strains.

Lactamase B2 (Lactb2) contains nine edited sites, of which
five have significant QTL. The editing frequency at these five
sites is low compared to other strains when the PWK/PhJ allele
is present in DO mice (Figure 5D), and this effect is recapitu-
lated in the founder strains (Figure 5E). The computed struc-
ture of the full mRNA of PWK/PhJ contains a shorter length
of dsRNA than the reference C57BL/6J strain (Figure 5F),
and this may reduce editing efficiency. Analogous to
0610005C13Rik, the local stability of the Lact2b RNA struc-
ture trended with the editing ratios across strains. For example,
the most stable local structure of PWK/PhJ is the least stable
compared to the other strains, and PWK/PhJ has the low-
est editing ratio. The gene Signal Peptide Peptidase Like 2A
(Sppl2a) contains five A-to-I edited sites, and all have signif-
icant QTL. The founder allele effects in the DO population
(Figure 5G) suggest that NOD/ShilLtJ alleles will have higher
editing efficiency than CAST/FEiJ alleles. Editing ratios in the
founders (Figure 5H) are somewhat similar to the DO allele
effects. NOD/ShiLtJ, which has higher editing than CAST/
EiJ, has a longer stretch of dsRNA in the full mRNA folded

structure than CAST/FiJ (Figure 5I). Recent reports have
shown evidence of cis-acting intronic dsRNA elements that in-
fluence editing (Daniel et al. 2012). We searched for promiscu-
ous editing in the three genes shown in Figure 5 but did not find
evidence of editing at sites other than the target editing sites.

There were four distant associations among the A-to-I
editing sites, and each association occurred in a different
genomic location, suggesting that unlike C-to-U editing, there
is no single gene that drives A-to-I editing in the livers of DO
mice. There are some intriguing candidate genes under these
associations. The association on chromosome 1 for Tmem245
contains transfer RNA (tRNA) splicing endonuclease 15
homolog (Tsen15). The association on chromosome 2 for
Cd200r3 contains adenosine deaminase like (Adal). While we
have no molecular evidence of distant regulation of A-to-I
editing, these associations may represent interactions between
edited transcripts and genes under the associations.

These observations demonstrate that variation of the A-to-I
editing ratio in the DO population is driven primarily by local
variants. Given the strain-dependent changes in target RNA
structure, it appears that these variants play a role in modu-
lating the local RNA structure of edited nucleotides.

Discussion

We used RNA editing ratio as a quantitative trait and found
that most C-to-U editing sites in our study were controlled by a
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single trans-acting factor at Apboecl that encodes an enzyme
(APOBEC1) that catalyzes C-to-U editing. It is generally
thought that APOBECI is positioned at the editing site by a
mooring sequence (Smith et al. 2012) that is recognized by
an APOBECI cofactor, A1CF. Consistent with this model,
most of our C-to-U sites contain a mooring-like motif. How-
ever, we found no evidence for linkage at the Alcflocus itself,
or linkage to variants within the mooring sequence, suggest-
ing that genetic variation within the mooring sequences or
Alcf does not drive variation in C-to-U editing in the DO
population. The DO founder strains carry only nonsynony-
mous variants in Al¢f, and there is little variation in transcript
levels in the founder strains (Figure S2). Another RNA bind-
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ing protein, RBM47, has been identified recently as a re-
quired APOBECI cofactor for C-to-U editing in vivo (Fossat
et al. 2015). However, as with Alcf, we did not find evidence
for linkage to Rbm47 for any of the C-to-U sites studied,
suggesting that neither putative cofactor of APOBEC1 is a
driver of editing variation in the DO population. Our analysis
strongly supports a role for Apobec1 in determining quantita-
tive variations in C-to-U editing. The C57BL/6J and NZO/
HILtJ Apobec] alleles with an alternative mRNA isoform are
associated with both lower total mRNA and lower C-to-U
editing. This outcome is particularly relevant given that most
studies of C-to-U editing in mice use C57BL/6J, which may
not be representative of murine C-to-U editing.


http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.179481/-/DC1/FigureS2.pdf

Apob editing is the most well-studied C-to-U editing event.
Editing produces one of two versions of APOB, APOB48 (ed-
ited) and APOB100. APOB48 is involved in the transport of
dietary fat by chylomicrons. APOB100 contains the LDL re-
ceptor binding site and is essential for the efficient clearance
of LDL from the circulation. High levels of APOB100 are as-
sociated with atherosclerosis (Davidson and Shelness 2000).
Given the large effect of polymorphisms on editing ratios in
the DO population, it will be important to characterize how
human genetic variation in APOBEC] affects C-to-U editing
ratios and downstream phenotypes. There are 22 SNPs
within the exon boundaries of human APOBECI, and these
may alter the APOB48-to-APOB100 ratio as well as circulat-
ing LDL/high-density lipoprotein (HDL) ratios.

In contrast to C-to-U editing, A-to-I editing in the liver
seems to be regulated mostly by local factors. We found
associations for 49 A-to-I editing sites, all of them in the
vicinity of the edited gene. In many cases, these genetic
variants appear to affect dsRNA stability and length in the
region containing the edited sites of target RNAs. The major
ubiquitous A-to-I editing enzyme, ADAR, shows distinct and
strong preferences for long, stable dsRNA (Herbert and Rich
2001). Thus, the observed alterations in RNA structure are
consistent with a model in which variant-induced dsRNA de-
stabilization or length reduction negatively affects RNA edit-
ing efficiency. These findings are in good agreement with
studies of natural genetic variation in Drosophila showing
that local variants near the edited site are an important de-
terminant of editing efficiency (Sapiro et al. 2015). While the
Adar family of genes contain missense polymorphisms in
the DO population, these variants do not appear to influ-
ence A-to-I editing in the liver.

ADAR-mediated editing occurs in many tissues, and the
alteration of ADARs is known to be detrimental. We found
little evidence for trans-acting associations despite the exis-
tence of six polymorphisms between the eight founder strains
that alter amino acids in Adarl and several large indels in
introns of Adarbl. While these polymorphisms may affect
other non-editing-related functions of ADARs (Ota et al.
2013), these studies show that they have little or no impact
on A-to-I editing in the liver. Our findings do not preclude the
possibility that editing in other tissues may be affected by
ADAR polymorphisms or by other proteins. In mammals,
most A-to-I editing occurs in the brain, and in Drosophila,
the fragile X mental retardation protein (FMRP) has been
shown to affect editing at distant sites (Bhogal et al. 2011).
In future studies it will be important to use natural genetic
variation in the mouse to assess long- and short-range influ-
ences on RNA editing in the brain.

We have successfully identified associations and specific
polymorphic loci that influence RNA editing. Both C-to-U and
A-to-1 editing is variable with clear underlying genetic drivers.
We mapped multiple local associations for A-to-I editing sites
and a shared distant association in Apobec for C-to-U editing
sites in the DO population. Most of the local A-to-I editing
associations map to SNPs in the edited transcript, and we

have identified candidate polymorphisms for some genes
that are likely to affect mRNA secondary structure. The dis-
tinct genetic architectures discovered for C-to-U and A-to-I
editing may reflect the different functional constraints in these
two editing pathways. C-to-U editing of the transcriptome oc-
curs at low ratios at sites other than Apob, and functional
polymorphisms in the central catalytic enzyme appear to be
tolerated. In contrast, A-to-I editing is widespread, and polymor-
phisms in central enzymes (i.e. ADARSs) are more likely to have
pleiotropic effects that are detrimental to the organism. Thus,
when variation in A-to-I editing is present, the causal polymor-
phisms are local, limiting the effects to a single transcript.
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Table S1

Canonical and non-canonical editing sites during the denovo discovery process

Af) C57BL/6J | 12951/SvimJ) | NOD/ShiLt) | NZO/HILt) | CAST/Ei) | PWK/Ph) | WSB/EiJ

All Loci 72042664 | 74352911 72327688 71984593 | 72429702 | 71888532 | 71921235 | 71057464
All Hets 5863835 | 6074674 5983105 5950016 5721370 | 6122205 | 5853645 | 5596353
Hets >
50% repl 11996 11570 11266 13280 10126 10661 9901 11808
MAF > 5% 825 743 716 861 679 1467 1278 821
Hets with
2 alleles 813 732 703 849 667 1449 1263 801
Hets > 160
cov 805 728 700 847 661 1439 1261 784
sites 623 591 582 680 562 1105 966 617
canonical
sites 134 136 141 120 149 233 246 168
non-
canonical
sites 234 193 211 245 192 381 350 223
filter
Sanger 94 89 95 106 94 181 206 131
non-
canonical
sites 119 124 114 137 104 216 217 143
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Table S2. Location, genes, founder counts and QTL information for 183 RNA Editing sites.
(xls, 145 KB)

Available for download as a .xIx file at
www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.179481/-/DC1/TableS2.xIs



Table S3. Mooring sequences of 59 C-to-U editing sites with QTL at the Apobec1 locus on Chr 6. The motif start is the number of bp from the
edited C nucleotide where the mooring sequence starts. The MEME p-value for each site represents the probability that a random sequence
with the same length and sequence background would match the discovered motif with a score greater than or equal to the current site. The

table is sorted by p-value.

