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ABSTRACT Predicting the accuracy of estimated genomic values using genome-wide marker information is an important step in designing
training populations. Currently, different deterministic equations are available to predict accuracy within populations, but not for
multipopulation scenarios where data frommultiple breeds, lines or environments are combined. Therefore, our objective was to develop and
validate a deterministic equation to predict the accuracy of genomic values when different populations are combined in one training
population. The input parameters of the derived prediction equation are the number of individuals and the heritability from each of the
populations in the training population; the genetic correlations between the populations, i.e., the correlation between allele substitution
effects of quantitative trait loci; the effective number of chromosome segments across predicted and training populations; and the proportion
of the genetic variance in the predicted population captured by the markers in each of the training populations. Validation was performed
based on real genotype information of 1033 Holstein–Friesian cows that were divided into three different populations by combining half-sib
families in the same population. Phenotypes were simulated for multiple scenarios, differing in heritability within populations and in genetic
correlations between the populations. Results showed that the derived equation can accurately predict the accuracy of estimating genomic
values for different scenarios of multipopulation genomic prediction. Therefore, the derived equation can be used to investigate the potential
accuracy of different multipopulation genomic prediction scenarios and to decide on the most optimal design of training populations.
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GENOMIC markers can be used to estimate genomic values
of individuals, also known as additive genetic values or

breeding values, that are used to select animals (e.g., Dekkers
2007; De Roos et al. 2011) and plants for breeding (e.g., Heffner
et al. 2009; Jannink et al. 2010) and in humans to predict the
genetic risk of diseases (e.g., Wray et al. 2007; De Los Campos
et al. 2010). In genomic prediction, genome-wide single-
nucleotide polymorphism (SNP) marker information is used
to predict genomic values based on SNP effects estimated in a
training population consisting of individuals with known SNP
genotypes and phenotypes (Meuwissen et al. 2001). The accu-
racy of estimating genomic values is in general higher when the
size of the training population is larger,when the level of linkage

disequilibrium (LD) between the SNPs and the quantitative trait
loci (QTL) underlying the trait is higher, andwhen the predicted
individuals are more related to the individuals in the training
population (e.g., Daetwyler et al. 2008; Zhong et al. 2009;
De Los Campos et al. 2013; Wientjes et al. 2013).

For numerically small populations, the size of the training
population is limited, which restricts the accuracy of genomic
prediction. Therefore, combining different populations in one
training population for estimating SNP effects is an appealing
approach to increase the size of the training population and,
thereby, theaccuracyofpredictinggenomicvalues.Thepotential
accuracy of combing different populations in one training pop-
ulation has been investigated by combining populations from
different breeds (e.g., Hayes et al. 2009a; Harris and Johnson
2010), lines (e.g., Zhong et al. 2009; Calus et al. 2014;
Lehermeier et al. 2014), subpopulations (e.g., De Los Campos
et al. 2013), or countries (e.g., Lund et al. 2011; Haile-Mariam
et al.2015). The increase in accuracy by adding individuals from
another population to the training population is in most cases
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much lower than the increase in accuracy obtained by adding an
equal number of individuals from the same population. This is a
result of differences that exist between populations, like differ-
ences in allele frequencies, LD patterns (De Roos et al. 2008;
Zhong et al. 2009; De Los Campos et al. 2012), allele substitu-
tion effects of QTL (Spelman et al. 2002; Thaller et al. 2003;
Wientjes et al. 2015b), environments in combination with
genotype-by-environment interactions (Lund et al. 2011;
Haile-Mariam et al. 2015), the presence of QTL that are seg-
regating only in one population (Kemper et al. 2015), and the
absence of close family relationships across populations.

Different deterministic equations are available to calculate the
accuracy of genomic prediction when the training population is a
subset from the same population as the predicted individuals
(Daetwyler et al. 2008; Vanraden 2008; Goddard 2009). One
type of deterministic equation is based on prediction error vari-
ance of themixed-model equation and uses the genomic relation-
ships within the training population and between training and
predicted individuals (Vanraden 2008). This equation has been
extended to enable the calculation of the accuracywhen different
populations are combined in one training population (Wientjes
et al. 2015b). A disadvantage of this equation is, however, that
individuals have to be genotyped before the accuracy can be
calculated. Therefore, this equation cannot be used to decide
on themost optimal design of training populations. Another type
of deterministic equation is able to predict the accuracy before
genotype information is available and is based on population
parameters, such as the size of the training population, the her-
itability of the trait, and the effective number of chromosome
segments (Daetwyler et al. 2008, 2010). This equation can be
used to investigate the accuracy of different training population
designs; however, the equation is not applicable for situations
with more than one population in the training population.

The first objective of this study is to develop a deterministic
equation using population parameters to predict the accuracy of
genomic values when different populations are combined in one
training population. The different combined populations might,
for example, be populations fromdifferent lines or environments
orpopulationsmeasured fordifferent traits. The secondobjective
is to validate the derived equation. For the validation, different
scenariosofmultipopulationgenomicpredictionwereconsidered
bydividing1033Holstein–Friesian cowswith real genotypes and
simulated phenotypes into three populations, assuming different
heritabilities within populations and different genetic correla-
tions between populations. Moreover, the equation was used
to investigate the potential accuracy for one specific dairy cattle
scenario and one specific human scenario.

Materials and Methods

Theory

The accuracy of estimated genomic values (rEGV) is defined as
the correlation between estimated and true genomic values.
The overall accuracy depends on the square root of the pro-
portion of genetic variance captured by the SNPs (rLD) and on

the accuracy of estimating SNP effects (reffect) (Daetwyler
2009; Goddard 2009). The rLD depends on the strength of
LD between QTL and SNPs; the stronger the LD, the higher
the proportion of the genetic variance that is captured by the
SNPs. The reffect depends on the characteristics of the trait,
the population in which the effects are estimated, and the
population in which the effects are used to predict genomic
values. First, we derive reffect for a training population con-
sisting of two distinct populations, based on the same as-
sumptions as underlying a commonly used prediction
equation for single-population genomic prediction. Thereaf-
ter, reffect is combined with rLD to account for the proportion
of the genetic variance captured by the SNPs to derive the
accuracy of multipopulation genomic prediction.

Using the assumptions that M independent loci are un-
derlying the trait and that each locus is explaining an equal
amount of the genetic variance, Daetwyler et al. (2008) de-
rived the following prediction equation for reffect when con-
sidering single-population genomic prediction,

reffect ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2N
h2N þM

s
; (1)

in which h2 is the heritability of the trait and N is the number
of individuals with phenotypes and genotypes included in the
training population. The original derivation of this equation
is rather complex and difficult to extend to multipopulation
genomic prediction. As shown by Wientjes et al. (2015b), the
same equation can also be derived by partitioning the variance
of the average phenotype of N individuals into a part explained
by one locus ðs2

a=MÞ and a part not explained by that locus
ððs2

p 2 ðs2
a=MÞÞ=NÞ; in which s2

a is the total genetic variance
and s2

p is the phenotypic variance. In general, the accuracy of
predicting an effect is equal to the square root of the proportion
of the total variance explainedby that effect (AppendixAprovides
a formal proof that this result applies to estimation of gene ef-
fects). So, the accuracy of predicting the effect of one locus equals

rlocus ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

s2
a
�
M
�

�
s2
a
�
M
�þ ��s2

p 2 ðs2
a
�
MÞ
��

N
�

vuut : (2)

Sinceeach locus is assumed toexplainonlyvery little variance,
s2
p 2 ðs2

a=MÞ � s2
p: Due to the assumption that each locus

explains an equal amount of the genetic variance, the accu-
racy of estimating the effect of one locus is the same for each
of the loci and represents the overall accuracy of estimating
SNP effects (see Appendix A):

reffect ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

s2
a
�
M
�

�
s2
a
�
M
�þ �s2

p
�
N
�

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2N
h2N þM

s
: (3)

Thus, this approach results in the same equation to predict
the accuracy as derived by Daetwyler et al. (2008). The der-
ivation described in Equations 2 and 3 is, however, much
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simpler, and this derivation will be extended to derive the
accuracy of multipopulation genomic prediction.

Similar to Daetwyler et al. (2008), we assume that M in-
dependent loci are underlying the trait and that each locus
explains an equal amount of the genetic variance. The effects
of the loci might be different in each population, which is
measured by the genetic correlation between populations.
Furthermore, we assume that NA individuals from population
A and NB individuals from population B with phenotype and
genotype information are combined into one training popu-
lation to estimate SNP effects. These estimated SNP effects
are then used to predict genomic values of individuals from
population C that could be a sample from one of the training
populations or could be from a different population. The in-
formation from populations A and B, used to estimate SNP
effects, is combined in a selection index approach (Hazel
1943), using the average phenotype of NA individuals from
population A (xA) and the average phenotype of NB individ-
uals from population B (xB) as records and the genomic val-
ues of individuals from population C as breeding goal traits,

Ii ¼ ĝCi
¼ bAxA þ bBxB; (4)

in which bA and bB are the regression coefficients on the average
phenotype of individuals from population A (xA) and B (xB) to
predict genomic values for individual i from population C (ĝCi

).
The regression coefficientsof genomicvaluesof individuals

from population C on the average phenotype of population A
and B can be calculated as

b ¼
�
bA
bB

	
¼ P21g; (5)

in which P is the (co)variance matrix of xA and xB and g is a
vector with covariances between xA and xB and the true ge-
nomic value of individual i from population C (gCi),

P ¼
�

VarðxAÞ CovðxA; xBÞ
CovðxA; xBÞ VarðxBÞ

	
; (6)

and

g ¼
�
CovðxA; gCiÞ
CovðxB; gCiÞ

	
: (7)

In analogy with Wientjes et al. (2015b), the variance of the
average phenotype of NA individuals can be partitioned into
a part explained by one locus ðs2

aA=MÞ and a part not explained
by that locus ððs2

pA
2 ðs2

aA=MÞÞ=NA � s2
pA
=NAÞ; in which s2

aA is
the total genetic variance in population A and s2

pA
is the total

phenotypic variance in population A. So, the total variance of
xA can be written as

VarðxAÞ ¼
s2
aA
M

þ s2
pA

NA
: (8)

Note that s2
pA
=NA represents the part of the phenotypic vari-

ance not explained by that locus, i.e., the residual variance
(s2

eA;j) for one locus j.

