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Abstract

In association studies of quantitative traits, the association of each genetic marker with the trait of 

interest is typically tested using the F-test assuming an additive genetic model. In practice, the true 

model is rarely known, and specifying an incorrect model can lead to a loss of power. For case-

control studies, the maximum of test statistics optimal for additive, dominant, and recessive 

models has been shown to be robust to model mis-specification. The approach has later been 

extended to quantitative traits. However, the existing procedures assume that the trait is normally 

distributed and may not maintain correct type-I error rates and can also have reduced power when 

the assumption of normality is violated. Here, we introduce a maximum (MAX3) test that is based 

on ranks and is therefore distribution-free. We examine the behavior of the proposed method using 

a Monte-Carlo simulation with both normal and non-normal data and compare the results to the 

usual parametric procedures and other nonparametric alternatives. We show that the rank-based 

maximum test has favorable properties relative to other tests, especially in the case of symmetric 

distributions with heavy tails. We illustrate the method with data from a real association study of 

symmetric dimethylarginine (SDMA).
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1 Introduction

Genetic association studies - which test for correlation between genetic markers, such as 

single nucleotide polymorphisms (SNPs), and a disease or a quantitative trait - have been a 

useful tool in identifying susceptibility loci for common diseases and traits (Hindorff et al. 

2009). The analysis of such studies often requires specifying the genetic inheritance model, 

that is, the relationship between genotype and disease risk or mean value of the trait 

(Balding, 2006). Three of the models commonly used to describe genotype-trait relationship 

are additive, dominant, and recessive. When the true underlying model is known, powerful 

methods are available to detect the association (Sasieni, 1997; Zheng et al., 2003). In 

practice, the genetic model is rarely known a priori. For example, in genome-wide 

association studies (GWAS) that screen hundreds of thousands of genetic markers, different 
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patterns of association could be observed at different loci. In the absence of knowledge of 

the true model, most GWA studies perform the analysis using the additive model, that is, 

assuming mean genotype effect is proportional to the number of copies of the variant allele 

(0, 1, or 2). Tests based on the additive model, however, can be inefficient for detecting 

dominant or recessive effects and could miss true-positive signals (Freidlin et al., 2002; 

Zheng et al., 2006). Thus, procedures that have high power for a wide range of genetic 

models are desirable.

To overcome model uncertainty, one simple approach is to compare mean genotype effects 

using standard statistical procedures such as the one-way analysis of variance. This method 

is robust in a sense that it does not assume any particular model (i.e., is model-free), but it is 

less powerful than tests tailored to a specific model (Balding, 2006). Further, it can give rise 

to spurious associations, detecting non-monotonic patterns that are not consistent with 

commonly observed inheritance modes. Several intermediate procedures that restrict the 

alternative space to a range of plausible genetic models have been developed for genetic 

studies, with early work focusing primarily on dichotomous outcomes (reviewed in Joo et 

al., 2010; Bagos, 2013). Freidlin et al. (2002) proposed two efficiency robust tests: one 

based on the linear combination (maximin efficiency robust test, MERT), the other on the 

maximum (MAX3) of Cochran-Armitage trend tests (Cochran, 1954; Armitage, 1955) 

optimal for different genetic models. They found that MAX3 was generally more powerful 

than the MERT. Several authors applied a similar approach to case-control studies, with 

significance of MAX3 assessed by permutation (Sladek et al., 2007), trivariate integration 

(González et al., 2008), or analytical approximation (Li et al., 2008). Zang et al. (2010) 

developed an efficient algorithm for computing the null distribution of MAX3 and 

implemented their methods in the R package Rassoc. Other authors considered the 

minimum of the p-values for the additive and the general 2-df (genotype-based) model as a 

test criterion (Wellcome Trust Case Control Consortium, 2007; Joo et al., 2009).

So and Sham (2011) extended the robust MAX3 approach to allow for quantitative traits and 

covariates. Their method is based on score tests in the framework of generalized linear 

models, and is implemented in the R package RobustSNP. Score tests are computationally 

faster than likelihood ratio tests; however, they do not provide the estimates of regression 

coefficients. Wang and Sheffield (2005) developed the constrained likelihood ratio test 

(CLRT) for both continuous and binary traits, in which the effect of the heterozygous 

genotype (1 variant allele) was restricted to be intermediate between the effects of the two 

homozygous genotypes (0 or 2 alleles). Lettre et al. (2007) used the maximum of F-tests 

optimal for different genetic models as a robust approach to quantitative trait association, 

but they relied on a computationally intensive permutation procedure to determine the 

significance of the test. Recently, Qu (2014) developed a robust combination approach 

based on an approximate joint distribution of several transformed F-tests, which avoided the 

computational burden of permutation testing and had the added advantage of allowing for 

covariates and the inclusion of tests with different degrees of freedom.