Site Start | p-value Pproximal Mooring Distal Ensembl Symbol
chrX_ 38420630 0 6.59E-05 CTCAGAGATG | GCACCAATTG | ENSMUSG00000016534 Lamp?2
chrl_139523522 0 | 0.000172 . | CTCAATACTT | TCCTTATTTA | ENSMUSG00000026368 F13b
chrX_139672470 12 | 0.000302 | GAATTGGTTG | ATCAGTATAT | TAGTGACAC ENSMUSG00000031438 Rnf128
chrl5_99408620 0 | 0.000302 . | CTTAGTGGTT | TTCTCTATTT | ENSMUSG00000023010 Tmbim6
chrl2_ 8008054 7 | 0.000302 CAATTTG | ATCAGTATAT | TAAAGATAAT | ENSMUSG00000020609 Apob
chr3_ 73638664 7 | 0.000451 CACTTAG | CTCAATGACT | AATAAATAGG | ENSMUSGO00000027792 Bche
chrl4_21448058 9 | 0.000451 | CTTAGAGGG | CTCAGTGCTA | CTTCTAGGAC | ENSMUSG00000039197 Adk
chr3_ 57835070 0| 0.000512 CTTAGTGACG | TGGAAAATTG | ENSMUSGO00000036503 Rnf13
chr10_97517941 0 | 0.000512 . | CTTAGTAAAG | CGTTAAAAGG | ENSMUSG00000019929 Dcn
chr7_132557671 8 | 0.000687 CATTTATT | TTCAGTATTT | CTTTGAATAA | ENSMUSG00000030934 Oat
chr3_144597012 0 | 0.000848 . | CTTAGTTTTG | CATGCTTACA | ENSMUSG00000037072 Sep15
chr9_52088609 7 0.00103 CCTACTA | ATGAGTATTT | GGTAATTTCC | ENSMUSG00000032050 Rdx
chrl9 44395692 9 0.00171 CATAGAAAA | ATCACTGTAG | ATCTACTGAC | ENSMUSG00000037071 Scd1l
chrl4_73362559 17 0.00217 | GGATTTCAGC | CTTGATGTTT | TAAT ENSMUSG00000022108 Itm2b
chrX_60224300 20 0.00246 | AGTATTACTT | TTGAGTATTT | T ENSMUSG00000062949 Atpllc
chr5_87555712 21 0.00246 | GGCTTTATAA | CACAGTATAT ENSMUSG00000029273 Sultldl
chr4_107200739 0 0.00246 . | CTTAGTTAGT | TGCATTGGTT | ENSMUSG00000028618 Tmem59
chrX_36604963 9 0.00285 CATGGTGAT | TTCAATATTT | AGAAAAGTTT | ENSMUSG00000006373 Pgrmcl
chrl6_21761768 10 0.00285 | CAAAATGTTG | CTAAGAGAAT | AATTCATAAC | ENSMUSG00000022853 Ehhadh
chrl 58200408 9 0.00337 CATGTTTAA | TTCAATATAT | TAAACGGAAT | ENSMUSG00000064294 Aox3
chr10_97517901 7 0.00386 CTGAGTT | ATCAAAGTCT | GATGTAATCA | ENSMUSG00000019929 Dcn
chr9_72747608 1 0.00545 C | TTTAATGATT | AGTATACTGC | ENSMUSG00000032216 Nedd4
chr7_131445518 15 0.00545 | TAGAAAGTAT | TTTGGTGCTT | TTGCAA ENSMUSG00000030861 Acadsb
chr7_131445515 18 0.00545 | TAGAAAGTAT | TTTGGTGCTT | TTG ENSMUSG00000030861 Acadsb
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chrl0_57515985 19 0.00545 | TAGTATGCCA | CTTAATTAAG | AT ENSMUSG00000019877 Serincl
chr8 45306577 0 0.006 . | CTTGGAAATT | CATATATCAT | ENSMUSG00000079057 Cyp4v3
chrl1_20063380 13 0.00669 | AATGATGATT | CTGAGAGAAA | TATTTTCC ENSMUSG00000020152 Actr2
chr9_79769822 8 0.00752 CAGTTTAG | ATTAATATGT | GCTTAAAAGA | ENSMUSG00000032328 Tmem30a
chr9_ 114749171 17 0.00752 | AATTACTATA | CTTAAATTAT | GCTC ENSMUSG00000032434 Cmtm6
chr5 17783137 6 0.00752 CAAAAG | ATTAATATGT | CACTATAGGC | ENSMUSGO00000002944 Cd36
chr3_121760011 0 0.00752 . | CTAAGAATGT | CCTTATTCTT | ENSMUSG00000028127 Abcd3
chrl_139810468 19 0.00752 | AATATGATTT | CACAAAGCAT | GT ENSMUSG00000033898 Cfhr2
chrX_12616481 10 0.00836 | CTATGTTGAT | TTCAGAAGAG | ACTAGCTTTG | ENSMUSG00000031007 Atpb6ap2
chr7_131444739 0 0.0103 . | CTTAGTTCTA | AATATCAAAA | ENSMUSG00000030861 Acadsb
chrl 139810666 18 0.0103 | AAAATGCAAA | AGCAGTAATT | CAA ENSMUSGO00000033898 Cfhr2
chr10_97518033 4 0.0103 CTCT | AGCAATGTAT | TAATCTCCTT | ENSMUSG00000019929 Dcn
chrl0_7768196 7 0.0103 CTATTTG | ATTACTATTG | TAAGATTTTA | ENSMUSG00000040006 BC013529
chr9_100982512 4 0.0113 CTTT | TTGAATAAAT | ATTTCATTGT | ENSMUSG00000032527 Pccb
chr8_95864156 7 0.0113 CAATAAA | ATTACTATAG | ACCCAG ENSMUSG00000031672 Got2
chr5_145854741 12 0.0123 | AAAATTTTTG | ATGAAAAATG | TGAGCTCTT ENSMUSG00000056035 Cyp3all
chrxX_38419909 2 0.0146 CA | TTTAGATTAT | ATATCGGATT | ENSMUSG00000016534 Lamp2
chr2_ 122152902 11 0.0146 | TTCTCATTAC | TTGGATGCAG | TTACTCATCT ENSMUSGO00000060802 B2m
chrl4_73362604 8 0.0146 CTACTTTA | ATTAAAATGT | GCCGTATCTT | ENSMUSG00000022108 Itm2b
chrld 21448185 4 0.0159 CATT | TTCAATTGTT | TGTAAATTCA | ENSMUSGO00000039197 Adk
chrl3_ 95627449 16 0.0159 | CACTTTCTGT | ATAAAAGTAT | ATATT ENSMUSG00000021676 lggap2
chrl3 93752703 2 0.0174 CA | TTAGGTGTTT | GCCAATATGA | ENSMUSG00000042102 Dmgdh
chr8 13174652 19 0.0188 | AATCTGCTTT | ATCAAATGTG | AA ENSMUSG00000031447 Lampl
chr4_59618515 6 0.0203 CAATGC | CTGGCTTTAT | TGAGCTTTCA | ENSMUSG00000028383 Hsdl2
chrl8 60391275 0 0.0203 . | CTTAGATCAA | GTAATTTTAC | ENSMUSG00000054072 ligpl
chr7_14411655 11 0.0252 | TTGTTTTTGA | TTTAAGGATG | TGGCATATAA | ENSMUSG00000030378 | 2810007J24Rik
chr8 13174720 8 0.0271 CTATTGAA | ATGACGGTGT | TAATTTTGCT | ENSMUSG00000031447 Lampl
chr3_119432749 3 0.0271 CAC | ATAAATTCAT | TTATTCCTTC | ENSMUSG00000033308 Dpyd
chr6_138156528 7 0.031 CAGTAGG | CTCTATTCTT | TTGTATTTGG | ENSMUSG00000008540 Mgst1
chr6_87999680 7 0.0331 CAGTAGA | CACAAGAATT | ATGTACGCCT | ENSMUSG00000079477 Rab7
50 sl T.Guetal.




chr6_52546355 3 0.0331 CTC | CAGAAAAATG | ACACCTTTAG | ENSMUSG00000029776 Hibadh
chr6_141908813 4 0.0353 CCTC | AACAATTATT | TTTTACTCAT | ENSMUSG00000041698 Slcolal
chrX_109161347 6 0.0424 CTTCAA | ATTACTATTA | TCATCATACC | ENSMUSG00000031246 Sh3bgrl
chr16_56016950 6 0.0621 CACATG | ATTAGTTTCC | AAGGGTTACA | ENSMUSG00000071533 Pcnp
chrX_53021282 13 0.0653 | TTGATTTGCA | CTATGAGCCT | ATAGGCCA ENSMUSG00000025630 Hprt
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File S1

RNA Seq Alignment Pipeline

Building transcriptome of CC founders (except B6) using modtools.

Data needed:

SNPs and Indels:

Site: ftp://ftp-mouse.sanger.ac.uk/REL-1303-SNPs_Indels-GRCm38/

Files Downloaded: mgp.v3.snps.rsIDdbSNPv137.vcf.gz, mgp.v3.indels.rsIDdbSNPv137.vcf.gz

Note: Download the *.tbi files too

Reference genome:

ftp://ftp-mouse.sanger.ac.uk/ref/

File downloaded: GRCm38_68.fa
Header modified:
GRCm38_68_mod.fa (Only 1, 2, 3, 4............ present in chromosome name)

GRCm38_68_chr.fa (chr present in chromosome name)

Annotation file:

File downloaded: ftp://ftp.ensembl.org/pub/release-
68/gtf/mus_musculus/Mus_musculus.GRCm38.68.gtf.gz

gunzip (Mus_musculus.GRCm38.68.gtf.gz)
Modified file: Mus_musculus.GRCm38.68_final.gtf

(header “##” is removed and “chr” is added to chromosome name ; chrMT is replaced by chrM)
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In order to modtool to work download following two files:

Site: http://csbio.unc.edu/~sphuang/vcf2mod/

Files downloaded: sanger_vcf.alias, build38.meta

Important Information:

1. All Strain Name in Sanger VCF and Indel build38 files:

129pP2 129581 12955 Al AKRJ BALBcJ

C3HHel

C57BL6NJ

CASTEiJ

CBAJ DBA2) FVBNJ LPJ NODShiLt] NZOHILtJ

PWKPhJ

SPRETEiJ

WSBEiJ

Stepl: (Convert vcf files to mod file)

Module requirement:

e samtools

e tabix

e vcf-tools

e python (with modtools installed)

Command:
vcf2mod -a sanger_vcf.alias build38 build38.meta \
12951 mgp.v3.snps.rsIDdbSNPv137.vcf.gz \

mgp.v3.indels.rsIDdbSNPv137.vcf.gz

Input:

e sanger_vcf.alias (vcf alias file with 1 for chrl, 2 for chr2 ... so on; downloaded for link mentioned

above)
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e build38 (just type this phrase ; needed for modtools)

e build38.meta (build38 meta-data file; downloaded for link mentioned above)

e CC founder strain name mentioned exactly as in Sanger vcf file; 12951 here [See Table 1]
e Sanger SNP file

e Sanger Indel file

Output:

e 129S1.mod
e 129S1.mod.tbi

Step2: Using the Mod file to create the pseudogenome
Module requirement:

e samtools

e tabix

e vcf-tools

e python (with modtools installed)

Command:
insilico 129S1.mod \
GRCm38_68 _mod.fa\

-a sanger_vcf.alias —0 12951 pseudo.fa

Input:

e 129S1.mod (vcf2mod file)
e GRCm38_68 _mod.fa (GRCM38_68.fa header modified file)
e sanger_vcf.alias (alias file)

Output:

e 12951 pseudo.fa
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Step3: Adjusting the annotations using modmap

Module requirement:

e samtools

e tabix

e vcf-tools

e python (with modtools installed)

Command:
1. Left Coordinate Fix:

modmap -d '\t' 12951.mod Mus_musculus_final. GRCm38.68.gtf
12951 Mus_musculus_final_left_fix. GRCm38.68.gtf 1,4

2. Right Coordinate Fix:

modmap -d '\t' 129S1.mod \ 129S1_Mus_musculus_final_left_fix. GRCm38.68.gtf
\129S1_Mus_musculus_final_left_right_fix.GRCm38.68.gtf 1,5

3. Taking absolute value:
Unix commands: 12951 _Mus_musculus_final_left_right_fix. GRCm38.68.gtf \
>129S1 Mus_musculus_final_left_right_abs_ fix. GRCm38.68.gtf

Note: Take absolute value for negative positions [some negative position values from modmap output.
This is because the requested position has no corresponding position in the pseudogenome (due to
deletion). In this case, as suggested by author of modtools, we can take the absolute value of that
negative position value, and this will give us the nearest corresponding position in the psedogenome]

Input:

Mus_musculus_final. GRCm38.68.gtf (location given above)

Output:

Mus_musculus_final_left_right_abs_fix. GRCm38.68.gtf
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Step4: extract transcriptome and build bowtie index