The covariance between the average phenotypes in the
two populations can be partitioned into a part explained by
one locus, a part not explained by that locus, and twice the
covariance between the two parts. In an additive model,
Covða; eÞ ¼ 0 and the parts not explained by a locus, i.e., the
residual variances, are expected to be independent across
populations, indicating that only the covariance between
the populations of the part explained by one locus is as-
sumed to differ from zero. Therefore, the covariance can
be written as

CovðxA; xBÞ ¼ rGA;B

saAsaB
M

; (9)

in which saA and saB are the genetic standard devia-
tions in, respectively, populations A and B and rGA;B is
the genetic correlation between populations A and B.
Hence,

P ¼

s2
aA
M

þ s2
pA

NA
rGA;B

saAsaB
M

rGA;B

saAsaB
M

s2
aB
M

þ s2
pB

NB

2
66664

3
77775; (10)

in which s2
aB is the total genetic variance in popula-

tion B and s2
pB

is the total phenotypic variance in
population B.

Since an additive model is assumed, the covariance be-
tween the average phenotype of population A and the true
genomic value of individual i from population C is also equal
to the covariance between the populations of the part
explained by one locus,

CovðxA; gCiÞ ¼ rGA;C

saAsaC
M

; (11)

in which saC is the genetic standard deviation in population
C and rGA;C is the genetic correlation between populations A
and C. Hence,

g ¼
rGA;C

saAsaC
M

rGB;C

saBsaC
M

2
664

3
775; (12)

in which rGB;C is the genetic correlation between populations
B and C. Substituting Equations 10 and 12 in Equation 5
results in

b ¼ P21g ¼
s2
aA
M

þ s2
pA

NA
rGA;B

saAsaB
M

rGA;B

saAsaB
M

s2
aB
M

þ s2
pB

NB

2
66664

3
77775
21

rGA;C

saAsaC
M

rGB;C

saBsaC
M

2
664

3
775:
(13)

With some algebra (see Appendix B), it can be shown that the
accuracy of this selection index, representing the accuracy of
estimating SNP effects, equals
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When only one population is included in the training popu-
lation, Equation 14 reduces to

reffect ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
    rGA;C

ffiffiffiffiffiffi
h2A
M

s
   

"
h2A
M

þ 1
NA

#21

rGA;C

ffiffiffiffiffiffi
h2A
M

s2
4

3
5

3
5

2
4

vuuut

¼ rGA;C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2A   NA

h2A   NA þM

s
: (15)

This equation is equivalent to the equation of Wientjes
et al. (2015b) for across-population genomic prediction.
When estimated SNP effects are applied in another sub-
set of the same population as the training population, i.e.,
rGA;C = 1, Equation 15 becomes equivalent to the equa-
tion derived by Daetwyler et al. (2008) to predict the
accuracy of estimating SNP effects within a population
(Equation 1).

As explained before, the accuracy of genomic prediction
depends on reffect as well as on rLD, accounting for the pro-
portion of the genetic variance captured by the SNPs. It
might, for example, be that the SNP effects are accurately
estimated (reffect = 1), but when LD between QTL and SNPs
is not complete, not all genetic variance can be captured by
the SNPs and the accuracy of genomic prediction is still not
1. Moreover, when a number of QTL are segregating in the

predicted population and not in the training population,
part of the genetic variance in the predicted population
can never be captured by the SNPs in the training popula-
tion. Altogether, this indicates that the proportion of the
genetic variance in the predicted population that can be
captured by the SNPs in the training population is specific
for a combination of training and predicted populations.
Therefore, rLD affects the covariance between the pheno-
types in the training population and the aggregated geno-
type of the predicted individuals (Equation 12), which
results in

g ¼
rLDA;C



rGA;C

saAsaC
M

�

rLDB;C



rGB;C

saBsaC
M

�
2
66664

3
77775; (16)

in which rLDA;C is the square root of the proportion of the
genetic variance in predicted population C captured by the
SNPs in training population A, and rLDB;C is the square root of
the proportion of the genetic variance in predicted popula-
tion C captured by the SNPs in training population B. Using
Equation 16 instead of Equation 12 in the remaining part of
the derivation results in the following equation to predict the
accuracy of genomic prediction:

rHI ¼ reffect ¼
ffiffiffiffiffiffiffiffi
b9g
s2
H

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g9P21g�
s2
aC

.
M
�

vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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r
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vuuuuuuuuuut
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(14)

rEGV ¼


�
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r
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r
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M
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66664
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vuuuuuuuuuut
: (17)
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In this study, rLDA;C and rLDB;C were assumed to be character-
istics of the training and predicted populations and depend-
ing on the SNP density and the properties of the QTL
underlying the trait. Therefore, an empirical approach was
needed to estimate values for rLDA;C and rLDB;C : The values

were estimated in the scenarios when only one population
(A or B) was used as training population, by calculating rLD as
rLD ¼ rEGV=reffect; in which rEGV was the empirical accuracy
and reffect the predicted accuracy assuming all genetic vari-
ance in the predicted population was captured by the SNPs.
The empirically estimated values for rLDA;C and rLDB;C were
used to predict the accuracy when populations A and B were
combined in the training population to predict genomic val-
ues for individuals from population C.

Derivation of Me to replace M

An important assumption underlying the derived equation is
that M independent loci are underlying the trait. In a finite
population, loci do not segregate independently due to link-
age disequilibrium between loci. The equation predicting the
accuracy of SNP effects using a single population (Equation
1), derived by Daetwyler et al. (2008), accounts for that by
replacing M by the effective number of chromosome seg-
ments, Me, in the population (Daetwyler et al. 2010). The
Me within a population is a statistical concept and can be
interpreted as the effective number of chromosome segments
that are independently segregating in that population. In
other words, it represents the effective number of effects that
has to be estimated to predict genomic values for individuals
from that population. In the derived equation for multipopu-
lation genomic prediction, different populations are com-
bined in the training population, each with different values
for Me. For predicting genomic values for individuals from
population C, using estimated SNP effects in population A,
the effective number of estimated effects is equal to the ef-
fective number of chromosome segments shared between
populations A and C (MeA;C). Equivalently, when estimated
SNP effects in population B are used, the effective number
of estimated effects is equal to the effective number of chro-
mosome segments shared between populations B and C
(MeB;C). In analogy of Me within a population, the Me across

populations can be interpreted as the effective number of
segments that are segregating in a combined population,
when considering the differences in LD between the popula-
tions. Therefore, we propose the following adjustment to
Equation 17:

The same equation can also be derived when a selection in-
dex is used, combining estimated genomic values for individ-
uals from population C based on training populations of,
respectively, population A or B, as shown in Appendix C.

The Me within a population can be calculated as

Me ¼ 1
VarðGij2 EðGijÞÞ (19)

(Goddard et al. 2011), in which Gij contains the genomic
relationship and E(Gij) the expected values for the genomic
relationships between all individuals i and j from that popu-
lation, with the variance taken over all pairwise relationships
between individuals i and j. In analogy to Equation 19, the
values for Me across populations can be calculated using

Me1;2 ¼
1

VarðGPop:1i;Pop:2j 2 EðGPop:1i;Pop:2jÞÞ
(20)

(Wientjes et al. 2015b), in which GPop:1i;Pop:2j contains the ge-
nomic relationships and E(GPop:1i;Pop:2j) contains the expected
genomic relationships between all individuals i from population
1 and individuals j from population 2, again with the variance
taken over all pairwise relationships between individuals i and j.
The genomic relationships canbe calculated followingYang et al.
(2010), by calculating the genomic relationships between indi-
vidual i from population y and individual j from population z as
Gyi;zj ¼ ð1=nÞPkGð yi;zjÞk ¼ ð1=nÞPk

�ððxyik22pykÞ ðxzjk22pzkÞÞ=� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pykð12 pykÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pzkð12 pzkÞ

p ��
and the genomic relation-

ship of individual i from population y with itself as
Gyii ¼ ð1=nÞPkGðyiiÞk ¼ 1þ ð1=nÞPkððx2yik 2 ð1þ 2pykÞ  xyikþ
2p2ykÞ=2pykð12 pykÞÞ; in which n is the number of SNPs; xyik and
xzjk are the genotypes at locus k coded as 0, 1, and 2; and pyk and
pzk are the allele frequencies for the second allele (with homo-
zygote genotype coded as 2) at locus k for, respectively, popula-
tions y and z. The genomic relationships used to calculateMe are

rEGV ¼


"
rLDA;C rGA;C

ffiffiffiffiffiffiffiffiffiffi
h2A

MeA;C

s
rLDB;C rGB;C

ffiffiffiffiffiffiffiffiffiffi
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s #
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þ 1
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ffiffiffiffiffiffiffiffiffiffiffiffi
h2A   h

2
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q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MeA;CMeB;C

q

rGA;B

ffiffiffiffiffiffiffiffiffiffiffiffi
h2A   h

2
B

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MeA;CMeB;C

q h2B
MeB;C

þ 1
NB

2
666666664

3
777777775

21

rLDA;C rGA;C

ffiffiffiffiffiffiffiffiffiffi
h2A

MeA;C

s

rLDB;C rGB;C

ffiffiffiffiffiffiffiffiffiffi
h2B

MeB;C

s

2
6666664

3
7777775

vuuuuuuuuuuuut
: (18)
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based on population-specific allele frequencies to ensure that
unrelated individuals have an expected genomic relationship
of 0, which is an underlying assumption of the equation to cal-
culate Me (Goddard et al. 2011).