One limitation of the existing methods for quantitative trait association is the assumption 

that the within-genotype distributions of the trait are normal. In practice, many traits studied 

in genetics are markedly non-normal. Furthermore, modern genetic studies often examine 
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hundreds of different traits simultaneously, so the exact distribution of each trait may be 

difficult to assess. For instance, in studies mapping expression quantitative trait loci (eQTL), 

the expression levels of thousands of genes, each treated as a quantitative trait, are tested for 

association with genetic markers. Given the large number of traits, robust screening tools 

that do not assume a particular shape of the distribution should be superior to normal theory 

tests. Many alternatives to the usual parametric procedures exist in statistical literature. For 

example, Kozlitina (2008) previously showed that a classic rank test for trend, Jonckheere-

Terpstra (Jonckheere, 1954; Terpstra, 1952), had optimal properties for testing the 

association under an additive model. Similarly, the Fligner-Wolfe test (Fligner and Wolfe, 

1982) was optimal for testing the association under dominant/recessive models. In the 

current paper, we consider the maximum of the above rank tests to create a robust 

distribution-free test for quantitative trait association. We derive the null correlations among 

the three rank tests and show that those are equivalent to correlations among model-based 

Cochran-Armitage and F-tests. Thus, previous results from the literature on efficiency 

robust tests can be applied to construct a rank-based MAX3 test.

An alternative approach to deal with non-normal data is to apply a transformation, such as a 

logarithm or a square root transformation, in order to achieve more normally distributed 

residuals. One method, in particular, that is increasingly being used in genetic studies, is to 

apply an inverse normal transformation (INT), or a normal scores transformation, to trait 

values before performing standard parametric tests of association (Scuteri et al., 2007; 

O’Donnell et al., 2011; Kettunen et al., 2012; Seppälä et al., 2014). Although this approach 

ensures that the marginal distribution of the trait is nearly normal, as noted by Beasley et al. 

(2009), the statistical properties of parametric tests based on INT have not been explored in 

the context of genetic studies, especially when compared to other nonparametric 

alternatives. As early as 1960, Hodges and Lehmann examined two-sample tests based on 

ranks and on normal scores and showed that while the normal scores tests might be 

preferable for distributions with a density that drops discontinuously to zero at one extreme, 

such as the exponential distribution, rank-based procedures could be more efficient for 

symmetric distributions with heavy tails, such as a normal distribution contaminated by 

gross outliers. Similar results were obtained by Knoke (1991) for the analysis of covariance. 

Other studies have found that the normal scores tests may not maintain correct type I error 

rate when the assumption of equal variance is violated (Pratt, 1964). Here, we compare the 

performance of the usual rank tests to those based on the inverse normal transformation 

under different distributions and in a situation typical of a genetic association study (i.e., 

unequal sample sizes for the three genotype classes).

In the next sections, we first examine the correlations among test statistics optimal for the 

three genetic models as a function of marker allele frequency and quantify the amount of 

efficiency lost due to model misspecification. We next investigate the size and power of 

rank tests and normal theory tests, applied to raw data and normal scores, through a 

simulation study under both normal and non-normal distributions. Finally, we demonstrate 

the method using the data from a real genetic association study of symmetric 

dimethylarginine (SDMA).
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2 Methods

2.1 Notation and Hypothesis

Consider a genetic association study with N individuals and a biallelic marker (e.g., a SNP) 

having alleles A and B with population frequencies pA = p and pB = 1 − p, respectively. 

Assume, without loss of generality, that A is the less common allele. There are three possible 

genotypes at this marker locus: g0 = BB, g1 = BA, and g2 = AA, indexed by i = 0, 1, 2, i.e., 

the number of copies of the less common allele. Denote the population frequencies of the 

three genotypes by p0 = Pr(BB), p1 = Pr(BA), and p2 = Pr(AA). Assuming the population is 

in Hardy-Weinberg equilibrium (HWE), the genotype frequencies depend on the allele 

frequencies: p0 = (1−p)2, p1 = 2p(1−p), p2 = p2. We note that the assumption of HWE is not 

required for the methods examined in this paper, but is used here to describe the expected 

relationship between genotype and allele frequencies in population-based genetic studies. 