Module requirement:
samtools
rsem/1.2.15

bowtie/0.12.8

Commands:

rsem-prepare-reference \

--gtf 12951 _Mus_musculus_final_left_right_abs_fix. GRCm38.68.gtf \
--no-polyA \

--bowtie 129S1_pseudo.fa 129S1_pseudo

Input:
gtf file: 12951 _Mus_musculus_final_left_right_abs_fix. GRCm38.68.gtf
pseudogenome file: 12951 pseudo.fa

basename for bowtie index: 12951 pseudo

Output:

e 129S1 pseudo.l.ebwt

e 129S1 pseudo.2.ebwt

e 129S1 pseudo.3.ebwt

e 12951 pseudo.4.ebwt

e 129S1 pseudo.chrlist

e 129S1 pseudo.fa

e 129S1 pseudo.grp

e 129S1 pseudo.idx.fa

e 12951 pseudo.n2g.idx.fa
e 129S1 pseudo.rev.l.ebwt
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e 129S1 pseudo.rev.2.ebwt

e 129S1 pseudo.seq

e 129S1 pseudo.ti

e 129S1 pseudo.transcripts.fa

Note: Step1 to Step4 Needed for each founder strain except B6

B6 Transcriptome building:

e samtools

e tabix

e rsem/1.2.15

e bowtie/0.12.8

Commands:

rsem-prepare-reference --gtf Mus_musculus.GRCm38.68 final.gtf --no-polyA --bowtie
GRCm38_68_chr.fa GRCm38_68_chr

Input:
gtf file: Mus_musculus.GRCm38.68_final.gtf
pseudogenome file: GRCm38_68 chr.fa

basename for bowtie index: GRCm38_68 chr

Output:

e GRCm38 68 chr.1.ebwt
e GRCm38_68 chr.2.ebwt
e GRCm38_68 chr.3.ebwt
e GRCm38 68 chr.4.ebwt
e GRCm38_68 chr.chrlist
e GRCm38 68 chr.fa

e GRCm38_68 chr.fa.fai

e GRCm38_68 chr.grp
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e GRCm38 68 chr.idx.fa

e GRCm38_68 chr.n2g.idx.fa

e GRCm38_68 chr.rev.1l.ebwt

e GRCm38 68 chr.rev.2.ebwt

e GRCm38 68 chr.seq

e GRCm38 68 chr.ti

e GRCm38 68 chr.transcripts.fa
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File S2

Pileup Ensembl Genes in DO Founders

HH R
HH
# Pileup the BAM files for each founder separately. Save locations
with > 1
# read and at least one heterozygous read in one founder.
# This is iIntended to cast a wide net and retain locations that can be
filtered
# 1n downstream steps.

PileupParams: minBaseQual = 20
maxDepth = 1le7

dan.gatti@jax.org
Nov. 5, 2014
Ensembl 68
# Sanger v3
HH R R T R I R T R R R R
HHHHHHHHHHT
library(GenomicRanges)
library(Rsamtools)

#
#
#
# Daniel Gatti
#
#
#

strain = commandArgs(trailingOnly = T)
setwd("'/hpcdata/dgatti/RNAediting/'™)

# Load in the ensembl 68 GTF.
load("'/hpcdata/cgd/ensembl/release68/Mus_muscullus.GRCm38.68 .Rdata'™)

# Add “chr® to the chromosome names to match the BAM files.

ensembl = keepSeqlevels(x = ensembl, value =
seqlevels(ensembl)[-grep("'JH|GL™, seqlevels(ensembl))])

ensembl = renameSeqlevels(x = ensembl, value = pasteO(''chr",

seqlevels(ensembl)))

sl = sub("MT"™, "M", seqlevels(ensembl))

ensembl = renameSeqlevels(x = ensembl, value = sl)

# Keep only unique exons and UTRs.
length(unique(ensembl$gene_id))

ensembl = ensembl[ensembl$feature == "exon"]

keys = pasteO(seqnames(ensembl), start(ensembl), end(ensembl))
ensembl = ensembl[!duplicated(keys)]
length(unique(ensembl$gene_id))

# Get the BAM files in Anuj"s directory.

bamdir =

"/hpcdataZanuj/Projects/Investigator/Gary_ ChurChill/RNA_editing/Final__
DataSet/FounderBams™
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bamfiles
bamfiles

= dir(path = bamdir, pattern = "bam$", full_names = T)
= bamfiles[grep(strain, bamfiles)]

# Make a list of PileupFiles by strain.

pufiles = PileupFiles(bamfiles)

# Make the pileup function.
pufxn = function(xX) {
dimnames(x$seq) [[3]] = x$pos

x$seq
} # pufxn()
param = ApplyPileupsParam(minBaseQual = 20L, maxDepth = 1le7,
what = "seq", which = ensembl)

setwd("founders'™)

print(paste(strain, date()))

# Pileup all 16 replicates.

pileup = applyPileups(files = pufiles, FUN = pufxn, param = param)

names(pileup) = paste(ensembl$gene_id, ensembl$transcript_id,
ensembl$exon_number, sep = "_")

save(pileup, file = pasteO('"_1 ", strain, " _pileup.Rdata™))
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File S3

Filter Sites by Coverage and Minor Allele Frequency

HEHHHH R R R R R R R R R
HEHAHHHHHH

# Read in the pileups for each strain and filter by:
# minimum coverage per site in each sample > 1% of total reads
# alternate allele present in > 50% of samples

# total coverage across all 16 samples >= 160

#

#

# Daniel Gatti

# dan.gatti@jax.org

# Nov. 5, 2014

# Ensembl 68

# Sanger v3

TR T R T T T R R T TR T T
HHtHHH T

library(GenomicRanges)

library(Rsamtools)

library(BSgenome _Mmusculus.UCSC._mm10)

strain = commandArgs(trailingOnly = T)
print(paste(strain, date()))
setwd("'/hpcdata/dgatti/RNAediting/'™)

# Load in the ensembl 68 GTF.
load(""/hpcdata/cgd/ensembl/release68/Mus_muscullus.GRCm38.68 .Rdata'™)

# Add “chr® to the chromosome names to match the BAM files.

ensembl = keepSeqlevels(x = ensembl, value =
seqlevels(ensembl)[-grep(*""JH|GL™, seqlevels(ensembl))])

ensembl = renameSeqlevels(x = ensembl, value = pasteO(''chr",

seqlevels(ensembl)))

sl = sub("MT"™, "M", seqlevels(ensembl))

ensembl = renameSeqlevels(x = ensembl, value = sl)

# Load in the pileup File for this strain.
setwd(*"founders™)

# This loads in a list called "pileup”.

# Each element is a 3D array: num_alleles x num_samples x
num_positions.

load(file = pasteO("_1_ ", strain, "_pileup.Rdata'™))

BT R R R R R R R R R AR AR
# Adjust these parameters to change the filters.
varMAF 0.05

minCov = 2
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replicateAlleleFreq = 0.75
totalCov = 160

# Keep only loci with sum > O.
pileup = pileup[sapply(pileup, sum) > 0]

print(paste(""ALL LOCI:", sum(sapply(pileup, dim)[3,1)))

# Keep only positions with more than one allele call.
pileup = lapply(pileup, function(z) {
keep = matrix(F, dim(2)[1], dim(2)[3]D)
# For each position, sum the number of expressed alleles.
for( in 1:dim(2)[3]) { keep[,j] = rowSums(z[,,j]) > 0 }
z[, ,colSums(keep) > 1, drop = F]
1),

pileup = pileup[sapply(pileup, sum) > 0]
print(paste("’'ALL HETS:", sum(sapply(pileup, dim)[3,1)))

# Set alleles which do not have minCov reads in at least 75% of
replicates = 0.
length(pileup)
pileup = lapply(pileup, function(z) {
# Set cells with cov <= 2 in < 75% of replicates = 0.
keep = apply(z > minCov, 3, rowMeans) > replicateAlleleFreq
z = sweep(z, c(1,3), keep, "*)
# Remove positions with O reads.
for( in 1:dim(2)[3]) { keepl[.j] = rowSums(z[,.jJ]) > 0 }
z[, ,colSums(keep) > 1, drop = F]
P

pileup = pileup[sapply(pileup, sum) > 0]
print(paste(""HETS in > 50% repl:", sum(sapply(pileup, dim)[3,]1)))

# Sum reads across all replicates. This produces matrices with
# dimensions num_alleles * num_positions.

pileup = lapply(pileup, apply, c(1,3), sum)

# Set cells with variant minor allele frequency <= varMAF = O.
length(pileup)
pileup = lapply(pileup, function(z) {

# Zero out cells with MAF < 5%.

z = t(2)

keep = z / rowSums(z) > varMAF

z =z * keep

# Keep only het positions.

t(z[rowSums(z > 0) > 1,,drop = F])

1))

pileup = pileup[sapply(pileup, sum) > O]
print(paste(""HETS w/ MAF > 5%:", sum(sapply(pileup, ncol))))
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# Remove sites that have more than 2 alleles.
pileup = lapply(pileup, function(z) {
z[,colSums(z > 0) == 2, drop = F]
P

pileup = pileup[sapply(pileup, sum) > 0]
print(paste(""HETS w/ 2 alleles:", sum(sapply(pileup, ncol))))

# Filter by total coverage at each site.
length(pileup)
pileup = lapply(pileup, function(z) {
z[,colSums(z) >= totalCov, drop = F]
)
pileup = pileup[sapply(pileup, sum) > 0]

print(paste(""HETS >= totalCov:", sum(sapply(pileup, ncol))))

# Condense the data into a table with chr, position, gene 1D and

# counts.

len = sapply(pileup, ncol)

df = data.frame(chr = rep(NA, sum(len)),
pos = rep(0, sum(len)),
siteid = rep(NA, sum(len)),
gene_id = rep(NA, sum(len)),
symbol = rep(NA, sum(len)),
strand = rep(NA, sum(len)),
ref = rep(NA, sum(len)),

rep(0, sum(len)),

rep(0, sum(len)),

rep(0, sum(len)),

rep(0, sum(len)))

len = c(0, cumsum(len))
names = strsplit(names(pileup), split = " ")
for(i in 1:length(pileup)) {

O 0>

rng = (len[i] + 1):len[i+1]
df$gene_id[rng] = rep(names[[i]1]1[1]., length(rng))

ens = ensembl[ensembl$gene_id == names[[i]1]1[11]

dfschr[rng] = rep(as.character(runvValue(segnames(ens))[1]),
length(rng))

df$pos[rng] = as.numeric(colnames(pileup[[i]1]))

df$symbol[rng] = rep(ens$gene_name[1l], length(rng))

df$strand[rng] rep(as.character(runvValue(strand(ens))[1]),
length(rng))

df[rng, (ncol (df) - 3):ncol(df)] = t(pileup[[illl-5.1)

} # for (i)

# Add the reference base.
grtmp = GRanges(seqnames = df$chr,
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ranges = IRanges(start = df$pos, width = 1), strand =
df$strand)
df$ref = as.character(getSeq(BSgenome.Mmusculus.UCSC.mm10, grtmp))

rm(grtmp)

# Change the counts for genes on the "-*
bases.

minus = which(df$strand == "-'")
df[minus, (ncol (df) - 3):ncol(df)] = df[minus, ncol(df):(ncol(df) - 3)]

strand to their complementary

# Set the site ID.
df$siteid = paste(df$chr, df$pos, sep = ")

# Keep only unique sites.
sites = df[!duplicated(df$siteid),]
rm(df)

# Remove sites where the reference base does not have any reads.
# Is this due to differenes in the source of the reference?
keep = rep(T, nrow(sites))
for(i in l:nrow(sites)) {

keep[i] = sites[i,sites$ref[i]] > O
} # for (i)
sites = sites[keep,]

print(paste("'Unique sites:", nrow(sites)))
save(sites, file = paste0("_2_'", strain, "_het_sites.Rdata'))

print(paste(strain, date()))
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File S4

Filter out non-canonical editing sites

HHHHHH R R R R R R R R R R

HFHRHIFEHFHFHHH

Filter the sites for each strain by removing all sites for any gene
that has a non-canonical editing site.