Inmost human studies, individuals included in the data are
unrelated (e.g., Yang et al. 2010; Lee et al. 2012; Maier et al.
2015). This indicates that all expected genomic relationships
(E(G)) would approximately be zero and Equation 20 sim-
plifies to Me1;2 ¼ 1=VarðGPop:1i;Pop:2jÞ: In most livestock
studies, individuals are related, and E(G) could be approx-
imated by the pedigree relationship matrix A; i.e.,
Me1;2 ¼ 1=VarðGPop:1i;Pop:2j 2APop:1i;Pop:2jÞ: When the G and
A matrices are used to calculate Me, both matrices should
be scaled to the same base population. This can be
achieved by rescaling the inbreeding level in G to the in-
breeding in A, for example by using the following adjust-
ment separately for each of the within-population and
across-population blocks (Powell et al. 2010),

G* ¼ 12 Fb
� �

 Gþ 2Fb   J; (21)

in which Fb is the average pedigree inbreeding level of indi-
viduals in population b and J is a matrix filled with ones.

The G2E(G) values are expected to follow a normal dis-
tribution around zero for each value of E(G). The pedigree
relationships between individuals in A, however, depend on
the depth of the pedigree for both individuals. In general, the
pedigree relationships will more closely resemble E(G) when
the pedigree is deeper. When the pedigree is not deep or
complete enough for all or a subset of the individuals, extra
variation in G2A is introduced, resulting in an underestima-
tion ofMe when A is used to represent E(G). The impact of an
insufficient pedigree depth on the calculated Me can be re-
duced by taking only the relationships of individuals with the
most complete pedigree into account to calculate Me. To
check whether selecting these individuals indeed minimized
the impact of an insufficient pedigree depth, values of G2A
can be plotted vs. values of A. When the values for G2A are
lower for higher A values, as is shown in Figure 1, an insuf-
ficient pedigree depth is still influencing the calculation of
Me. To account for this particular pattern, an exponential
function was fitted through the data. For all values of A in
the data, the parameters of the function were estimated in R
(RDevelopment Core Team2011) and the fitted values of the
function were subtracted from the values of G2A before
calculating Me.

Validation

After deriving the equation, the aim was to validate it for a
broad range of scenarios, differing in heritabilities within
populations and genetic correlations between populations.
These scenarios resemble the combining of populations from
different environments or measured for different traits. For
the validation, real genotypes and simulatedphenotypeswere
used. A pedigree with on average 3.5 complete generations
per individual was available, with a minimum of 1 complete

generationandamaximumof9 complete generations. In each
of the scenarios, an empirical accuracy was calculated and
compared with the predicted accuracy, using the derived
equation to investigate how accurately the accuracy was
predicted. The genotype and pedigree information from all
individuals, as well as the simulated phenotypes, is available
at http://dx.doi:10.5061/dryad.1525t.

Genotypes: Genotypes were available for 1033 dairy cows
from The Netherlands, each originating for at least 87.5%
from the Holstein–Friesian breed; i.e., all animals were pure-
bred Holstein–Friesians. Genotyping was done using the Illu-
mina BovineSNP50 Beadchip (50k; Illumina, San Diego),
after which genotypes were imputed to higher density
(777k), using 3150 Holstein–Friesian animals as a reference
population (Pryce et al. 2014). The accuracy of imputation
across imputed loci, as reflected by the Beagle R2 value, was
on average 0.96, indicating high imputation accuracy. As a
quality control, SNPs with a call rate ,95%, an unknown
mapping position, located on the sex chromosomes,
a minor allele frequency (MAF) , 0.005, for which only
two genotypes were observed, and in complete linkage dis-
equilibrium with a neighboring SNP were deleted. This qual-
ity control step reduced the number of SNPs for this study to
422,405.

A total of 50,000 candidate QTL were selected from the
422,405 SNPs, and in each replicate QTL were randomly
sampled from the candidate QTL to simulate phenotypes
for each individual. The candidate QTL were selected from
the SNPs using two different approaches: (1) Candidate QTL
were randomly selected (RANDOM) and (2) candidate QTL
were selected from the SNPs with a MAF, 0.2 (LOWMAF),

Figure 1 The genomic minus pedigree relationships (G2A) vs. the ped-
igree relationships (A) for across-population elements between individuals
of two populations. The red line is the fitted exponential function
(f ¼ aþ 1=ebxþc ) used to correct G2A values to reduce the impact of
an insufficient pedigree depth.

804 Y. C. J. Wientjes et al.



since the MAF of QTL underlying complex traits is expected
to be lower than theMAF of SNPs (Goddard and Hayes 2009;
Yang et al. 2010; Kemper and Goddard 2012) due to ascer-
tainment bias of the SNPs on the SNP chips (Matukumalli
et al. 2009). For each of the two approaches, the remaining
372,405 SNPs were used as markers. In this way, the QTL
underlying a trait could be randomly sampled from the can-
didate QTL in each of the replicates, while the subset of SNP
markers was constant across replicates for both RANDOM
and LOW MAF.

Phenotypes: The 1033 individuals were divided into three
groups to representdifferent populations. Thefirst twogroups
(populations 1 and 2) contained 450 individuals and repre-
sented the different training populations (populationsA andB
in the derived equation). The last group (population 3) con-
tained 133 individuals and represented the group of pre-
dicted individuals for which genomic values were estimated
(population C in the derived equation). The division over the
groups was performed using pedigree information, by allo-
cating paternal and maternal half-sib families to the same
population. In this way, relationships within a population
were higher than between populations, as usually would be
expected for distinct populations.

For both the RANDOM and the LOW MAF approach of
selecting candidate QTL, phenotypes were simulated by ran-
domly sampling 4000QTL from the group of 50,000 candidate
QTL. TheQTLunderlying the traitwere the same in each of the
populations. For each QTL, allele substitution effects were
sampled from a multivariate normal distribution, with a mean
of 0 and standard deviation of 1, using different genetic
correlations between the populations. Only additive effects
andnodominanceorepistatic interactionswereassumed.True
genomic values (TGVs)werecalculatedbymultiplying theQTL
genotypes, coded as 0, 1, and 2, by the simulated allele sub-
stitution effects of the population to which the individual
belonged. Across populations, the TGVs were rescaled to a
mean of 0 and a variance of 1. In each of the populations, the
genetic variance was calculated as the variance of the TGVs for
the individuals from that population. For all individuals, the
environmental effect was sampled from N(0, ð1=h2 2 1Þ 3
Var(TGVi)), in which Var(TGVi) is the variance of TGV in
population i to which the individual belonged. For each indi-
vidual, the simulated TGV and the environmental effect were
summed to calculate the phenotype.

Scenarios: Seven different scenarios of multipopulation ge-
nomic prediction were investigated, differing in heritabilities
and genetic correlations between the populations (Table 1).
The first four scenarios represent multienvironment genomic
prediction, where populations in different environments
were combined in one training population in which SNP ef-
fects were estimated. In these scenarios, the variances were
assumed to be homogeneous; i.e., heritability was assumed to
be the same in each population (0.95), but genetic correla-
tions between populations varied from 0.4 to 1. The last three

scenarios represent multitrait genomic prediction, where
populations measured for different traits are combined in
one training population. In these scenarios, variances were
assumed to be heterogeneous; i.e., each population had a
different heritability of 0.3 or 0.95, and genetic correlations
between populations were 0.6 or 1. The values for the heri-
tabilities of 0.3 and 0.95 were chosen to have a clear contrast
between the populations.

In each scenario, population 1, population 2, or popula-
tions 1 and 2 were used as the training population and
population 3 contained the predicted individuals. Each sce-
nario was analyzed using both approaches of selecting QTL:
RANDOM and LOW MAF. Simulations were replicated 100
times in each scenario.

Calculating Me: Values for Me across the different popula-
tions were calculated based on the difference between the
genomic and the pedigree relationship matrix. Since the
subset of SNPs slightly differed between the two ap-
proaches of selecting candidate QTL, RANDOM and LOW
MAF, values for Me were calculated for each of the ap-
proaches. To reduce the impact of incompleteness of the
pedigree, only individuals with at least three generations
of complete pedigree were taken into account, resulting in
329 individuals in population 1, 270 individuals in popu-
lation 2, and 90 individuals in population 3. Thereafter, an
exponential function was fitted through the data to further
reduce the impact of an insufficient pedigree depth, as
explained before. The G matrix was the same for all repli-
cates, since the subset of 372,405 SNPs was constant for
all replicates while QTL were resampled every replicate,
resulting in the same Me for all replicates. Therefore, only
one accuracy could be predicted for all replicates of
the same approach of selecting candidate QTL, repre-
senting the expected average accuracy of estimating SNP
effects.