Let n0, n1, n2 be the observed numbers of individuals with each genotype (n0 + n1 + n2 = N). 

In a random sample from the general population, the genotype counts (n0, n1, n2) will follow 

a multinomial distribution, Mul(N; p0, p1, p2).

Let Yij, i = 0, 1, 2, j = 1, 2,..., ni be the measured outcome for individual j with genotype gi, 

and assume that Yij have absolutely continuous distribution functions Fi(y) = F(y−μi), which 

differ at most in their location parameter, μi (mean or median). When there is no association 

between the genotype and the trait, the distributions, Fi, are equal; thus, the null hypothesis 

is H0 : μ0 = μ1 = μ2. Under the alternative, it is natural to expect a monotonic trend in the 

means (medians) against the number of copies of the A allele, that is, H1 : μ0 ≤ μ1 ≤ μ2 or μ0 

≥ μ1 ≥ μ2 with at least one strict inequality. We note that the alternative H1 is quite general 

and includes the commonly assumed genetic models: dominant (μ0< μ1 = μ2), recessive (μ0 

= μ1< μ2), or additive (μ1 = (μ0 + μ2)/2) as special cases.

2.2 Parametric Tests of Association

2.2.1 Model-Based Statistics—When Yij are normally and independently distributed 

about the means μi, with common, but unknown, variance σ2, the most general method for 

testing the association is the one-way analysis of variance F-test on 2 and N−3 degrees of 

freedom (df), which compares H0 to the alternative  for some i ≠ i′. If the true 

mode of inheritance is known, however, a more powerful approach can be developed by 

viewing the problem as one of linear regression:

where xi are the scores assigned to genotypes gi, and β is the allelic effect. The null and 

alternative hypotheses can be stated equivalently as H0 : β = 0 versus H1 : β ≠ 0, and the test, 

for a given set of scores, is based on the statistic:

(1)

Kozlitina and Schucany Page 4

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where ȳi = Σjyij/ni, ȳ = Σi,jyij/Σi ni, x̄ = Σi nixi/Σini, and σ̂ is the within-group standard 

deviation. Under H0, T follows a t-distribution with N−2 df, and is approximately standard 

normal in large samples. Equivalently, the test can be based on the criterion T2, which 

follows an F-distribution with 1 and N−2 df.

The choice of the scores depends on the assumed genetic inheritance model. Intuitively, for 

a given model, the scores should have the same pattern as the means. In fact, the power of 

the regression test is a function of the Pearson’s correlation coefficient between the scores xi 

and the means μi, and is maximized when the correlation is unity (Abelson and Tukey, 

1963). Therefore, the optimal scores for the three commonly used models (dominant 

(DOM), recessive (REC), and additive (ADD)) are: xDOM = (0, 1, 1), xREC = (0, 0, 1), and 

xADD = (0, 1, 2). Note that the scores are invariant under linear transformations, i.e., the 

coding xADD = (0, 1/2, 1) is equivalent to xADD = (0, 1, 2). Under the dominant (recessive) 

models, the genotypes g1 and g2 (g0 and g1) are grouped together, so the regression test 

reduces to a two-sample t-test. When the scores are specified correctly, the 1-df (regression-

based) test is more powerful than the 2-df (ANOVA) F-test.

2.2.2 Correlations and Relative Efficiency of Association Test Statistics—When 

the true inheritance pattern is unknown and the scores are misspecified, a loss in power can 

occur. To quantify the magnitude of the loss, we shall consider pairwise asymptotic relative 

efficiency (ARE) of model-based tests (defined as the limit of the reciprocal of the ratio of 

sample sizes required by a pair of tests to achieve the same power for the same alternative 

hypothesis) (Noether, 1955). It is well known that under certain regularity conditions the 

ARE of a test T1 compared to a test T2 when T2 is optimal, e(T1, T2), is equal to the square 

of the correlation coefficient between their test statistics (van Eeden, 1963). In large 

samples, the correlation coefficient under H0 between two statistics of the form (1) with 

model scores xi and , respectively, is equal to the correlation coefficient between the 

corresponding scores,

(2)

which for the three genetic models can be shown to be a function of sample sizes only 

(Appendix A):

(3)

Perhaps, not surprisingly, these correlations are equivalent to those derived by Freidlin et al. 

(2002) in the context of a logistic regression model (with observed genotype frequencies ni 

replaced by their expectations, Npi). It is instructive to examine the size of these correlations 

and the relative efficiency of the three tests as a function of allele frequency. For the 
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purposes of demonstration, we shall assume that for each p the genotype counts are in 

Hardy-Weinberg proportions, i.e., (n0, n1, n2) = N{(1−p)2,2p(1−p), p2}.