Daniel Gatti
Dan.Gatti@jax.org
Nov. 14, 2014
Ensembl 68

Sanger v3

BRI R R
HHHH AR

library(GenomicRanges)

library(Rsamtools)

library(BSgenome.Mmusculus.UCSC.mm10)

strain = commandArgs(trailingOnly = T)

print(paste(strain, date()))

setwd(*'/hpcdata/dgatti/RNAediting/founders/')

#

Load in the ensembl 68 GTF.

load("'/hpcdata/cgd/ensembl/release68/Mus_muscullus.GRCm38.68.Rdata'")

# Add “chr® to the chromosome names to match the BAM files.
ensembl = keepSeqglevels(x = ensembl, value =

seqlevels(ensembl)[-grep(""JH|GL™, seqglevels(ensembl))])

ensembl = renameSeqlevels(x = ensembl, value = pasteO(''chr",
seqlevels(ensembl)))
ensembl = renameSeqlevels(x = ensembl, value = sub('MT", "M",
seqlevels(ensembl)))

#
#

Load in the het sites for this strain. This loads in a data.frame
called "sites”.

load(file = pasteO("_2 ", strain, " _het_sites.Rdata'))

edit.type = rep(

, hrow(sites))

for(i in 1l:nrow(sites)) {

wh = which(sites[1,8:11] > 0)
edit.type[i] = paste(sort(colnames(sites)[8:11][wh]), collapse =

")
} # for(i)

sites = data.frame(sites, edit.type)
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# Split up the sites by gene.
sites = split(sites, sites$gene_id)

# Keep the sites that only have cannonical editing.
keep = rep(F, length(sites))
for(i in 1l:length(sites)) {
keep[i] = all(sites[[i]]%edit.type %in% c('AG", "CT"))
} # for(i)

# Keep non-canonical sites.
noncanon.sites = sites[!keep]

# Keep canonical sites.
sites = sites[keep]

# Join the sites back together.

sites = unsplit(sites, rep(names(sites), sapply(sites, nrow)))

noncanon.sites = unsplit(noncanon.sites, rep(names(noncanon.sites),
sapply(noncanon.sites, nrow)))

noncanon.sites = noncanon.sites[!noncanon.sites$edit.type %in% c("'AG",

"CT™). ]

print(paste('Canonical edit sites:", nrow(sites)))
print(paste(’'Non-canonical edit sites:", nrow(noncanon.sites)))
print(paste("Unique genes:", length(unique(sites$gene_id))))

save(sites, file = paste0(”_3_", strain,

" _canonical_edit_sites_Rdata'))
save(noncanon.sites, file = pasteO("_3_ ", strain,
" _non_canonical_edit_sites_Rdata'))

print(paste(strain, date()))
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File S5

Remove sites that intersect with genomic variants in the founders

TR T R T T T R R T TR T R
HtHHH T

# Intersect the heterozygous positions for each strain with the Sanger
SNPs

# Indels and SVs.

#
# Daniel Gatti

# dan.gatti@jax.org

# Nov. 5, 2014

# Ensembl 68

# Sanger v3

HHHHHHHH R R
HHHHH R

library(GenomicRanges)

library(Rsamtools)

strain = commandArgs(trailingOnly = T)
print(paste(strain, date()))

# Set the paths to the Sanger variant files.

snpfile = "/hpcdata/cgd/Sanger/REL-1410/mgp.v4.snps.dbSNP.vcF.gz"
indelfile = "/hpcdata/cgd/Sanger/REL-1410/mgp.v4.indels.dbSNP.vcf.gz"
svfile = "/hpcdata/cgd/Sanger/REL-1302/18strains.REL-1302-SV-
GRCm38.sdp.tab.gz"

setwd(*'/hpcdata/dgatti/RNAediting/founders/™)

# Load in the filtered het sites.
# This loads In a data.frame called "sites”.
load(file = pasteO("_3_ ", strain, "_canonical_edit_sites._Rdata'))

# The Sanger variant files do not contain the mitochondrial
chromosome.

# Remove it from our data.

rng = which(sites$chr != "chrM")

# Turn the sites into a GRanges object.
gr = GRanges(seqnames = sub("~chr", "', sites$chr[rng]),
ranges = IRanges(start = sites$pos[rng], width = 1),
strand = sites$strand[rng], mcols =
sites[rng,c(3:5,7:11)])
colnames(mcols(gr)) = sub("mcols\\.", ", colnames(mcols(gr)))

HHHAH A
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# SNPs
tf = TabixFile(snpfile)

# Get the column names.

hdr = headerTabix(tf)

cn = strsplit(hdr$header[length(hdr$header)], split = "\t")[[1]]
cn sub(' M, Y, cn)

# Get the Sanger SNPs.
snps = scanTabix(file = tf, param = gr)
names(snps) = gr$siteid

# Keep only the ones with length > O.
length(snps)
snps = snps[sapply(snps, length) > 0]
length(snps)

# Parse the SNPs iInto a data.frame.

snps = lapply(snps, strsplit, split = "\t")
snps = lapply(snps, "[", 1)
snps = matrix(unlist(snps), ncol = length(cn), byrow = T,

dimnames = list(hames(snps), cn))

# Keep only the header and DO founder columns.
snps = snps[,c(1:7, 14, 11, 30, 32, 22, 34, 37)]

# Keep the allele call strings for each founder.
snps[, (ncol (snps)-6):ncol(snps)] = substring(snps[,(ncol(snps)-
6):ncol(snps)], 1, 3)

# Keep only the polymorphic snps. (NOTE: 0/0 is reference call)
dim(snps)

snps = snps[rowSums(snps[, (ncol(snps)-6):ncol(snps)] == "0/0") < 7,]
dim(snps)

# Remove sites that intersect with these SNPs.
removed = sites[sites$siteid %in% rownames(snps),]
dim(sites)

sites = sites[!sites$siteid %in% rownames(snps), ]
dim(sites)

HHtHHHET
# Indels
tf = TabixFile(indelfile)

# Get the column names.

hdr = headerTabix(tf)

cn = strsplit(hdr$header[length(hdr$header)], split = "\t")[[1]]
cn sub (A, UMY, cn)

# Get the Sanger Indels.
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indels = scanTabix(file = tf, param = gr)
names(indels) = gr$siteid

# Keep only the ones with length > O.
length(indels)

indels = indels[sapply(indels, length) > 0]
length(indels)

# Parse the Indels into a data.frame.

indels = lapply(indels, strsplit, split = "\t")

indels = lapply(indels, "[", 1)

indels = matrix(unlist(indels), ncol = length(cn), byrow = T,
dimnames = list(names(indels), cn))

# Keep only the header and DO founder columns.
indels = indels[,c(1:7, 14, 11, 30, 32, 22, 34, 37)]

# Keep the allele call strings for each founder.
indels[, (nhcol(indels)-6):ncol(indels)] =
substring(indels[, (ncol(indels)-6):ncol(indels)], 1, 3)

# Keep only the polymorphic Indels. (NOTE: ./. is reference call)
dim(indels)
indels = indels[rowSums(indels[, (ncol(indels)-6):ncol(indels)] ==
/.7 < 7,1
dim(indels)

# Remove sites that intersect with these indels.
removed = sites[sites$siteid %in% rownames(indels),]
dim(sites)

sites = sites[!IsitesS$siteid %in% rownames(indels),]
dim(sites)

HHAE
# SVs
tf = TabixFile(svfile)

# Get the column names.
hdr = headerTabix(tf)

cn = strsplit(hdr$header[length(hdr$header)], split = "\t")[[11]
cn = sub("MET, MY, cn)
HtHHH#

# The Sanger SV file does not contain the Y chromosome.
# Remove it.
gr = gr[segnames(gr) != "Y",]

# Get the Sanger SVs.
svs = scanTabix(File = tf, param = gr)
names(svs) = gr$siteid

# Keep only the ones with length > O.
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length(svs)
svs = svs[sapply(svs, length) > 0]
length(svs)

# Parse the SVs iInto a data.frame.

svs = lapply(svs, strsplit, split = "\t")
svs = lapply(svs, [, 1)
svs = matrix(unlist(svs), ncol = length(cn), byrow = T,

dimnames = list(nhames(svs), cn))

# Keep only the header and DO founder columns.
svs = svs[,c(1:4, 8, 6, 18, 19, 13, 20, 22)]

# Keep only the polymorphic SVs. (NOTE: O is reference call)
dim(svs)
svs = svs[rowSums(svs[, (ncol(svs)-6):ncol(svs)] == "0") < 7,]
dim(svs)

# Remove sites that intersect with these svs.
removed = sites[sites$siteid %in% rownames(svs),]
dim(sites)

sites = sites[!Isites$siteid %in% rownames(svs), ]
dim(sites)

print(paste(nrow(sites), '"sites in", length(unique(sites$gene_id)),
'genes."™))

save(sites, file = paste0(”_4_", strain,
" _het_sites_sanger_removed.Rdata'))
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File S6

Gather common denovo editing sites in the DO founders

TR T R T T T T T TR T
H

# Read in the filtered pileups for each strain and get the union of
all

# edit sites.

#
# Daniel Gatti

# dan.gatti@jax.org

# Nov. 5, 2014

# Ensembl 68

# Sanger v3

HHHHHHHH R R R R
HH

library(GenomicRanges)

library(Rsamtools)

library(BSgenome _Mmusculus.UCSC._mm10)

setwd(*'/hpcdata/dgatti/RNAediting/™)

# Load in the ensembl 68 GTF.
load(*'/hpcdata/cgd/ensembl/release68/Mus_muscullus.GRCm38.68_.Rdata’")

# Keep the autosomes, X, Y and M.
ensembl = keepSeqlevels(x = ensembl, value =
seqlevels(ensembl)[-grep(""JH|GL™, seqlevels(ensembl))])

# Keep only unique exons and UTRs.
length(unique(ensembl$gene_id))

ensembl = ensembl[ensembl$feature == "exon']

keys = pasteO(seqnames(ensembl), start(ensembl), end(ensembl))
ensembl = ensembl[!duplicated(keys)]
length(unique(ensembl$gene_id))