Table 1 Overview of the different scenarios to simulate phenotypes

Heritability Genetic correlation

Scenariosa Pop. 1 Pop. 2
Pop. 1
and 2

Pop. 1
and 3

Pop. 2
and 3

Homogeneous variances
HOM_1.0-0.6 0.95 0.95 0.60 1.00 0.60
HOM_0.8-0.6 0.95 0.95 0.60 0.80 0.60
HOM_0.8-0.4 0.95 0.95 0.60 0.80 0.40
HOM_0.4-0.4 0.95 0.95 0.60 0.40 0.40

Heterogeneous variances
HET_1.0-1.0 0.95 0.30 1.00 1.00 1.00
HET_1.0-0.6 0.95 0.30 0.60 1.00 0.60
HET_0.6-1.0 0.95 0.30 0.60 0.60 1.00

Pop., population.
a Scenarios are labeled as follows: The names of the scenarios assuming
homogeneous variances in both training populations start with HOM, followed
by the genetic correlation between populations 1 and 3 and the genetic correlation
between populations 2 and 3. The names of scenarios with heterogeneous
variances in the training populations start with HET, followed by the genetic
correlation between populations 1 and 3 and the genetic correlation between
populations 2 and 3.
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Empirical accuracy of genomic prediction: The empirical
accuracies of genomic prediction were obtained both with a
single-trait and with a multitrait Genomic Best Linear Un-
biased Prediction (GBLUP) type of model run in ASReml
(Gilmour et al. 2009), using the simulated phenotypes and
including population as a fixed effect. Genomic values for
the predicted individuals were estimated using a genomic
relationship matrix, G, containing all training and predicted
individuals and simulated phenotypes of the training individ-
uals. The G matrix included in the models was calculated
using the allele frequencies across all individuals without
taking the population into account. The other steps in calcu-
lating G were the same as explained above.

In the single-trait model, variances were estimated using
ResidualMaximumLikelihood (REML). Therefore, themodel
usedwas termedGenomic-Relatedness-Matrix ResidualMax-
imum Likelihood (GREML) instead of GBLUP, where vari-
ances are assumed to be known. In the single-trait model, the
phenotypes of the different populations were pooled in one
population, without taking the genetic correlations between
the populations into account. The differences in heritability
were, however, taken into account by weighting the pheno-
types differently and in this way acknowledging that the
phenotypes in one population were more accurately repre-
senting the genomic values of the individuals compared to
the phenotypes in the other population. It was assumed that
theheritability of thephenotypes fromthepopulationwith the
lowest heritability, i.e., a heritability of 0.3, represented the
trait heritability based on one measurement. The phenotypes
of individuals from this population were given a weight of 1.
The heritability of the other population, i.e., a heritability of
0.95, represented the heritability based onmultiple measure-
ments of the same trait. In other words, it represented the
reliability of the phenotype based on more than one record.
This indicates that the genetic variance can be assumed to be
the same in both populations. The weight for the phenotypes
of individuals from the population with the highest reliability
(r2) was equal to the ratio of the residual variances in both
populations, which can be calculated as

w ¼ 12 h2

h2=r2 2 h2
: (22)

Following Equation 22, a weight of 44.33 was given to the
phenotypes from the population with a heritability of 0.95.
One possible scenario where phenotypes could be weighted
differently is in dairy cattle populations, where phenotypes of
cows are generally based on one single measurement and
phenotypesofbulls arebasedondifferentnumbersofprogeny,
for which the sameweights can be obtained following Garrick
et al. (2009).

The multitrait model considered the phenotypes for the
same trait in the different populations as different traitswith a
genetic correlation between the traits. Estimating all genetic
correlations in the multitrait model was not possible, since
phenotypes of the predicted individuals were not included in

the model. Therefore, genetic correlations and variance com-
ponentswere assumed to be knownandfixed to the simulated
values, and the multitrait model was termed GBLUP.

For each of themodels, the accuracy of genomic prediction
was calculated as the correlation between the simulated TGVs
and predicted genomic values. Note that the single-trait and
multitrait GBLUP models use both SNP information and
simulated phenotypes that differed across the replicates.
Therefore, averages and standard errors across the replicates
were calculated and compared to the predicted accuracies.

Evaluating the potential accuracies of two scenarios

The derived equation can be used to investigate the accuracy
of different scenarios of multipopulation genomic prediction.
To show this, we used Equation 18 to evaluate the potential
accuracy for two specific scenarios, assuming that all genetic
variance in thepredictedpopulationwas capturedby theSNPs
in the training population (rLDA;C = rLDB;C = 1). The first sce-
nario is relevant for dairy cattle breeding, where bulls with
deregressed estimated genetic values based on daughter in-
formation are in general used in the training population, with
a heritability equal to the reliability of the estimated genetic
values. Different studies have investigated the potential to
increase the accuracy of genomic prediction by adding cows
to the training population with their own phenotypes,
which are in general less reliable than estimated genetic
values (e.g., Calus et al. 2013; Cooper et al. 2015). In Equa-
tion 18 different numbers of cows (range 0–50,000) were
added to a training population of 10,000 bulls, assuming a
heritability of 0.05 for the phenotypes of cows that repre-
sents the heritability of a fertility trait in dairy cattle (e.g.,
Karoui et al. 2012), different reliabilities (range 0–1) for the
estimated genetic values of bulls, and a genetic correlation
of 1 between the estimated genetic values of bulls and the
phenotypes of cows. The values forMe were set to the values
derived from the cattle genotype data used in this study.

The second scenario is based on human studies, in which it
was assumed that different numbers of individuals from a
population of African descent (range 0–100,000) were added
to a training population of 5000 individuals of European de-
scent to increase the accuracy of predicting genetic risk for
the European population. As an example, parameters for the
trait schizophrenia were used, with a heritability of 0.28 in
the European population, a heritability of 0.24 in the African
population, and a genetic correlation of 0.66 between the
populations (De Candia et al. 2013). TheMe in the European
population (MeA;C in Equation 18) was set to 43,000, based on
the equationMe ¼ 2NeL=lnð4NeLÞ (Goddard 2009), an effec-
tive population size (Ne) of 10,000 (McEvoy et al. 2011), and
a genome length (L) of 30 M (Venter et al. 2001). The Me

across the populations (MeB;C in Equation 18) was varied
(range 43,000–2,000,000).

Data availablity

The genotype and pedigree information from all individuals,
as well as the simulated phenotypes, is available at http://dx.
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doi.org/10.5061/dryad.1525t. File Genotypes_422405SNPs
contains the genotype for each individual. File Pedigree con-
tains the pedigree for each individual. File ID_Population
contains the division of the individuals over the populations.
File Phenotypes_QTL_RANDOM contains the simulated phe-
notypes for each individual for the RANDOM scenario. File
Phenotypes_QTL_LowMAF contains the simulated pheno-
types for each individual for the LOW MAF scenario.

Results

In this section, the results of the prediction equation are first
presented assuming that all genetic variance in the predicted
population (population 3) is captured by the SNPs in the
training population. These predicted accuracies were used
to calculate rLD1;3 and rLD2;3 based on the ratio between the
empirical and the predicted accuracy of genomic prediction
when only one of the populations, population 1 or population
2, was used as the training population. As a next step, the
calculated values for rLD1;3 and rLD2;3 were used to predict the
accuracy of genomic prediction when populations 1 and 2
were combined in the training population.

Calculating Me

In Table 2, the different estimated Me values across popula-
tions are shown. Due to only small differences in the subset of
SNPs used to calculate G, estimated Me values were very
similar for the scenarios with QTL randomly sampled (RAN-
DOM) and QTL sampled with a low MAF (LOWMAF). Using
population-specific allele frequencies or allele frequencies
across populations had only a very small effect on the esti-
mated values for Me, as well as on the predicted accuracies
(range 20.9%–1.3%). This indicates that, for this study, the
use of population-specific allele frequencies or the allele fre-
quency across populations did not influence the results, due
to the very similar allele frequencies across the three popu-
lations. Therefore, the predicted accuracies are shown only
for the Me values calculated based on a G matrix using the
allele frequencies across the populations.

Scenarios with QTL randomly sampled (RANDOM)

In this section, results are presented for the RANDOM sce-
narios of simulating phenotypes. For these scenarios, the
predicted accuracies and average empirical accuracies of

genomic prediction obtained with a single-trait model using
either a single or a combined trainingpopulation anddifferent
scenarios of simulated phenotypes are shown in Figure 2. The
first four scenarios show the accuracies when different genet-
ic correlations between the populations were simulated, with
the same heritability in each of the populations. These sce-
narios show that when only one population was used as a
training population, predicted and empirical accuracies were,
as expected, higher when the genetic correlation between
training and predicted individuals was higher. There was
only a small difference between the accuracies obtained us-
ing population 1 or 2 as the training population when the
genetic correlation with the predicted individuals was the
same, because both populations were about equally related
to the predicted individuals. Combining the two populations
in one training population always resulted in an increase in
both predicted and empirical accuracies. The magnitude of
the increase in accuracy depended on the genetic correlation
between the predicted individuals and the added population;
the higher the genetic correlation, the higher the increase in
accuracy.

The last three scenarios show the predicted and empirical
accuracies, using different heritabilities in each of the pop-
ulations and genetic correlations of 1 and 0.6 between pop-
ulations. These scenarios show thatwhenonly onepopulation
was used as the training population, predicted and empirical
accuracies were, as expected, higher when the heritability in
the training population was higher. For this study, a herita-
bility of 0.3 resulted in�60% of the accuracy obtained with a
heritability of 0.95. Adding 450 individuals from the popula-
tion with a low heritability to a training population of 450
individuals from the population with a high heritability, how-
ever, still resulted in an increase in accuracy. The increase in
both predicted and empirical accuracies was again lower
when the genetic correlation was lower, similar to the scenar-
ios with the same heritability in each population.