Figure 1 shows pairwise asymptotic relative efficiency of the test statistics for the three 

genetic models as a function of allele frequency, p. As the figure illustrates, the test statistics 

for the dominant and additive (DOM, ADD) models are strongly correlated over a wide 

range of allele frequencies (red solid curve). Hence, assuming an additive model, while the 

true effect is dominant, will not lead to a great loss in efficiency unless the allele is very 

common. For example, for p < 0.3, a regression test based on additive scores will be at least 

80% as efficient as the test based on dominant scores when the true model is dominant (and 

vice versa). For very common alleles (p = 0.5), however, a test based on additive scores is 

only 67% as efficient as the optimal test when the true effect is dominant, meaning that one 

would need to increase the sample size by about 50% to achieve the same power as with an 

optimal test. On the other hand, as one can see from the blue dotted curve (ADD, REC), 

assuming an additive model when a recessive model is true, can lead to a substantial loss of 

efficiency. For example, the efficiency of a test based on additive scores to detect the 

recessive effects is at most 67% when p = 0.5 and substantially lower for less common 

alleles. Finally, examining the black dashed curve (REC, DOM) demonstrates that the 

efficiency of a test based on recessive scores while the dominant model is true, or vice versa, 

does not exceed 11%. These results suggest that compared to the common approach of 

assuming an additive model, we may expect robust tests to be especially useful for detecting 

the dominant effects of common alleles (p > 0.3) and, in particular, for detecting purely 

recessive effects at any allele frequency.

2.2.3 Robust Tests for Genetic Association—Since in most situations the true 

inheritance pattern is unknown, tests that have good power properties across a wider range 

of genetic models are needed. Such procedures are in general called efficiency robust 

(Gastwirth, 1985) and can often be constructed as a combination of the optimal test statistics 

for a family of plausible models generating the data. Here we briefly review two efficiency 

robust methods: the maximin efficiency robust test (MERT) and the maximum (MAX3) test 

(Freidlin et al., 2002).

For a family of M plausible data-generating models, with corresponding optimal 

(asymptotically most powerful) test statistics, Tk, k = 1,..., M, the test is called maximin 

efficiency robust (MERT) if it achieves higher minimum efficiency relative to the optimal 

test for each model in the family than any other test (Gastwirth, 1985; Freidlin et al., 1999). 

In other words, it maintains higher power than any other test, Tk, when the model is 

misspecified (within a specified family of M models). Assume that under the null hypothesis 

each Tk is asymptotically normally distributed - that is, Zk = [Tk−E(Tk)]/Var1/2(Tk) converges 

in law to N(0,1), where E(Tk) and Var(Tk) are the mean and variance of Tk - and that the set 

of statistics {Zk} is asymptotically jointly normally distributed with an asymptotic 

correlation matrix {ρkl}, ρkl ≥ 0. The MERT can often be obtained as a linear combination of 

the tests for the two most divergent models in the family, i.e., models with the least 

correlation coefficient between their optimal test statistics, ρ* = infk,l ρkl.
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For the family of three genetic models (M = 3) with regression statistics {TADD, TDOM, 

TREC}, which are jointly asymptotically normally distributed with the null correlations given 

in (3), the dominant and recessive models are the most extreme pair, i.e., ρ* = cor(TDOM, 

TREC) (Freidlin et al. 2002), and the MERT is given by:

(4)

A necessary and sufficient condition that ZMERT is also the MERT for the entire family of 

models is that

This condition is satisfied for the family of genetic models (Freidlin et al. 2002). Since 

ZMERT is a linear combination of two asymptotically normal statistics, it is asymptotically 

normally distributed with mean 0 and variance 1, and achieves maximin efficiency (1 

+cor(TDOM, TREC))/2.

Perhaps a more intuitive approach is to calculate the test statistics for all three models and to 

use the maximum of three standardized statistics, ZMAX = max{|ZADD|, |ZDOM|, |ZREC|}, as a 

test criterion. Since the direction of the association is not known a priori, the maximum is 

taken over the absolute values of the model-based statistics. The significance probabilities of 

the MAX3 statistic can be obtained by noting that

where ϕ is a trivariate normal density with mean 0 and covariance matrix Σ. The integral 

can be evaluated numerically using computer routines for multivariate normal distribution 

implemented in mvtnorm package in R.