# Load in the filtered pileups for the DO founders.
setwd("'founders'™)

files = dir(pattern = "~ 4 |het_sites_sanger_removed.Rdata$™")
tmp = vector('list"”, length(files))
names(tmp) = sub("_4_het_sites_sanger_removed.Rdata$", "', files)
for(i in 1l:length(files)) {
# This loads in an object called "sites”.
load(file = Files[i])
tmp[[i]] = sites
} # for(i)
sites = tmp
rm(tmp)
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# Create GRanges objects from the locations and take thier union.
gr = GRanges(seqnames = sites[[1]]%$chr,
ranges = IRanges(start = sites[[1]]$pos, width = 1),
strand = sites[[1]]%strand)
for(i in 2:length(sites)) {

gr2 = GRanges(segnames = sites|[[i]]%$chr,
ranges = lIRanges(start = sites[[i]]$pos, width = 1),
strand = sites[[i]]$strand)

gr = union(gr, gr2)
} # for(i)

# The union() method condenses adjacent sites into a single range.
Remake the
# GRanges object with each site distinct.
pos = unlist(sapply(1:length(gr), function(z) {
start(gr)[z]:end(gr)[z]1 }))
gr = GRanges(segnames = rep(as.character(segnames(gr)), width(gr)),
ranges = lRanges(start = pos, width = 1),
strand = rep(as.character(strand(gr)), width(gr)))
renameSeqlevels(gr, sub('chr, ", seqlevels(gr)))
renameSeqlevels(gr, sub("'M", "MT", seqlevels(gr)))

gr
gr

print(paste("'Union of editing sites:", length(gr)))

# Get the ensembl genes associated with each editing site.
ol = findOverlaps(query = gr, subject = ensembl)
ol = ol['duplicated(queryHits(ol))]

gr$gene_id = ensembl$gene_id[subjectHits(ol)]
gr$symbol = ensembl$gene_name[subjectHits(ol)]
gr$ref = rep(NA, length(gr))

gr$edit.type = rep(NA, length(gr))

# We have to change the seglevels for the mitochondrial chromosome to
# get the reference alleles from the BSGenome.

grtmp = gr

grtmp = renameSeqlevels(grtmp, pasteO('chr', seqlevels(grtmp)))
grtmp = renameSeqlevels(grtmp, sub("'MT", "M", seqglevels(grtmp)))
seq = as.character(getSeq(BSgenome._Mmusculus.UCSC.mm10, grtmp))
gr$ref = seq

rm(grtmp)

stopifnot(all(as.character(strand(gr)) ==
as.character(strand(ensembl)[subjectHits(ol)])))
stopifnot(all(width(gr) == 1))

HH#H
# Go back into the BAM files and pile up these editing sites.
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# Get the BAM files in Anuj®s directory.

bamdir =
"/hpcdataZanuj/Projects/Investigator/Gary_ChurChil1/RNA_editing/Final_
DataSet/FounderBams™*

bamfiles = dir(path = bamdir, pattern = "bam$", full.names = T)

# Make a list of PileupFiles by strain.
pufiles = PileupFiles(bamFiles)

# Make the pileup function.

pufxn = Ffunction(x) {
dimnames(x$seq) [[3]]1 = x$pos
x$seq

} # pufxnQ)

# Add "‘chr to the seqlevels of the sites.
gr = renameSeqlevels(gr, pasteO('chr™, sub("MT", "M", seqlevels(gr))))
param = ApplyPileupsParam(minBaseQual = 20L, maxDepth = le7,

what = *'seq"™, which = gr)

# Pileup all 128 samples.
pileup = applyPileups(files = pufiles, FUN = pufxn, param = param)
names(pileup) = paste(seqnames(gr), start(gr), sep = " ")

stopiftnot(all(sapply(pileup, dim)[3,] == 1))
save(pileup, file = "all_founder_pileup.Rdata™)

# Get the strain names for the pileups.

samples =
gsub("~/hpcdataZanuj/Projects/Investigator/Gary_ChurChill/RNA_editing/
Final DataSet/FounderBams/|\\. (lapel |Junique.sorted) .bam$",

**, colnames(pileup[[1]1D)
strains = factor(sapply(strsplit(samples, split = "), "[", 1))

# Create a large 3D matrix from the pileup values.
mat = array(unlist(pileup), c(nrow(pileup[[1]])., ncol(pileup[[1]1]),
length(pileup)),

dimnames = list(rownames(pileup[[1]]), colnames(pileup[[1]1D).
names(pileup)))

# Complementary bases for genes on the "-' strand.
compl = c("A™, "C", "G, "T")
names(compl) = c('T", "G™, "C", "A™)

# Condense the pileups at each site down to 8 values, one for each
founder.
founders = matrix(0, nrow = dim(mat)[3], ncol =
length(levels(strains)) * 4,

dimnames = list(dimnames(mat)[[31]1.,
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paste(rep(levels(strains), each = 4), c("A","C","G","T"),

="_))
for(i in 1:dim(mat)[3]) {

agg = aggregate(t(mat[-5,,1]), list(strains), sum)
rownames(agg) = aggl[.,1]
agg = as.matrix(t(agqg[,.-1D))

if(as.character(strand(gr)[i]) == "-") {

rownames(agg) = compl[rownames(agg)]
agg = agg[order(rownames(agg)),]

} # if(as.character(strand(ens)[1]) == "-")

founders[i,] = agg
} # for (i)

# Add gene name, strand, editing type.
mcols(gr) = data.frame(mcols(gr), founders)

# Determine the editing type by getting the two highest
# expressed alleles.
for(i in 1:length(gr)) {
ed = matrlx(unl|st(mcols(gr)[| -(1:4)]1), nrow = 4, dimnames =
list(c("A™, "C", "G", "T"), NULL))

ed = rowSums(ed)
ed = names(ed)[order(ed)][3:4]
ed = ed['ed %in% gr$ref[i]]

gr$edit.type[i] = pasteO(gr$ref[i], ed)
} # for(1)

# Remove genes with more than one non-canonical editing site per gene.
# We beleive that mulitple non-canonical editing sites are alignment
artifacts.

non.canon = gr$edit.type != "AG" & gr$edit.type != "CT"

spl = split(non.canon, gr$gene_id)

spl = sapply(spl, sum)

# Keep genes with O non-canonical editing sites.
keep = names(spl)[spl <= 0]
gr = grgr$gene_id %in% keep,]

# Now get rid of the non-canonical editing sites.
length(gr)

gr = gr[gr$edit.type %in% c("AG", "CT™)]
length(gr)

# Make sure that all strains have non-canonical counts < 1% of total.
keep = rep(F, length(gr))
tmp = as.matrix(mcols(gr)[,-(1:4)])
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counts = matrix(0, length(gr), 2, dimnames = list(gr$symbol, c("AG",

"CT")))

for(i in 1l:length(gr)) {
ag-sum = tmp[i,seq(l, ncol(tmp), 4)] + tmp[i,seq(3, ncol(tmp), 4)]
ct.sum = tmp[i,seq(2, ncol(tmp), 4)] + tmp[i,seq(4, ncol(tmp), 4)]
counts[i,] = c(sum(ag-sum), sum(ct.sum))

if(gr$edit.type[i] == "AG") {
keep[i] = all(ct.sum / (ag.sum + ct.sum) < 0.01, na.rm = TRUE)
} else if(gr$edit._type[i] == "CT") {
keep[i] = all(ag.sum /7 (ag.sum + ct.sum) < 0.01, na.rm = TRUE)
} # else if(gr$edit.type[i] == "CT")
} # for (i)
length(gr)
gr = grlkeep]
length(gr)

print(paste("'Num. sites:", length(gr)))
print(paste("'Num. genes:", length(unique(gr$gene_id))))
print(table(gr$edit.type))

# This file contains the putative editing sites in the DO founders.
write.csv(as.data.frame(gr), file = " 5 founder_editing_union.csv')
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File S7

Pile up denovo sites in DO

HHHHH R R R R R R R R R R R R R R R R R
Hit

# Pile up the denovo editing sites found in the founders in the DO.

# Daniel Gatti

# dan.gatti@jax-org

# Sept. 5, 2015

B T T T T T R R T T R T T R R R T T T T
#it

library(Rsamtools)

library(GenomicRanges)

options(stringsAsFactors = F)

setwd("'/hpcdata/dgatti/RNAediting/'™)

# Read in the denovo editing sites from the founders.

sites = read.csv("founders/_5_ founder_editing_union.csv')

sites = GRanges(segnames = sites$seqnames, range = IRanges(start =
sites$start, width = 1), strand = sites$strand, mcols =
sites[,-(1:6)])

colnames(mcols(sites)) = sub(**mcols\\.", ", colnames(mcols(sites)))

names(sites) = paste(segnames(sites), start(sites), sep = " ')

# Get the DO BAM Files iIn Anuj"s directory.

bamdir =
""/hpcdataZanuj/Projects/Investigator/Gary_ChurChill/RNA_editing/D0O_Ana
lysis/Analysis_Dir”

bamfiles = dir(path = bamdir, pattern = "bam$", recursive = T,
full_.names = T)

bamfiles = bamfiles[-grep(‘"test”, bamfiles)]
stopifnot(length(bamfiles) == 277)

# Create PileupFiles.
pufiles = PileupFiles(bamfiles)

# Make the pileup function.
pufxn = Ffunction(x) {
dimnames(x$seq) [[3]]1 = x$pos

x$seq
} # pufxn(Q)
param = ApplyPileupsParam(minBaseQual = 20L, maxDepth = 1le7,
what = "'seq', which = sites)

# Pileup all 277 samples at each edit site.
pileup = applyPileups(files = pufiles, FUN = pufxn, param = param)
names(pileup) = names(sites)

save(pileup, file = "DO/DO_pileup_denovo_sites.Rdata™)
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print(paste(length(pileup), "sites in DO."™))

# Keep sites with mean coverage >= 20.
coverage = sapply(pileup, colSums)
keep = which(colMeans(coverage) >= 20)
pileup = pileup[keep]

sites = sites[keep]

print(paste(length(pileup), "sites with coverage >= 20 in D0O."))

compl = c("A™, "C", "G, "T)
names(compl) = c(C'T", "G", "C", "A")

# Keep sites with mean edit ratio >= 0.02.
keep = rep(FALSE, length(pileup))
for(1 in 1:length(pileup)) {

if(as.character(strand(sites)[i]) == "+") {
ref = sites$ref[i]
alt = sub(sites$ref[i], ", sites$edit.type[i])

} else {

ref = compl[sites$ref[i]]
alt = compl[sub(sites$ref[i], ", sites$edit.type[i])]

} # else

er = mean(pileup[[i]l[alt,,1] /7 (pileup[[i]l][ref,.,1] +
pileup[[i1]1[alt,,1]), na.rm = T)
keep[i] = er >= 0.02

} # for (i)

print(paste(sum(keep), "'sites with mean edit ratio > 0.02 of",
length(sites), "sites™))

sites[keep]
pileup[keep]

sites
pileup

save(sites, pileup, Ffile = "DO/_6_denovo_edit_sites_Rdata')
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File S8

Remove sites that occur predominantly at the ends of reads

TR T R T T T T R T TR T R
HHtHH

# For each of the discovered editing sites, record the bp position in
each

# read i1n the founders.

#
# Daniel Gatti

# dan.gatti@jax.org

# Aug. 11, 2015

# Ensembl 68

# Sanger v3

HHHHH R R R
HH

library(GenomicRanges)

library(GenomicAlignments)

library(Rsamtools)

library(foreach)

library(doParallel)

library(BSgenome.Mmusculus.UCSC.mm10)

mml0 = BSgenome.Mmusculus.UCSC.mm10

setwd("'/hpcdata/dgatti/RNAediting/'™)