For each of the scenarios, the predicted accuracy of geno-
mic prediction shown in Figure 2 is assuming that rLD1;3 =
rLD2;3 = 1. In general, predicted accuracies were very slightly
overestimating the empirical accuracies of genomic predic-
tion (61%), both when the heritability was the same in each
population and when the heritability was different. When
population 1 was used as the training population, the over-
estimation was on average 4% (range 1–11%). When popu-
lation 2 was used as the training population, the empirical
accuracy was slightly underestimated by the predicted accu-
racy by on average 8% (range 220% to 22%). When both
populations were combined in the training population, the
overestimation was on average 6% (range 3–12%). These
results indicate that when QTL were randomly sampled from
the SNPs, most of the genetic variance in the predicted indi-
viduals was tagged by the SNPs in the training population,
especially when population 2 was used as the training
population, and the estimated value for rLD1;3 = 0.96 and
for rLD2;3 = 1. Using these calculated values to predict the
accuracy of genomic prediction for the combined training

Table 2 EstimatedMe values across populations, using population-
specific allele frequencies or the allele frequency across populations
to set up G

Scenario
Population-specific
allele frequency

Allele frequency
across populations

QTL with low MAF
Populations 1 and 3 1541 1515
Populations 2 and 3 1616 1652

QTL randomly sampled
Populations 1 and 3 1620 1585
Populations 2 and 3 1694 1741
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population reduced the overestimation of the empirical accu-
racy to 3%.

Scenarios sampling QTL with low MAF (LOW MAF)

In this section, results are presented for the LOW MAF sce-
narios of simulating phenotypes. For these scenarios, the
predicted and average empirical accuracies of genomic pre-
diction obtainedwith a single-traitmodel using either a single
or a combined training population are shown in Figure 3,
assuming rLD1;3 = rLD2;3 = 1. All empirical accuracies for the
LOWMAF scenarios were lower than the accuracies obtained
for the RANDOM scenarios. The predicted accuracies, how-
ever, were similar to the predicted accuracies for the RANDOM
scenarios. So, the predicted accuracies for the LOW MAF sce-
narios overestimated the empirical accuracies to a greater ex-
tent. On average, the overestimation was 615% and again
higherwhen population 1was used as the training population,
compared to using population 2 as the training population
(population 1, 20%; population 2, 7%; combined training pop-
ulation, 20%). These results indicate that, as expected, a
smaller proportion of the genetic variance in the predicted
individuals was tagged by the SNPs in the training population
when QTL were sampled with a low MAF and the estimated
value for rLD1;3 = 0.84 and for rLD2;3 = 0.94. Using these cal-
culated values to predict the accuracy of genomic prediction

for the combined training population reduced the overestima-
tion of the empirical accuracy to 5%.

Single-trait vs. multitrait model

The analyses using a combined training population were
performed using both a single-trait model and a multitrait
model, where the same trait in the different populations
was modeled as a different correlated trait. The accuracies
from both models are shown in Figure 4, for the (Figure 4A)
RANDOM and the (Figure 4B) LOWMAF scenarios. In Figure
4, the predicted accuracies for the combined training popu-
lations use the values of rLD1;3 and rLD2;3 ; estimated when only
population 1 or 2 was included in the training population. In
general, accuracies obtained with the multitrait model were
equal to or higher than accuracies obtained with the single-
trait model, depending on the genetic correlations. When the
genetic correlations between both training populations and
the predicted population were the same, accuracies obtained
with the single-trait and the multitrait model were similar.
When the genetic correlations were different, accuracies
obtained with the multitrait model were higher than accura-
cies obtained with the single-trait model. Due to these higher
empirical accuracies, the overestimation of the empirical ac-
curacy obtained with the multitrait model by the predicted
accuracy of genomic prediction using the estimated values of

Figure 2 Predicted and empirical accuracies of genomic prediction (6SEs), using a single-trait model, one or two populations in the training population,
QTL randomly sampled from the SNPs and assuming in the prediction equation that all genetic variance in the predicted population was captured by the
SNPs in the training population. The different scenarios represent the different genetic correlations and heritabilities used to simulate phenotypes. The
scenarios starting with HOM have homogeneous variances in both training populations, and the scenarios starting with HET have heterogeneous
variances. For each scenario, HOM or HET is followed by the genetic correlation between populations 1 and 3 and the genetic correlation between
populations 2 and 3.
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rLD1;3 and rLD2;3 reduced on average across replicates to 0%
(range 22% to +2%) for the RANDOM scenarios and to 1%
(range 22% to +3%) for the LOW MAF scenarios. This indi-
cates that the equation can accurately predict the accuracy of
genomic prediction when the proportion of the genetic vari-
ance in the predicted population not captured by the SNPs in
the training population is known and taken into account.

The potential accuracies of two scenarios

The potential accuracies when cows with their own pheno-
typeswere added to a training population of 10,000bullswith
deregressed estimated genetic values are shown in Figure 5,
for different numbers of cows added to the training popula-
tion and different reliabilities for the estimated genetic val-
ues. Figure 5 shows that when the reliability of the estimated
genetic values of the bulls was low, a relatively small amount
of cows had to be added to the training population to see a
substantial increase in accuracy. When the reliability of the
estimated genetic values was high (.0.7), a high accuracy
was already obtained with 10,000 bulls in the training pop-
ulation (accuracies were .0.9), and enlarging the training
population by adding cows with their own phenotypes
resulted in only a minor increase in accuracy.

The potential accuracies for the human scenario where
a population of African descent was added to a training

population of European descent to predict the genetic risk of
individuals from theEuropeanpopulation are shown inFigure
6, with different numbers of individuals from the African
population added to the training population and different
values for Me across the populations. Figure 6 shows that
whenMe across the two populations was low, adding individ-
uals from another population could substantially improve the
accuracy of predicting genetic risk. When the Me across
the two populations was large (.20 times the Me within
the European population), adding individuals from the other
population resulted in only a minor increase in accuracy. This
indicates that to improve the accuracy of predicting genomic
values, using training individuals from populations that are
more closely related and have a more consistent LD pattern,
resulting in lower values for Me across populations, is more
beneficial than using training individuals from populations
that are only distantly related.

Discussion

In this article, a deterministic equation was derived using
population parameters to predict the accuracy of genomic
values when different populations are combined in the train-
ing population. The equation was able to accurately predict
the accuracy of multienvironment and multitrait genomic

Figure 3 Predicted and empirical accuracies of genomic prediction (6SEs), using a single-trait model, one or multiple populations in the training
population, QTL sampled with a low minor allele frequency (MAF) and assuming in the prediction equation that all genetic variance in the predicted
population was captured by the SNPs in the training population. The different scenarios represent the different genetic correlations and heritabilities
used to simulate phenotypes. The scenarios starting with HOM have homogeneous variances in both training populations, and the scenarios starting
with HET have heterogeneous variances. For each scenario, HOM or HET is followed by the genetic correlation between populations 1 and 3 and the
genetic correlation between populations 2 and 3.
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prediction when the proportion of the genetic variance in the
predicted population captured by the SNPs in the training
population was known and taken into account. In addition to
being able to deal with differences in heritability in each
population and genetic correlations between populations
different from 1, the equation can in principle handle data
from more divergent populations, such as populations from
different environments, breeds, or lines. The proportion of the
genetic variance captured by the SNPs can, however, be
expected to be lower across more divergent populations, as
is discussed later. To confirm that the equation indeed gives
accurate predictions for those other scenarios when the pro-
portion of the genetic variance captured by the SNPs is

known, further validation of the equation is required, using
a broader range of populations, preferably with real genotype
and phenotype information.

Potential of the derived equation

The equation gives insight into important parameters for
multipopulation genomic prediction and can be used to com-
pare different scenarios. The equation, for example, shows
that when theMe across populations is two times higher than
Me within a population, two times more individuals from the
other population have to be added to obtain the same in-
crease in accuracy when the heritabilities are the same, the
genetic correlation between populations is 1, and all genetic

Figure 4 (A and B) Predicted and empirical accuracies of genomic prediction (6SEs), using a training population consisting of two populations and QTL
(A) randomly sampled or (B) with a low minor allele frequency and accounting for the proportion of genetic variance in the predicted population
captured by the SNPs in the training population in the prediction equation. Empirical accuracies were obtained with either a single-trait model or a
multitrait model. The different scenarios represent the different genetic correlations and heritabilities used to simulate phenotypes. The scenarios starting
with HOM have homogeneous variances in both training populations, and the scenarios starting with HET have heterogeneous variances. For each scenario,
HOM or HET is followed by the genetic correlation between populations 1 and 3 and the genetic correlation between populations 2 and 3.
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variance can be captured. When these last criteria are not
met, even more individuals from the other population have
to be added to obtain the same increase in accuracy.

The equation can also be used to investigate the potential
accuracy of different scenarios, as was done in Figure 5 and
Figure 6. In Figure 6, the equation was applied to a scenario
where human populations of European and African descent
were combined in one training population to predict schizo-
phrenia risk for the European population, a scenario that was
suggested by De Candia et al. (2013). The results show that
when the LD pattern is very different across populations,
resulting in a high Me across populations, it is very unlikely
to see an increase in prediction accuracy, even when a lot of
individuals from the other population are added. Moreover,
they show that the sensitivity of the accuracy for Me is much
smaller at larger values ofMe across populations compared to
small values of Me, which is in agreement with the results
found within a population (Brard and Ricard 2015). Evalua-
tion of such scenarios requires that estimates for the input
parameters, such as the Me across predicted and training
populations, the heritability of the trait in each of the training
populations, the genetic correlations between the popula-
tions (rG), and the part of the genetic variance in the pre-
dicted population captured by the SNPs in the training
population (rLD), should, however, be known. Apart from

the heritability, for which estimates are straightforward to
calculate, each of the input parameters and how to estimate
values for those parameters are discussed in more detail in
the following paragraphs.

Effective number of chromosome segments (Me)

In the derived prediction equation, Me across populations is
an important parameter. This parameter can be interpreted as
a statistical concept and represents the effective number of
segments that are segregating in a combined population,
which is a measure for the effective number of effects that
has to be estimated in one population to predict genomic
values for individuals from another population. It depends
on the consistency in LD between the populations; when the
LD pattern is completely different between the populations,
each of the segments has to be very small to segregate in both
populations, resulting in a large Me across the populations.