Since the maximum test relies on numerical integration, it is more computationally 

burdensome than the simpler MERT, however is often more powerful. Gastwirth (1985) 

noted that the relative performance of MERT depends on the correlation between the 

extreme pair of statistics, ρ*, through its maximin efficiency (1 + ρ*)/2. When the minimum 

correlation coefficient is low, MERT may perform poorly relative to other tests. Freidlin et 

al. (1999) showed that when ρ*< 0.6, the MAX3 test is more powerful than MERT, but 

when ρ*> 0.7 the two tests performed equivalently. Assuming Hardy-Weinberg equilibrium 

holds, and setting the observed genotype counts to their expectations,
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The quantity on the right-hand side is monotonically increasing in p on the interval (0,0.5], 

with a maxp ρ* = ρ* (0.5) = 0.33 (Figure 1). Even if HWE does not hold, however, one can 

show that as long as n1 ≥ min{n0, n2} - that is, when there is no deficiency of heterozygotes 

- ρ* will not exceed 0.7. Consequently, for the family of three genetic models, the MAX3 

test should always be preferable to MERT, and we focus on the MAX3 approach in the 

remainder of the paper.

2.3 Distribution-Free Tests for Genetic Association

When the within-genotype distribution of the quantitative trait is non-normal, tests that do 

not assume normality can often achieve higher power than normal theory tests, while 

preserving the nominal type I error rate. Here, we review the available nonparametric 

procedures for testing the equality of k location parameters and then apply the principles of 

the previous section to develop a robust rank-based approach to quantitative trait 

association.

2.3.1 Jonckheere-Terpstra and Modified Jonckheere-Terpstra Tests for Trend
—As in the case of normal data, the most general method for testing the equality of k means, 

is the rank-based analogue of the one-way analysis of variance, the Kruskal-Wallis (KW) 

test. A more powerful procedure can be obtained, though, when the ordering of the means is 

known. Perhaps the most well-known procedure for testing a monotonic trend in k means, is 

the distribution-free test proposed independently by Jonckheere (1954) and Terpstra (1952). 

The Jonckheere-Terpstra (JT) test criterion is the sum of the k(k−1)/2 pairwise Mann-

Whitney U-statistics computed among the k samples,

(5)

where

Neuhäuser et al. (1998) proposed a modification of the JT test (MJT), in which the pairwise 

comparisons were weighted by the “distance” between the two samples,
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(6)

The two methods perform similarly in large samples, but the modified test was shown to be 

more powerful than the original test in small samples and somewhat more sensitive to linear 

trends. Therefore, we shall use the modified test for testing the additive genetic effects.

The mean and variance of the modified statistic under the null hypothesis can be found from 

the moments of the corresponding two-sample Mann-Whitney counts (Appendix B). In the 

case of k = 3 samples, these take an especially simple form:

The significance probabilities of the modified test can be determined from the exact 

permutation distribution of the test statistic when the sample size is small. In large samples, 

J* is approximately normally distributed, and the significance probabilities can be obtained 

by comparing ZJ* = [J*−E(J*)]/Var1/2(J*) to the standard normal distribution. To be more 

precise, a sufficient condition for the asymptotic normality of J (and hence J*) is that at least 

two groups increase without limit as N → ∞ (Jonckheere, 1954). If, on the other hand, only 

one ni tends to infinity as the total sample size increases, the limiting distribution of J will be 

platykurtic, and the procedure based on the normal approximation will tend to be 

conservative. For the case of three genotype classes in HWE, therefore, the asymptotic 

normality of the test should hold even for rare alleles, when the number of rare allele 

homozygotes is small (n2≪ n0).

2.3.2 Fligner-Wolfe Test for Simple Tree Alternatives—For comparing k treatments 

with a control, Fligner and Wolfe (1982) proposed a procedure that tests H0 against a 

partially ordered (simple tree) alternative . Their test criterion is a sum 

of k pairwise Mann-Whitney statistics comparing the control (i = 0) group to k treatment 

groups,

(7)

Note that FW is equivalent to a single Mann-Whitney-Wilcoxon test between the control 

group and the pooled data from k treatment groups. The Fligner and Wolfe test was shown 

to be more efficient than the linear trend tests for detecting concave and umbrella patterns, 

therefore it can be used for testing the association under dominant and recessive models, that 

is, FWDOM = W01 + W02 = W0(1,2) and FWREC = W02 + W12 = W(0,1)2. Under the null 

hypothesis, ZFW = [FW − E(FW)]/Var1/2(FW) is asymptotically normally distributed, with 

the mean and variance determined in the same way as for the corresponding Wilcoxon rank-

sum test (see Appendix B).
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2.3.3 Robust Rank-Based Tests for Quantitative Trait Association