# Read in the denovo founder editing sites.
load(file = ""DO/_6_denovo_edit_sites.Rdata™)

# Get the fTounder BAM fTiles in Anuj-s directory.

bamdir =
"/hpcdataZanuj/Projects/Investigator/Gary_ChurChill/RNA_editing/Final_
DataSet/FounderBams"

bamfiles = dir(path = bamdir, pattern = "bam$", full._.names = T)

cl = makeCluster(10)
registerDoParallel(cl)

readpos = foreach(bf = iter(bamfiles),

.packages = c("'Rsamtools™, '"GenomicRanges",
"GenomicAlignments™),

.export = "'sites') %dopar% {

# Get the alignments from the BAM.
param = ScanBamParam(which = sites)
ga = readGAlignments(BamFile(bf), use.names = TRUE, param = param,

with.which_label = TRUE)
mcols(ga)$which_label = sub(*'\\-[0-9]+$", """, mcols(ga)$which_label)
mcols(ga)$which_label = sub(':", " ", mcols(ga)$which_label)

names = as.character(runValue(mcolg(ga)$which_label))
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ga = split(x = ga, T = mcols(ga)["'which_label'])
names(ga) = names

retval = vector(list"”, length(ga))
names(retval) = names(ga)

compl = c(’A™, "C™, "G™, "T", "N")
names(compl) = c(C'T™, "G", "C", A", "N")

# Loop through the reads that align to each site.
# We only have M, D, I and N in these files. Widths range from 100+.
for(i in 1l:length(ga)) {

curr.site = sites[names(ga)[i]]l

site.pos = rep(0, length(gal[lill))
strand = as.character(strand(curr._site))
ref = curr.site$ref

alt = sub(ref, ", curr.site$edit.type)

# Get the bp calls for the reads.
param = ScanBamParam(what = c(‘gname’, *strand’, 'pos"™, ‘‘cigar’,
lquidthll, ..Seq..)’
which = curr.site)
reads = scanBam(file = bf, param = param)[[1]]

# Get the read locations on reference coordinates. This should

# parse up the reads using the CIGAR string.

tmp = extractAlignmentRangesOnReference(cigar = reads$cigar, pos
reads$pos)

ops = explodeCigarOps(reads$cigar)
len explodeCigarOpLengths(reads$cigar)
optypes = colSums(cigarOpTable(reads$cigar))

# 1T we have only "M™, then skip the special processing.
if(sum(optypes[2:9]) == 0) {

site.pos = start(curr.site) - as.integer(start(tmp)) + 1
} else {
for( in 1l:length(tmp)) {

# When there is a "D, the alignment isn"t broken up.
if(length(grep('D", ops[J11)) > 0) {

st = c(reads$pos[j], reads$pos[j] + sum(len[[J]1]1[1:2]1))

en c(reads$pos[j] + len[[J]11[1] - 1, reads$pos[j] +
sum(len[[J11[1:3D) - D

tmp[[J1] = IRanges(start = st, end = en)

} # if(length(grep("D”, opsL311)) > 0)
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ol = FindOverlaps(tmp[[j1]., ranges(curr.site))
hit = queryHits(ol)

# Not sure why scanBam() is returning reads that don"t overlap

the
# editing sites...
if(length(hit) > 0) {
site.pos[]J] = start(curr.site) - start(tmp[[J1DI[hit] + 1
ifcthit > 1) {
site.pos[J] = site.pos[j] + sum(width(Ctmp[[J1DI1: (hit-
DD
} # if(queryHits(ol) > 1)
} # if(length(hit) > 0)
} # forQQ)
} # else

keep = which(site.pos > 0)
allele = as.character(subseq(reads$seq[keep], start =
site.pos[keep],

width = 1))
if(strand == "-") {
allele = compl[allele]
} # if(strand == "-"")

itf(any(lallele %in% c(ref,alt))) {
print(paste(i, "Expected", paste(ref, alt, sep = ","),
"Observed",
paste(unique(allele), collapse = ",™)))
} # if(any(lallele %in% c(ref,alt)))

# Save the positions and put the allele calls iIn the names of
retval.

retval[[i]] = site.pos[keep]

names(retval[[1]]) = allele

} # for(i)

retval
} # for(bf)
stopCluster(cl)
names(readpos) =
sub(""~/hpcdataZanuj/Projects/Investigator/Gary_ChurChill/RNA editing/F
inal_DataSet/FounderBams/",

"', bamfiles)

save(readpos, file = "founders/_7_edit_site_read_position.Rdata™)

HHH
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# Load in “readpos”.
load(file = "founders/_7_edit_site_read_position.Rdata'™)

# Compile the read positions in each of the either founders for each
of

# the 192 sites.

strains = substring(names(readpos), 1, 3)

readpos = split(readpos, strains)

ref.pos.by.founder = vector("list"”, length(readpos))
names(ref._pos.by.founder) = names(readpos)

alt.pos.by.founder = vector('list"”, length(readpos))
names(alt.pos.by.founder) = names(readpos)

for(i in 1l:length(readpos)) {

ref_pos = matrix(0, nrow = length(sites), ncol
list(names(sites), 1:100))

matrix(0, nrow = length(sites), ncol
dimnames(ref.pos))

100, dimnames

alt_pos

100, dimnames

# Loop through each replicate and sum the positions for each site.
for(s in 1l:length(readpos[[i]l]D)) {

m = match(names(readpos[[i]1]lI[[s]1]1)., rownames(ref.pos))
ref = sites[names(readpos[[i]11[[s]1])]1%ref

for(@ in 1:length(readpos[[i11[[s11)) {

alt = sub(sites[names(readpos[[i11[[s11J1)1%ref, ",

sites[names(readpos[[i]1L[s]11Li]1)1%edit._type)
fac = factor(readpos[[i]1]1lIs]11I[i1]., levels = 1:100)
tbl = table(fac[names(fac) == ref[j]1D

ref.pos[m[j].] = ref.pos[m[j].] + tbl
tbl = table(fac[names(fac) == alt])
alt.pos[m[j].] = alt.pos[m[j].] + tbl

} # for(QQ)
} # for(s)
ref._pos.by.founder[[i]] = ref.pos
alt_pos.by.founder[[i]] = alt.pos

} # for(i)

pos.by.founder = ref.pos.by.founder
for(i in 1l:length(pos.by.founder)) {

pos.by.founder[[1]] = pos.by.founder[[i]] + alt.pos.by.founder[[i]]
} # for(i)

pdf('edit_pos_in_reads.pdf’, width = 10, height = 8)
for(i in 1l:nrow(pos.by.founder[[1]1])) {
layout(matrix(1:8, 2, 4, byrow = TRUE))
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par(plt = c(0.1, 0.9, 0.1, 0.88))
for( in 1:length(pos.by.founder)) {
plot(pos.by.founder[[j11[i.,], main =
paste(names(pos.-by.founder)[j],
rownames(pos.by.founder[[J1DIL[i])., ylab = ", las
} # for(Q)
} # for(i)
dev.off()

D

# Filter the reads based on whether most of the edit site positions
# occur at this distal ends of the reads.

keep = rep(FALSE, nrow(pos.by.founder[[1]1]1))

names(keep) = rownames(pos.by.founder[[1]])

# For each site....

pv = matrix(NA, nrow(pos.by.founder[[i]]), 8, dimnames =
list(rownames(pos.by.founder[[1]]), names(pos.by.founder)))

for(i in 1:length(pos.by.founder)) {

tot = rowSums(pos.by.founder[[1]1])
ends = rowSums(pos.by.founder[[i]][,c(1:5, 95:100)])
for( in l:nrow(pos.by.founder[[i]1D)) {
if(tot[j] > 0) {
tst = binom.test(x = ends[jJ], n = tot[j],
alternative = "greater', conf.level
pv[j,i] = tst$p.value
} # if(tot[j] > 0)
} # for(Q)

} # for(i)

I ©
(@2

# Apply a Holm correction to the p-values.
pv.adj = matrix(p.adjust(pv, method = "holm'™), nrow(pv),
dimnames = dimnames(pv))

# If any site has an adjusted p-value < 0.05, remove it.
keep = which(apply(pv.-adj, 1, min) >= 0.05)
remove = which(apply(pv-adj, 1, min) < 0.05)

discarded.sites = sites[remove]
sites = sites[keep]

print(paste(''Discarded’, length(discarded.sites), "of'", nrow(pv.-adj)))
print(paste(''Keeping', length(sites), "of", nrow(pv.adj)))

save(sites, file =

"founders/_8 denovo_editing_sites read pos_filtered.Rdata™)
write.csv(as.data.frame(discarded.sites),

"founders/_8 denovo_editing_sites discarded.csv')
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File S9
RADAR and DARNED pileup in DO
TR T R T T T R R T TR T T
HHIHHHTH
# Pileup the DARNED and RADAR sites in the DO.
PileupParams: minBaseQual = 20
maxDepth = le7

dan.gatti@jax.org

Aug. 11, 2015

Ensembl 68
# Sanger v3
TR T R T T R R T T R R
HHtHtH T
options(stringsAsFactors = FALSE)
library(GenomicRanges)
library(GenomicAlignments)
library(Rsamtools)
library(rtracklayer)
library(foreach)
library(doParallel)
library(DOQTL)

#
#
#
# Daniel Gatti
#
#
#

# Load in the ensembl 68 GTF.
load(""/hpcdata/cgd/ensembl/release68/Mus_muscullus.GRCm38.68 .Rdata'™)

# Keep the autosomes, X, Y and M.
ensembl = keepSeqlevels(x = ensembl, value =
seqlevels(ensembl)[-grep("'JH|GL™, seqlevels(ensembl))])

# Keep only unique exons and UTRs.
length(unique(ensembl$gene_id))

ensembl = ensembl[ensembl$feature == "exon"]

keys = pasteO(seqnames(ensembl), start(ensembl), end(ensembl))
ensembl = ensembl[!duplicated(keys)]
length(unique(ensembl$gene_id))

setwd(*'/hpcdata/dgatti/RNAediting/™)

# First read in the RADAR sites (which are on mm9 for some reason) and
lift
# them over to mmlO.
radar.mm9 = read.delim("'RADAR_DARNED/Mouse_AG _all_mm9 RADARv2.txt"™)
radar.mm9 = GRanges(segnames = radar.mm9$chromosome, ranges =
IRanges(start =
radar .mm9$position, width = 1), strand = radar.mm9$strand,
gene = radar.mm9%gene, inchr = "A", inrna = 1)
chain = import.chain(""RADAR_DARNED/mm9ToMm10.over.chain')
radar .mm10 liftOver(radar.mm9, chain)
radar.mm10 = stack(radar.mm10)
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mcols(radar.mm10) = mcols(radar.mml0)[colnames(mcols(radar.mm10)) !=
"sample']
rm(radar.mm9)