It is of note that the derived equation assumes that Me

segments are underlying the trait and that each segment
explains an equal amount of the genetic variance. This indi-
cates that the equation is basically assuming an infinitesimal
model. The GBLUP model also assumes an infinitesimal
model, and therefore theMe represents the number of effects
that have to be estimated in a GBLUP model and the pre-
diction equation is able to accurately predict the accuracy
from a GBLUP type of model. In a Bayesian variable selection

Figure 5 Predicted accuracies with different numbers of individuals from
population 2 added to a training population consisting of 10,000 individ-
uals from population 1 with different heritabilities for the trait. The input
parameters represent a scenario in dairy cattle where a cow population
with their own phenotypes (population 2) was added to a bull population
with estimated genetic values based on daughter information (population
1). Due to different numbers of daughters used to estimate genetic values
for the bulls, the heritability or reliability of the phenotype in population 1
ranged between 0 and 1. The heritability for the trait in population 2 was
0.05, and genetic correlations between the training populations and be-
tween both training populations and the predicted population were 1.
The values for Me were equal to the values in the simulations (Me1;3 =
1620, Me2;3 = 1694).

Figure 6 Predicted accuracies with different numbers of individuals from
population 2 added to a training population consisting of 5000 individ-
uals from population 1 with different values for the effective number of
chromosome segments, Me, across populations 1 and 2. The input pa-
rameters represent a human scenario where a population of African de-
scent (population 2) was added to a population of European descent
(population 1) to predict the genetic risk for schizophrenia in the Euro-
pean population (population 3 = population 1), with heritabilities of 0.28
in population 1 and 0.24 in population 2 and a genetic correlation of 0.66
between populations 1 and 2 (De Candia et al. 2013). The Me in pop-
ulation 1 was set to 43,000, based on the equation Me ¼ 2NeL=lnð4NeLÞ
(Goddard 2009) and an effective population size of 10,000 (McEvoy et al.
2011).
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model, the number of effects that have to be estimated can be
lower than Me for traits where the effective number of QTL
underlying that trait is lower thanMe (Daetwyler et al. 2010;
Van Den Berg et al. 2015). This indicates that when the num-
ber of QTL is substantially lower than Me and a Bayesian
variable selection model is used, the number of estimated
effects is equal to the effective number of QTL, which is the
value that should be used in the equation to predict the ac-
curacy of genomic values.

Within a population, the value for Me can be estimated
based on the effective population size (Goddard 2009; Hayes
et al. 2009b; Goddard et al. 2011), as well as using the re-
lationship matrices based on genomic information and pedi-
gree information (Goddard et al. 2011; Wientjes et al. 2013).
For the Me across populations, it is not possible to use the
equations based on effective population size and a value for
Me can be estimated based only on the genomic and pedigree
relationship matrices. In the prediction equation, however,
the Me across populations should be known for predicting
the accuracy of genetic values before individuals are geno-
typed. For these scenarios, it is possible to estimateMe based
on a small subset of individuals, for example 100 individuals
from both populations, for which pedigree and genotype in-
formation is available. Another approach would be to esti-
mate Me based on the differences between the populations,
since the value for Me across populations depends on the
strength of LD between loci (Goddard et al. 2011), which is
at least partly different across populations (Sawyer et al.
2005; De Roos et al. 2008; Veroneze et al. 2013; Wientjes
et al. 2015c). The more divergent the populations are, the
higher the value for Me across populations. In this study, the
estimated Me within a population was �1350 for all three
populations and the values for Me across populations were
�20% higher. In a study using different closely related cattle
breeds, theMe values across populations were reported to be
�10 times larger thanMe within a population (Wientjes et al.
2015b). This indicates that when very closely related popu-
lations are investigated, the Me across populations can be
expected to be �2 times the Me within a population. For
closely related breeds, the Me across populations can be
expected to be 10 times the Me within a population. For
distantly related populations, the value for Me across popu-
lations can be even higher.

Genetic correlation between populations (rG)

Another input parameter is the genetic correlation between
the populations, which is the correlation between the allele
substitution effects of the QTL. In a simulation study with at
least 100 individuals in each of the populations, it was shown
that this parameter can accurately be estimated using a
genomic multitrait model, where the same trait in different
populations was treated as a different trait (Wientjes et al.
2015b). For closely related populations with an overlapping
pedigree, such as populations in different countries that have
some common coancestry, the genetic correlation can also be
estimated using a pedigree relationship matrix (Schaeffer

1994). For more distantly related populations, such as differ-
ent breeds or lines, the pedigree would probably not be deep
enough to capture the relationships across populations and a
relationship matrix based on genomic information is required
(Karoui et al. 2012; Huang et al. 2014).

Genetic variance captured by the SNPs (rLD)

Results of this study show that the empirical accuracy of
genomic prediction depended on the MAF of the QTL un-
derlying the simulated trait;whenQTLhadonaveragea lower
MAF than the SNPs, the accuracy reduced. This is in agree-
ment with results of other studies using single-population or
multipopulation genomic prediction (Daetwyler et al. 2013;
Wientjes et al. 2015a). The reason for this is a decrease in the
strength of LD between QTL and SNPs when the MAF of QTL
is lower than the MAF of SNPs (Khatkar et al. 2008; Yan et al.
2009; Wientjes et al. 2015c), reducing the proportion of the
genetic variance captured by the SNPs. As stated before, the
MAF of QTL underlying complex traits is expected to be lower
than the MAF of SNPs (Goddard and Hayes 2009; Yang et al.
2010; Kemper and Goddard 2012), indicating that it is highly
likely that not all the genetic variance can be captured by the
SNPs in real data.

The square root of the proportion of the genetic variance
capturedby theSNPs is represented in the prediction equation
as rLD and depends on the density of the SNP chip, the char-
acteristics of the QTL underlying the trait, and the investi-
gated populations (Daetwyler 2009; Erbe et al. 2013). This
parameter can only be estimated based on empirical data, by
comparing the predicted and empirical accuracy. Using this
approach, rLD was estimated to be �1 when QTL were ran-
domly sampled from the SNPs and �0.85 when QTL had a
low MAF in this study. In other studies using real data, the
square of rLD, i.e., r2LD; was estimated to be �0.8, using a 50k
chip in Holstein–Friesian dairy populations for net merit
(Daetwyler 2009) and production traits (Erbe et al. 2013),
and was slightly lower in Brown Swiss dairy populations for
production traits (Erbe et al. 2013; Román-Ponce et al. 2014).
The studies estimating r2LD focused on only one population.
Across populations, the value for rLD is supposed to be lower
and depends on the number of generations since the separa-
tion of the populations; the higher the number of genera-
tions, the lower the consistency in LD (e.g., Andreescu et al.
2007; De Roos et al. 2008) and the higher the chance of QTL
segregating in only one population (Kemper et al. 2015).
Therefore, the values of

ffiffiffiffiffiffiffi
0:8

p
= 0.89 for rLD found in the

empirical studies can probably be seen as the upper limit of
rLD, which can be obtained only when the predicted and
training populations are subsets from the same population.
The more divergent the predicted and training populations
are, the lower the value of rLD and the farther away the value
is from the upper limit of rLD within a population.

Single-trait vs. multitrait model

Empirical accuracies were obtained using both a single-trait
model and amultitraitmodel. The results showed that the use

812 Y. C. J. Wientjes et al.



of a multitrait model was beneficial when the genetic correla-
tion between the two training populations and the predicted
population was different. In an empirical study with three
different chicken lines with different genetic correlations be-
tween populations, a multitrait model resulted in more or less
similar accuracies compared to a single-trait model (Huang
et al. 2014). In an empirical study with three dairy cattle
breeds, amultitrait model using estimated genetic correlations
resulted inmore or less similar accuracies compared to amulti-
trait modelwith genetic correlationsfixed at 0.95 (Karoui et al.
2012). Combining dairy cattle populations from three differ-
ent countries, however, showed a higher accuracy for a multi-
trait model compared to a single-trait model (De Haas et al.
2012). So, empirical studies have shown that multitrait mod-
els yield accuracies that are similar to or slightly higher than
those of single-trait models; however, genetic correlations
were generally estimated with large standard errors.

The observed increase in accuracy of using a multitrait
model when genetic correlations between the two training
populations and the predicted population were different can
be explained as follows. When the genetic correlations are
different, it is beneficial to take into account that estimated
SNP effects from one training population are more related to
SNP effects in the predicted population than estimated SNP
effects from the other training population. When the genetic
correlationwas the same, theuseof amultitraitmodelwasnot
beneficial, even when the genetic correlation among the
training populations was different from 1. This can be
explained by the fact that estimated SNP effects in each
of the training populations are equally related to SNP effects
in the predicted population. In the single-trait model, aver-
ages of the SNP effects in both training populations are
estimated, which have the same correlation with the SNP
effects in the predictedpopulation as the SNPeffects in each of
the training populations. Therefore, taking the genetic corre-
lation between the training populations into account had no
effect on the obtained accuracy for those scenarios.

Conclusion

A deterministic equation is derived to predict the accuracy of
genomic values when the training population comprises in-
dividuals of different populations, such as populations from
different lines or environments or populations measured
for different traits. In this study, the equation was validated
for different multienvironment and multitrait scenarios. Re-
sults showed that the accuracy of estimating genomic values
can be accurately predicted for these scenarios, provided that
the effective number of chromosome segments across pre-
dicted and training populations, the heritability of the trait in
each of the training populations, the genetic correlations
between the populations, and the proportion of the genetic
variance in the predicted population captured by the SNPs in
the training population are known. Therefore, the derived
equation can be used to investigate the potential accuracy of
differentmultipopulationgenomicprediction scenariosand to
decide on the most optimal design of training populations.
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Appendix A

Derivation Based on a Random-Effects Model

In the main text, Equation 2 and others were derived by analogy, based on the idea that the accuracy is the square root of the
proportion of variance explained by a locus. In Appendix A, we provide a proof based on first principles for estimating a random
effect.

Consider an additive trait determined byM independently segregating loci, where each locus explains an equal amount of
additive genetic variance. The total additive genetic variance equals s2

a ¼ 2M   pið12 piÞ  s2
ai ;where pi is the allele frequency at

the ith locus, ands2
ai is the variance of the average effect at that locus [this expression is valid, since pið12 piÞ  s2

ai is the same for
all loci]. Thus the variance of the average effect at a locus can be written as

s2
ai ¼

s2
a

2M   pið12 piÞ: (A1)

Since loci are independent, the effects at each of the loci can be estimated one at a time. Thus, the average effect at the ith locus
can be estimated using a random-effects model,

y ¼ ziai þ e; (A2)

in which y is anN3 1 vector with phenotypes corrected for fixed effects forN individuals, ai is a random genetic effect for locus
i, and zi is an N3 1 incidence vector with genotypes for all N individuals at locus i. Elements of zi are 02 2pi, 12 2pi, and 22
2pi for the three genotype classes, and e is a vector of residuals. Since each locus explains only a small part of the variance, the
residual variance can be approximated as s2

e ¼ s2
p 2 ðs2

a=MÞ � s2
p; where s2

p is the total phenotypic variance.
The variance of y follows from

VarðyÞ � ziz9is2
ai þ Is2

p ¼ ziz9is2
ai þ I

2pið12 piÞM   s2
ai

h2
; (A3)

in which I is an N 3 N identity matrix, and h2 is the heritability.
Following the mixed-model equations, the effect of one locus is estimated as

âi ¼
"
z9izi þ

s2
p

s2
ai

#21

z9iy ¼
"
2pið12piÞN þ s2

p   2pið12piÞM
s2
a

#21

z9iy

¼ 1
2pið12 piÞ  ðN þM=h2Þ z9iy:

(A4)

Thus the variance of the estimated effect for one locus equals

VarðâiÞ ¼ Var

 
1

2pið12 piÞ  ðN þM=h2Þ z9iy
!

¼
"

1
2pið12piÞ  ðN þM=h2Þ

#2
z9i

 
ziz9is2

ai þ I
2pið12 piÞM   s2

ai
h2

!
  zi

¼
"

1
2pið12piÞ  ðN þM=h2Þ

#2�
½2pið12piÞN�2s2

ai þ ½2pið12piÞ�2NM
�
s2
ai

�
h2
��

¼ Ns2
ai

N þM=h2
:

(A5)

With best linear prediction, the accuracy of an estimated random effect follows from the variances of the estimated and true
effects (Falconer and Mackay 1996),

reffect ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðâiÞ
VarðaiÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Ns2

ai

.
ðN þM=h2Þ

�
s2
ai

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
N þM=h2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nh2

Nh2 þM

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
s2
a
�
M
�

�
s2
a
�
M
�þ �s2

p
�
N
�

vuut ; (A6)
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where s2
a=M is the variance explained by a single locus. This result is equivalent to Equation 3 from the main text and shows

that the accuracy of an estimated gene effect follows from the proportion of variance explained by the locus.
The estimated effects can be used to calculate an estimated genomic value for individual j,

EGVj ¼ z9jâ; (A7)

in which zj is anM3 1 vector with genotypes for individual j for allM loci (modeled similarly to zi above), and â is anM 3 1
vector with estimated effects for all loci.

The true genomic value of an individual equals

TGVj ¼ z9ja; (A8)

in which a is a vector with true effects for all loci.
The accuracy of the EGV equals

rTGV;EGV ¼ CovðTGV; EGVÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðTGVÞ  VarðEGVÞp ¼ Covðz9ja; z9jâÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðz9jaÞ  Varðz9j âÞ
p ¼ z9jzj   s2

âffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z9jzjs2

a   z9jzjs
2
â

q ¼
ffiffiffiffiffiffi
s2
â

s2
a

s
¼ reffect: (A9)

This result shows that, when all loci explain an equal amount of the genetic variance, the accuracy of the EGV is equal to the
accuracy of estimating a single-locus effect.

The above represents an alternative derivation of the result of Daetwyler et al. (2008) and is conceptually simpler than the
original derivation that treats estimated gene effects as both fixed and random.

Appendix B

Deriving the Accuracy of Estimating SNP Effects in a Combined Training Population

The accuracy of the selection index, representing the accuracy of estimating the effect of one locus, can be calculated as

rHI ¼ reffect ¼
ffiffiffiffiffiffiffiffi
b9g
s2
H

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g9P21g�
s2
aC

�
M
�

vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
rGA;C

saA
M

rGB;C

saB
M

	 s2
aA
M

þ s2
pA

NA
rGA;B

saAsaB
M

rGA;B

saAsaB
M

s2
aB
M

þ s2
pB

NB

2
666664

3
777775

21

rGA;C

saA
M

rGB;C

saB
M

2
664

3
775M

vuuuuuuuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
rGA;C

saAffiffiffiffiffi
M

p rGB;C

saBffiffiffiffiffi
M

p
	 s2

aA
M

þ s2
pA

NA
rGA;B

saAsaB
M

rGA;B

saAsaB
M

s2
aB
M

þ s2
pB

NB

2
666664

3
777775

21

rGA;C

saAffiffiffiffiffi
M

p

rGB;C

saBffiffiffiffiffi
M

p

2
6664

3
7775

vuuuuuuuut :

(B1)

For simplicity, we start by referring to thefirst element of this inversedPmatrix asA, to the off-diagonal elements asB, and to the
last element as C. Hence, Equation B1 can be written as
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reffect ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
rGA;C

saAffiffiffiffiffi
M

p rGB;C

saBffiffiffiffiffi
M

p
	
 

"
A B

B C

#
 

rGA;C

saAffiffiffiffiffi
M

p

rGB;C

saBffiffiffiffiffi
M

p

2
6664

3
7775

vuuuuuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


rGA;C

saAffiffiffiffiffi
M

p Aþ rGB;C

saBffiffiffiffiffi
M

p B
�
  rGA;C

saAffiffiffiffiffi
M

p þ


rGA;C

saAffiffiffiffiffi
M

p Bþ rGB;C

saBffiffiffiffiffi
M

p C
�
  rGB;C

saBffiffiffiffiffi
M

p
" #vuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2GA;C

s2
aA
M

Aþ 2rGB;C

saBffiffiffiffiffi
M

p rGA;C

saAffiffiffiffiffi
M

p Bþ r2GB;C

s2
aB
M

C

" #vuut :

(B2)

The inverse of the P matrix can be written as

s2
aA
M

þ s2
pA
NA

rGA;B

saAsaB
M

rGA;B

saAsaB
M

s2
aB
M

þ s2
pB
NB

2
666664

3
777775

21

¼ 1�
s2
aA

�
  M þ s2

pA

�
  NA

�
 
�
s2
aB

�
  M þ s2

pB

�
  NB

�
2
�
rGA;B ðsaAsaB=MÞ�2

s2
aB
M

þ s2
pB
NB

2rGA;B

saAsaB
M

2rGA;B

saAsaB
M

s2
aA
M

þ s2
pA
NA

2
666664

3
777775

¼

s2
aB

�
  M þ s2

pB

�
  NB�

s2
aA

�
  M þ s2

pA

�
  NA

�
 
�
s2
aB

�
  M þ s2

pB

�
  NB

�
2
�
rGA;B ðsaAsaB=MÞ�2

2rGA;B ðsaAsaB=  MÞ�
s2
aA

�
  M þ s2

pA

�
  NA

�
 
�
s2
aB

�
  M þ s2

pB

�
  NB

�
2
�
rGA;B ðsaAsaB=  MÞ�2

2rGA;B ðsaAsaB=  MÞ�
s2
aA

�
  M þ s2

pA

�
  NA

�
 
�
s2
aB

�
  M þ s2

pB

�
  NB

�
2
�
rGA;B ðsaAsaB=  MÞ�2

s2
aA

�
  M þ s2

pA

�
  NA�

s2
aA

�
  M þ s2

pA

�
  NA

�
 
�
s2
aB

�
  M þ s2

pB

�
  NB

�
2
�
rGA;B ðsaAsaB=  MÞ�2

2
66666664

3
77777775
:

(B3)

Hence, Equation B2 can be written as

reffect ¼


r2GA;C

�
s2
aA

�
M
��

s2
aB

�
M þ s2

pB

�
  NB

�
22rGB;C

�
saB
� ffiffiffiffiffi

M
p �

rGA;C

�
saA
� ffiffiffiffiffi

M
p �

rGA;B ðsaAsaB=  MÞ þ r2GB;C

�
s2
aB

�
  M
��

s2
aA

�
  M þ s2

pA

�
NA

�
�
s2
aA

�
  M þ s2

pA

�
  NA

��
s2
aB

�
  M þ s2

pB

�
  NB

�
2
�
rGA;B ðsaAsaB=  MÞ�2

vuuut : (B4)

Dividing both the numerator and the denominator by s2
pA

and s2
pB

results in

reffect ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2GA;C

h2A
M

 
h2B
M

þ 1
NB

!
2 2rGB;C

ffiffiffiffiffi
h2B

q
ffiffiffiffiffi
M

p rGA;C

ffiffiffiffiffiffi
h2A

q
ffiffiffiffiffi
M

p rGA;B

ffiffiffiffiffiffi
h2A

q ffiffiffiffiffi
h2B

q
M

þ r2GB;C

h2B
M

 
h2A
M

þ 1
NA

!
 