# Read in the DARNED data (whcih is on mml0 coordinates) and combine
with
# the RADAR data.

darned = read.delim(""RADAR_DARNED/darned_mml10.txt"™)
darned = darned[(darned$inchr == "C" & darned$inrna == "U") |
(darned$inchr == "A"™ & darned$inrna == "1"),]

darned = GRanges(segnames = pasteO(‘'chr', darned$chrom), ranges =
IRanges(start = darned$coordinate, width = 1), strand =
darned$strand,
gene = darned$gene, inchr = darned$inchr, inrna =
darneds$inrna)

sites = GRangesList(radar.mm10, darned)
sites = stack(sites)

sites = sites|order(start(sites))]
sites = sites[order(segnames(sites))]

sites = sites[!duplicated(pasteO(seqgnames(sites), start(sites)))]

names(sites) = paste(sites$gene, as.character(seqnames(sites)),
start(sites), sep = "_")

length(sites)

save(sites, file = "RADAR_DARNED/radar_darned_sites_combined.Rdata')

# Get the DO BAM files in Anuj"s directory.

bamdir =
"/hpcdataZanuj/Projects/Investigator/Gary_ChurChill/RNA_editing/DO_Ana
lysis/Analysis _Dir"

bamfiles = dir(path = bamdir, pattern = "bam$", recursive = T,
full.names = T)

bamfiles = bamfiles[-grep(“"test™, bamfiles)]
stopifnot(length(bamfiles) == 277)

# Create PileupFiles.
pufiles = PileupFiles(bamfiles)

# Make the pileup function.
pufxn = function(x) {
dimnames(x$seq)[[3]1] = x$pos

x$seq
} # pufxn(Q)
param = ApplyPileupsParam(minBaseQual = 20L, maxDepth = 1le7,
what = "'seq', which = sites)

# Pileup all 277 samples at each edit site.
pileup = applyPileups(files = pufiles, FUN = pufxn, param = param)
names(pileup) = names(sites)

save(pileup, file = "DO/DO_pileup_radar_darned.Rdata'™)
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# Loads In "sites”.

load(file = "RADAR_DARNED/radar_darned_sites_combined.Rdata'™)
radar.sites = sites

load(file = "DO/DO_pileup_radar_darned.Rdata'™)

radar.pileup = pileup

# Sum the reads across all DO samples.
alleles = sapply(radar.pileup, rowSums)
coverage = sapply(radar.pileup, colSums)
mean.coverage = sapply(coverage, mean)
mean.coverage[is.nan(mean.coverage)] = 0

# Filter the sites to keep only those with > 0 reads.
print(paste("'Total sites:", ncol(alleles)))
print(paste('Sites with O reads:", sum(colSums(alleles) == 0)))

alleles = alleles[,mean.coverage > 0]
mean.coverage = mean.coverage[mean.coverage > 0]
print(paste(’'Sites with > 0 reads:", ncol(alleles)))

alleles = alleles|,mean.coverage > 20]
mean.coverage = mean.coverage[mean.coverage > 20]
print(paste(*'Sites with > 20 reads:", ncol(alleles)))

# Verify that the sites that we retain have the same
# editing type as the databases.

radar._sites = radar.sites[colnames(alleles)]
radar.pileup = radar.pileup[colnames(alleles)]
stopifnot(names(radar.sites) == colnames(alleles))

# Sort the counts for each site.
sorted.alleles = split(t(alleles), colnames(alleles))
sorted.alleles = sorted.alleles[names(radar.sites)]
sorted.alleles lapply(sorted.alleles, function(z) {

names(z) = rownames(alleles); z })
sorted.alleles lapply(sorted.alleles, sort, decreasing = TRUE)
sorted.alleles.names = sapply(sorted.alleles, names)
stopifnot(names(sorted.alleles) == names(radar.sites))

# Get the expected and observed alleles.
tmp = data.frame(expchr = radar.sites$inchr, exprna =
radar.sites$inrna,
strand = as.character(strand(radar.sites)),
major = sorted.alleles.names[1,], minor =
sorted.alleles.names[2,],
stringsAsFactors = FALSE)

# Change the 1 to G.
tmp$exprna[tmp$exprna == "I'] = "G"

34 S| T.Guetal.



# Change the U to T.
tmp$exprna[tmp$exprna == U] = "T"

# Get the complement of the alleles on the - strand.
compl = c("A™, "C™, "G, "T)

names(compl) = c('T", "G", "C", "A™)

minus = which(tmp$strand == "-")

tmp$expchr[minus] = compl[tmp$expchr[minus]]
tmp$exprna[minus] compl [tmp$exprna[minus]]

# Keep only the sites where the DO observed alleles match the

# expected alleles.

keep = which((tmp$expchr == tmp$major & tmp$exprna == tmp$minor) |
(tmp$expchr == tmp$minor & tmp$exprna == tmp$Smajor))

print(paste(nrow(tmp) - length(keep), "sites have different

alleles.™))

print(paste(length(keep), "sites have the same alleles.'))

radar.sites = radar.sites[keep]

alleles = alleles][,keep]

sorted.alleles = sorted.alleles[keep]

# Now verify that we don"t have > 2% non-canonical reads.

total .cov = colSums(alleles)

noncanon = colSums(sapply(sorted.alleles, "[', 3:5))
noncanon.ratio = noncanon / total.cov

keep = which(noncanon.ratio <= 0.02)

radar.sites = radar.sites[keep]

alleles = alleles|[,keep]

sorted.alleles = sorted.alleles[keep]

print(paste(length(keep), "sites have <= 2% non-canonical reads.'"))

# Keep sites with a MAF >= 0.05.

maf = sapply(sorted.alleles, "[', 2) / colSums(sapply(sorted.alleles,
"L, 1:2))

keep = which(maFf >= 0.05)

radar.sites = radar.sites[keep]

alleles = alleles|[,keep]

sorted.alleles = sorted.alleles[keep]

radar.pileup = radar.pileup[names(radar.sites)]
print(paste(length(keep), 'sites have >= 5% MAF.'))

# Load in the DO edit sites and make sure that we don"t already have
# these sites.

# Loads iIn “sites”

load(file =

"founders/_7 _denovo_editing_sites read pos_filtered.Rdata')
denovo.sites = sites

denovo.pileup = pileup

rm(sites, pileup)

site.ol = findOverlaps(query = radar.sites, subject = denovo.sites)
print(paste('Sites already mapped =", length(site.ol)))
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# Remove the sites that we already mapped.
remove = queryHits(site.ol)

radar.sites = radar.sites[-remove]
radar_pileup = radar.pileup[names(radar.sites)]
print(paste(*'Sites from DB to map = ", length(radar.sites)))

# Write out the data that we have.
save(denovo.sites, radar.sites, denovo.pileup, radar.pileup,
file = "D0O/_8 denovo_radar_darned_sites.Rdata')

# Pile up the reads in the founders and record this.

bamdir =
""/hpcdataZanuj/Projects/Investigator/Gary_ChurChill/RNA_editing/Final_
DataSet/FounderBams™*

bamfiles = dir(path = bamdir, pattern = "bam$", full_.names = T)

# Make a list of radar.pileupFiles by strain.
pufiles = PileupFiles(bamfiles)

# Make the pileup function.
pufxn = Ffunction(x) {
dimnames(x$seq) [[3]] = x$pos

x$seq
} # pufxn(Q)
param = ApplyPileupsParam(minBaseQual = 20L, maxDepth = 1le7,
what = "'seq', which = radar.sites)

# Pileup all samples.

founder.pileup = applyPileups(files = pufiles, FUN = pufxn, param =
param)

names(founder.pileup) = names(radar.sites)

save(founder.pileup, file =
paste0O("'RADAR_DARNED/_8 radar_darned_founder_pileup.Rdata'™))
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File S10
Combine the denovo, RADAR and DARNED sites and prepare QTL data

HH R R T R I R T R R R R R
HHHHH T

# Merge the denovo and RADAR/DARNED edit sites into one table.

# Daniel Gatti

# dan.gatti@jax.org

# Sept. 4, 2015

HHHHH R R R R
HHHHH R

options(stringsAsFactors = F)

library(DOQTL)

setwd(*'/hpcdata/dgatti/RNAediting')

# Load in the ensembl 68 GTF.
load(""/hpcdata/cgd/ensembl/release68/Mus_muscullus .GRCm38.68 _Rdata'™)

# Add “chr® to the chromosome names to match the BAM files.

ensembl = keepSeglevels(x = ensembl, value =
seqglevels(ensembl)[-grep(""JH|GL"™, seglevels(ensembl))])

ensembl = renameSeqlevels(x = ensembl, value = pasteO("'chr",

seqlevels(ensembl)))

sl = sub("MT"™, "M", seqglevels(ensembl))

ensembl = renameSeqlevels(x = ensembl, value = sl)

# Keep only unique exons and UTRs.
length(unique(ensembl$gene_id))

ensembl = ensembl[ensembl$feature == "exon']

keys = pasteO(seqnames(ensembl), start(ensembl), end(ensembl))
ensembl = ensembl[!duplicated(keys)]
length(unique(ensembl$gene_id))

load(file
load(file

"RADAR_DARNED/ 8 radar_darned_founder_pileup.Rdata™)
"DO/_8 denovo_radar_darned_sites.Rdata'™)

# Create a summary File for the RADAR/DARNED sites like the one for
denovo sites.
strains = factor(substring(colnames(founder.pileup[[1]1]), 1, 3))
site.pileup = matrix(0, length(founder.pileup), 4 *
length(levels(strains)),
dimnames = list(names(founder.pileup),
paste(rep(levels(strains), each = 4),
c("A"™,TCTLTUGTLYT™), sep = ™))

for(i in 1:length(founder.pileup)) {
agg = aggregate(data.frame(t(founder.pileup[[i1lL..1D)),

list(strains), sum)

agg = as.matrix(agg[,-c(1,6)])
if(as.character(strand(radar.sites)[i]) == "-"") {
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tmp = agg[,c(1,3)]
aggl.c(1,3)] = aggl,c(2,4)]
aggl.c(2,4)] = tmp

} # if(as.character(strand(radar.sites)[1]) == "-")
site.pileup[i,] = as.vector(t(agg))
} # for(i)

# Combine the data and make the column names the same as the denovo
sites

radar.sites = cbind(as.data.frame(radar.sites), site.pileup)
colnames(radar.sites) sub('inchr, "ref", colnames(radar.sites))
colnames(radar.sites) sub('inrna’, "edit.type",

colnames(radar .sites))

colnames(radar.sites) = sub(‘'gene™, "symbol', colnames(radar.sites))
colnames(radar.sites) = sub('sample™, '‘gene_id",
colnames(radar.sites))

radar.sites$edit.type[radar.sites$edit.type == "U"] = "T"
radar.sites$edit.type[radar.sites$edit.type == "1'"] = "G"

radar.sites$edit.type = pasteO(radar.sites$ref, radar.sites$edit.type)
ensid = ensembl$gene_id[match(radar.sites$symbol, ensembl$gene_name)]
radar.sites$gene_id = ensid

radar.sites = GRanges(segnames = radar.sites$seqnames, range =
IRanges(

start = radar.sites$start, width = 1), strand =
radar.sites$strand,

mcols = radar.sites[,-(1:5)])
colnames(mcols(radar.sites)) = sub(*mcols\\.", ",
colnames(mcols(radar.sites)))

write.csv(as.data.frame(radar.sites), File =
"RADAR_DARNED/ 9 darned_radar_edit_sites.csv",
quote = FALSE)

colnames(mcols(radar.sites)) = colnames(mcols(denovo.sites))
sites = c(denovo.sites, radar.sites)
pileup = c(denovo.pileup, radar._pileup)

sites$source = rep(c('denovo™, "radar'™), c(length(denovo.sites),
length(radar.sites)))
names(sites) = paste(segnames(sites), start(sites), sep = " ')

write.csv(as.data.frame(sites), File =
" 9 all_edit_sites_for_mapping.csv',
quote = F)
save(sites, pileup, File = " 9 all_edit_sites.Rdata')