h2A
M

þ 1
NA

! 
h2B
M

þ 1
NB

!
2 rGA;B

ffiffiffiffiffiffi
h2A

q ffiffiffiffiffi
h2B

q
M

0
@

1
A2

vuuuuuuuuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"
rGA;C

ffiffiffiffiffiffi
h2A
M

r
rGB;C

ffiffiffiffiffi
h2B
M

r # h2A
M

þ 1
NA

rGA;B

ffiffiffiffiffiffiffiffiffiffiffiffi
h2A   h

2
B

q
M

rGA;B

ffiffiffiffiffiffiffiffiffiffiffiffi
h2A   h

2
B

q
M

h2B
M

þ 1
NB

2
66666664

3
77777775

21

rGA;C

ffiffiffiffiffiffi
h2A
M

r

rGB;C

ffiffiffiffiffi
h2B
M

r

2
666664

3
777775

vuuuuuuuuuut
:

(B5)

Since each locus is assumed toexplain anequal amountof thegenetic variance, the accuracyof estimating the effect of oneSNP is
the same for each of the SNPs and represents the overall accuracy of estimating SNP effects (reffect).
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Appendix C

Alternative Way of Deriving the Prediction Equation

In this section, an alternative derivation of the prediction equation is presented. In this derivation, the estimated genomic values
for population C based on two different training populations (population A and population B) are combined in a selection index
to calculate the estimated genomic values for population Cwhen the two populations are combined in one training population.
The estimated genomic value for individual i from population C (EGVA;Ci) can be calculated using the estimated marker effects
in a training population of population A, following

EGVA;Ci ¼ rGA;C

X
j
XCi;j b̂Aj

; (C1)

inwhich rGA;C is the genetic correlation between populationsA andC,XCi;j is the genotype of individual i frompopulationC formarker
j, and b̂Aj

is the estimated effect of marker j in population A. In an equivalent way, the estimated genomic value for individual i from
population C can be calculated using the estimated marker effects in a training population of population B, i.e., EGVB;Ci :

Both estimated genomic values, EGVA;Ci and EGVB;Ci ; can be combined in a selection index to estimate the genomic value for
individual i from population Cwhen both populations A and B are combined in the training population (EGVAþB;Ci), following

EGVAþB;Ci ¼ bAEGVA;Ci þ bBEGVB;Ci ; (C2)

in which bA and bB are the regression coefficients on EGVA;Ci and EGVB;Ci to predict the estimated genomic value for individual
i from population C for the combined training population (EGVAþB;Ci).

The regression coefficients on EGVA;Ci and EGVB;Ci that would maximize the estimation of the genomic value for individual
i from population C can be calculated as

b ¼
�
bA
bB

	
¼ P21g; (C3)

in which P is the (co)variance matrix between the information sources EGVA;Ci and EGVB;Ci ; and g is a vector with covariances
between the information sources, EGVA;Ci and EGVB;Ci ; and the true genomic value for individual i from population C (TGVCi):

P ¼
�

VarðEGVA;CiÞ CovðEGVA;Ci;EGVB;CiÞ
CovðEGVA;Ci ;EGVB;CiÞ VarðEGVB;CiÞ

	
(C4)

and

g ¼
�
CovðEGVA;Ci ;TGVCiÞ
CovðEGVB;Ci ;TGVCiÞ

	
: (C5)

In the following part, we assume that the variances of the estimated and true genomic values are scaled, such that the true
genomic values in population C have a variance of 1. The variance of the estimated genomic values for population C using
population A in the training population is then equal to the reliability of predicting genomic values for population C:

VarðEGVA;CiÞ ¼ r2EGVA;C
: (C6)

The covariance between EGVA;Ci and EGVB;Ci can be written as

Cov
�
EGVA;Ci ;EGVB;Ci

� ¼ Cov

 
rGA;C

X
j
XCi;j b̂Aj

; rGB;C

X
j
XCi;j b̂Bj

!
¼ rGA;C rGB;CCov

 X
j
XCi;j b̂Aj

;
X
j
XCi;j b̂Bj

!

¼ rGA;C rGB;CCov

 X
j

b̂Aj
;
X
j

b̂Bj

!
: (C7)

The covariance between the marker effects estimated in population A and B can be written as
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Cov

 X
j
b̂Aj

;
X
j
b̂Bj

!
¼ rb̂Aj

;b̂Bj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðb̂Aj

ÞVarðb̂Bj
Þ

q
: (C8)

Using the path coefficient method as described by Dekkers (2007), it can be shown that the correlation between the estimated
marker effects is equal to

rb̂Aj
;b̂Bj

¼ rGA;B reffectA reffectB ; (C9)

in which rGA;B is the genetic correlation between populations A and B, and reffectA and reffectB are the accuracies of estimating the
marker effects in, respectively, populations A and B. The square root of the variance of the estimated marker effects in each of
the populations is equal to the accuracy of the estimated marker effects; i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðb̂Aj

Þ
q

¼ reffectA ; therefore

Cov

 X
j

b̂Aj
;
X
j

b̂Bj

!
¼ rGA;B reffectA reffectB reffectA reffectB ¼ rGA;B r

2
effectAr

2
effectB (C10)

and

Cov
�
EGVA;Ci ; EGVB;Ci

� ¼ rGA;C rGB;C rGA;B r
2
effectA r

2
effectB : (C11)

The accuracy of estimating marker effects in population A multiplied by the genetic correlation between populations A and C
equals the accuracy of the estimated genomic values, i.e., rEGVA;C ¼ rGA;C rEffectA ; under the assumption that all genetic variance of
the predicted population is captured by the training populations. Hence, the covariance can be written as

Cov
�
EGVA;Ci ;EGVB;Ci

� ¼ rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

: (C12)

Hence, P can be written as

P ¼
r2EGVA;C

rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

r2EGVB;C

2
666664

3
777775: (C13)

The covariance between the estimated genomic values for individual i from population C using population A as the training
population is also equal to the reliability of predicting genomic values for population C; i.e., CovðEGVA;Ci ;TGVCiÞ ¼ r2EGVA;C

:

Hence, g can be written as

g ¼
"
r2EGVA;C

r2EGVB;C

#
: (C14)

Since it is assumed that the variance of the true genomic values in populationC is scaled to 1, the accuracy of this selection index,
representing the accuracy of estimating genomic values for population C based on a training population of population A and B,
can be calculated as

rEGVAþB;C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g9P21g�
s2
aC

�
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g9P21g

p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
r2EGVA;C

r2EGVB;C

i
   

r2EGVA;C
rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

r2EGVB;C

2
6666664

3
7777775

21

   

2
4 r2EGVA;C

r2EGVB;C

3
5

vuuuuuuuuut
:

(C15)
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For simplicity, we start by referring to the first element of matrix P21 as A, to the off-diagonal elements as B, and to the last
element as C. Hence, Equation C15 can be written as

rEGVAþB;C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
r2EGVA;C

r2EGVB;C

i
 

�
A B
B C

	
 

"
r2EGVA;C

r2EGVB;C

#vuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2EGVA;C

Aþ r2EGVB;C
BÞr2EGVA;C

þ ðr2EGVA;C
Bþ r2EGVB;C

CÞr2EGVB;C

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4EGVA;C

Aþ 2r2EGVB;C
Br2EGVA;C

þ r4EGVB;C
C

q
:

(C16)

The matrix P21 can be written as

r2EGVA;C
rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

r2EGVB;C

2
6666664

3
7777775

21

¼ 1

r2EGVA;C
r2EGVB;C

2

 
rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

!2

r2EGVB;C
2rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

2rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

r2EGVA;C

2
6666664

3
7777775

¼

r2EGVB;C

r2EGVA;C
r2EGVB;C

2

 
rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

!2

2rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

r2EGVA;C
r2EGVB;C

2

 
rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

!2

2rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

r2EGVA;C
r2EGVB;C

2

 
rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

!2

r2EGVA;C

r2EGVA;C
r2EGVB;C

2

 
rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

!2

2
666666666666666664

3
777777777777777775

:

(C17)

Hence, Equation C16 can be written as

rEGVAþB;C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4EGVA;C

r2EGVB;C
2 2r2EGVB;C

rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

r2EGVA;C
þ r4EGVB;C

r2EGVA;C

r2EGVA;C
r2EGVB;C

2

 
rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

!2

vuuuuuuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2EGVA;C

2 2rGA;B

r2EGVA;C
r2EGVB;C

rGA;C rGB;C

þ r2EGVB;C

12 r2GA;B

r2EGVA;C
r2EGVB;C

r2GA;C
r2GB;C

vuuuuuuut :

(C18)
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If we assume that all genetic variance in population C can be captured by the SNPs in the training population, the accuracies for
each of the populations can be replaced by the corresponding equation to predict the accuracy of genomic prediction
(Daetwyler et al. 2008, 2010; Wientjes et al. 2015b):

rEGVA;C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2GA;C

h2ANA

h2ANA þMeA;C

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2GA;C

h2A
MeA;C

h2A
MeA;C

þ 1
NA

vuuuuuut (C19)

and

rEGVB;C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2GB;C

h2B
MeB;C

h2B
MeB;C

þ 1
NB

vuuuuuut : (C20)

Using this in Equation C18 results in

rEGVAþB;C

¼



r2GA;C

h2A
MeA;C

h2A
MeA;C

þ 1
NA

0
BBB@

1
CCCA2 2rGA;B

r2GA;C

h2A
MeA;C

h2A
MeA;C

þ 1
NA

0
BBB@

1
CCCAr2GB;C

h2B
MeB;C

h2B
MeB;C

þ 1
NB

0
BBB@

1
CCCA
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:

(C21)

Multiplying both the numerator and the denominator by ðh2A=MeA;C þ 1=NAÞ and ðh2B=MeB;C þ 1=NBÞ results in
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: (C22)

This last equation is equivalent to the equation derived before, using the same assumption that all genetic variance of the
predicted population is captured by the SNPs in the training populations.

Multipopulation Genomic Prediction 823