# Gather the data for QTL mapping.
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edit = matrix(0, ncol(pileup[[1]]), length(sites), dimnames = list(
colnames(pileup[[1]]), names(sites)))

rownames(edit) = sub(C"\\.final\\.sorted\\.bam", ", rownames(edit))

total = matrix(0, nrow(edit), ncol(edit), dimnames = dimnames(edit))

compl = c("A™, "C", "G, "T')

names(compl) = c('T", "G", "C", "A™)

for(i in 1l:length(sites)) {

ref = sites$ref[i]
alt = sub(ref, """, sites$edit.type[i])
if(as.character(strand(sites)[i]) == "-") {

ref = compl[ref]
alt = compl[alt]
} # if(as.character(strand(sites)[i]) == "-")

edit[i,] = pileup[[i]][alt,, 1]
total[i,] = pileup[[il]l[alt,,1] + pileup[[i]]l[ref,.,1]
} # for(i)

# Read in the genotype probabilities and assemble the mapping data.
load("'/hpcdata/cgd/D0O_genoprobs/MUGA_founder_probs v2_Rdata')

probs = model.probs[grep("""KLS", rownames(model.probs)),,]

rm(model .probs)

rownames(probs) = sub("~KLS", "', rownames(probs))

probs = probs[rownames(edit),,]

stopifnot(all (rownames(edit) == rownames(probs)))

# Read i1n the MUGA markers.

load(url ("ftp://ftp.jax.org/MUGA/muga_snps.Rdata’™))

snps = muga_snps[muga_snps[,1] %in% dimnames(probs)[[311.]
probs = probs[, ,snps[,1]]1

# Create a list of kinship matrices.
K = kinship.probs(probs = probs, snps = snps, bychr = T)

# Load in the sex and diet covariates.
covar = read.csv("QTL/svenson_277_covar.csv')
rownames(covar) = covar[,1]

covar = as.matrix(covar[,-1])
covar = covar[rownames(edit),]
covar = covar[rownames(probs),]
total = total[rownames(probs),]
edit = edit[rownames(probs),]
probs = probs[rownames(probs),,]

stopiftnot(nrow(probs) == nrow(total))
stopifnot(all (rownames(probs) == rownames(total)))
stopifnot(nrow(probs) == nrow(edit))
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stopifnot(all (rownames(probs) == rownames(edit)))
stopifnot(all (rownames(K[[1]]1) == rownames(total)))

# Save this data for mapping.

save(sites, total, edit, covar, probs, K, covar, snps,
file = "QTL/_9 RNAediting QTL mapping.Rdata'™)

40 S| T.Guetal.



File S11
QTL mapping of editing ratios

TR T R T T T T T T TR T
HHtHH T

# Read in the RNA editing sites in the DO and map them.

# Daniel Gatti

# Dan.Gatti@jax-org

# Nov. 19, 2014

SRR A R R R R R R e R R R R R R R R R R R R SR R R A e
HRHERHHRERE

library(DOQTL)

setwd("'/hpcdata/dgatti/RNAediting/QTL/"")

args = commandArgs(trailingOnly = T)

# Load in the mapping data.
load(""_9_RNAediting_QTL_mapping.Rdata’™)

i = as_.numeric(args)
print(date())

# Set low denominator samples = O.
total[total < 10] = NA

# Map editing counts with total counts as a covariate.

pheno = matrix(edit[,i], ncol = 1, dimnames = list(rownames(edit),
colnames(edit)[i]))

addcovar = cbind(covar, total = total[,i1])

addcovar|[addcovar[,3] == 0,] = NA

qtl = scanone(pheno = pheno, pheno.col = 1, probs = probs, K = K,
addcovar = addcovar, snps = snps)

perms = scanone.perm(pheno = pheno, pheno.col = 1, probs = probs,
addcovar = addcovar, snps = snps)

save(qtl, perms, file =
pasteO(colnames(edit)[i]," RNAediting QTL.Rdata'™))

print(date())
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File S12

Harvest maximum QTL peaks

HH R
HH

# Harvest the QTL by taking the maximum peak and determining if it it
over

# the 0.05 treshold.

# Daniel Gatti

# dan.gati@jax.org

# Sept. 14, 2015

B T T T T R R T T R T T R R T R T T T T
HHIHH R

options(stringsAsFactors = FALSE)

library(DOQTL)

setwd(*'/hpcdata/dgatti/RNAediting/QTL/"")
load(""_9 RNAediting_QTL_mapping.Rdata')
files = dir(pattern = " _RNAediting_QTL.Rdata$™)

# Get the chromosome lengths.

chrlen = get.chr.lengths()
chrlen = c(0, chrlen)
result = NULL

for(i in 1l:length(Ffiles)) {

# Get the site.
site = sites[sub(”_RNAediting QTL.Rdata$", "', files[i])]

# Add the DO editing ratio to the end of the site.

site$DO.total = mean(total[,names(site)], na.rm = TRUE)

site$DO.ratio = mean(edit[,names(site)] / total[,names(site)], na.rm
= TRUE)

# Load in the QTL and perms.
load(files[i])

# Get the 0.05 threshold.
thr = quantile(perms, 0.95)

# Plot the genome scan.

png(sub("'\\.Rdata$", ".png", files[i]), width = 1000, height = 800,
res = 128)

plot(qtl, sig.thr = thr, main = names(site))

site.chr = as.character(sub(*'"~chr", """, segnames(site)))

if(site.chr == "X'") {

site.pos = start(site) * le-6 + sum(chrlen[1:20])
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} else if(site.chr == "Y") {
site.pos = -100
} else {
site._pos = start(site) * le-6 +
sum(chrlen[l:as.numeric(site.chr)])
} # else
points(site.pos, 0, pch = 17, cex = 2, col = 2)
dev.off()

spl = split(qtl$lod$A, qti$lod$A[,2])

spl$X = gtls$lod$X

max.lod = lapply(spl, function(z) { z[which.max(z[,71).1 }P)
max.lod = unsplit(max.lod, names(spl))

# Only keep cis-QTL on X.

if(as.character(seqnames(site)) == "chrX™) {

if(max.lod[max.lod[,2] == "X",7] < 2 * thr) {
max.lod = max.lod[max.lod[,2] = "X",]

} # if(max.lod[max.lod[,2] == "X",7] < 2 * thr)

} else if(as.character(segnames(site)) == "chrY™) {
# Nothing

} else {
max.lod = max.lod[max.lod[,2] = "X",]

} # else

# max.lod max.lod[max.lod[,7] >= thr,,drop = FALSE]
max . lod max . lod[which.max(max.lod[,7]),,drop = FALSE]
max . lod cbind(max.lod, p-gw = mean(perms >= max.lod[,7]))

result = rbind(result, cbind(as.data.frame(site), max.lod))

for(J in 1l:nrow(max.lod)) {

png(sub(’_QTL\\.Rdata$", pasteO("_coef_chr'", max.lod[j,2],

".png™), files[i]),
width = 1000, height = 800, res = 128)

if(max.lod[j,2] == "X") {
# coefplot(qtl, chr = max.lod[j,2], sex = "F'", main
names(site))

} else {

coefplot(qtl, chr = max.lod[j,2], main = names(site))
} # else
dev.off()

} # for(g)
} # for(i)

result = cbind(result, p.adj = p.adjust(p = result$p.gw, method =

"BH'™))

save(result, file = "_11 RNAediting_qtl_results.Rdata™)
write.csv(result, file = "_ 11 RNAediting_qtl_results.csv™)
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File S13
Calculating the probability that the editing site occurs in a dsRNA region
H#it###Input Data H#HHH
#P — Base pairing probability matrix as returned by RNAfold —p
#uP — Array with the probabilities of each nucleotide of being unpaired
#pos — Position of the edit site
#n — Length of the RNA sequence for the whole gene

HHHHHHHHAH TR

def probOfPosFavorable(P,uP,pos,n):
# Prob of stem:

sum =0.0
foriinrange(1,n+1):
sum += P[pos][i]

punp =1.0-sum

#Left Bulge
sumLB =0.0
foriin range(pos+7,n):
sumLB += P[pos+1][i]*P[pos-1][i+1]
foriin range(pos+8,n):
sumLB += P[pos+2][i]*P[pos-1][i+1]*uP[pos+1]
foriin range(pos+7,n):
sumLB += P[pos+1][i]*P[pos-2][i+1]*uP[pos-1,n]

#Right Bulge
sumRB =0.0
foriin range(pos-7,2,-1):
sumRB += P[pos-1][i]*P[pos+1][i-1]
foriin range(pos-8,2,-1):
sumRB += P[pos-2][i]*P[pos+1][i-1]*uP[pos-1]
foriin range(pos-7,2,-1):
sumRB += P[pos-1][i]*P[pos+2][i-1]*uP[pos+1]
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#left IL
sumLIL=0.0
foriin range(pos+7,n-1):
sumLIL += P[pos+1][i]*P[pos-1][i+2]*uP[i+1]
foriin range(pos+8,n-1): #2x1 a
sumLIL += P[pos+2][i]*P[pos-1][i+2]*uP[pos+1]*uP[i+1]
foriin range(pos+7,n-1): #2x1 b
sumLIL += P[pos+1][i]*P[pos-2][i+2]*uP[pos-1]*uP[i+1]
foriin range(pos+8,n-2): #2x2 a
sumLIL += P[pos+2][i]*P[pos-1][i+3]*uP[pos+1]*uP[i+1]*uP[i+2]
foriin range(pos+7,n-2): #2x2 b
sumLIL += P[pos+1][i]*P[pos-2][i+3]*uP[pos-1]*uP[i+1]*uP[i+2]
#Right IL
sumRIL=0.0
foriin range(pos-7,3,-1):
sumRIL += P[pos-1][i]*P[pos+1][i-2]*uP[i+1]
foriin range(pos-8,3,-1): #1x2 a
sumLIL += P[pos-2][i]*P[pos+1][i-2]*uP[pos-1]*uP[i-1]
foriin range(pos-7,3,-1): #1x2

sumLIL += P[pos-1][i]*P[pos+2][i-2]*uP[pos+1]*uP[i-1]
foriin range(pos-8,4,-1): #2x2 a

sumLIL += P[pos-2][i]*P[pos+1][i-3]*uP[pos-1]*uP[i-1]*uP[i-2]
foriin range(pos-7,4,-1): #2x2 b

sumLIL += P[pos-1][i]*P[pos+2][i-3]*uP[pos+1]*uP[i-1]*uP[i-2]

sum2 = punp*(sumLB+sumRB+sumLIL+sumRIL)

return sum + sum2
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