Since all three statistics considered above are based on sums of pairwise Mann-Whitney 

counts, they are asymptotically normally distributed. Their correlations under the null 

hypothesis can be determined from the moments of the Mann-Whitney U-statistics. As 

shown in Appendix C, these correlations turn out to be exactly the same as those given in 

(3). Hence, provided all three sample sizes are sufficiently large, the results from the 

previous sections apply and we can obtain a distribution-free maximum (MAX3) test for 

quantitative trait association by using the maximum of the standardized rank tests {|ZJ*|, |

ZWDOM|, |ZWREC|}.

2.3.4 Association Tests Based on Inverse Normal Transformation—As Beasley 

et al. (2009) finally concluded, one should thoroughly investigate the properties of 

parametric tests based on the inverse normal transformation in the context of genetic studies. 

This approach entails first transforming trait values (possibly adjusted for covariates) to 

ranks and then transforming the ranks to quantiles of a standard normal distribution using 

the formula:

(8)

where rij is the rank of Yij among all N observations, Φ−1 denotes the inverse of the 

cumulative distribution function of a standard normal variable, and c is an offset needed to 

avoid having the maximum observation transformed to infinity. Some commonly used 

values are c = 1/2, c = 3/8 (Blom, 1958) and c = 0 (van der Waerden, 1952); but a particular 

choice of c has little effect on the resulting scores for sufficiently large N, and is therefore 

unlikely to impact the final result. A value of c = 1/2 was used in the current study, and the 

transformed data  were subsequently analyzed using parametric association tests of 

Section 2.2.

3 Simulation Experiment

We performed a simulation study to investigate the behavior of the usual parametric tests 

and their nonparametric counterparts based on ranks and the inverse normal transformation 

in the context of genetic association studies. Data were generated using the following model:

where μi is the mean trait value for genotype i and εij, i = 0, 1, 2, j = 1,..., ni are 

independently and identically distributed errors. The error term was sampled from the 

following distributions: (i) normal with mean 0 and variance 1; (ii) log-normal (μ = 0, σ = 1) 

as an example of a positively skewed distribution; (iii) Cauchy (median = 0, scale = 1) as an 

extreme example of a distribution with heavy tails; and (iv) empirical distribution of 

symmetric dimethylarginine (SDMA) - a marker of renal function measured in the Dallas 

Heart Study, a population-based cohort from Dallas, TX (see next section). The latter is a 

typical example of a quantitative trait that shows severe departures from normality and 
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cannot be easily transformed to an approximate normal distribution by applying a simple 

transformation, such as a logarithm transformation (Figure 2). The characteristics of these 

distributions are summarized in Table 1. We generated the data under the null hypothesis, μ 
= (0,0,0), and under several alternatives: μADD = (0, 0.5, 1)δ, μDOM = (0, 1, 1)δ, and μREC = 

(0, 0, 1) δ, corresponding to the additive, dominant, and recessive models, respectively. We 

also considered an “umbrella” alternative, μUMB = (0, 1, 0) δ. Such non-monotonic 

alternatives are not generally considered a plausible mode of association in studies of human 

disease traits, but could arise by chance in a GWAS. Thus a good association test should 

have high power under monotonic alternatives and low power under a non-monotonic 

alternative. The effect size, δ, and the parameters of the error-generating distributions were 

selected empirically to result in power estimates that were bound away from 100% because 

the differences in the behavior of different tests are more apparent when the power is 

moderate rather than close to 100%. We used a total sample of N = 2000, and generated 

individual genotype counts under the assumption of HWE for p = 0.03, 0.05, 0.1, 0.15, 0.2, 

0.25, 0.3, 0.35, 0.4, 0.45, 0.5. As explained above, the assumption of HWE is not required 

for our tests, but is used in our simulations to mimic the expected sample size proportions in 

a population-based genetic study. For large samples sizes (N > 200) fixing genotype counts 

at their expectation has a negligible effect on power estimates (Kozlitina et al., 2010). All 

tests were 2-sided with a nominal significance level of 0.05. Simulations were performed in 

R version 3.0.2 (http://cran.r-project.org) and included 100,000 replications. Empirical type-

I error rates and power were estimated as the proportion of times a test rejected H0 at α = 

0.05.

The observed type I error rates of the proposed tests at the nominal α = 0.05 significance 

level are summarized in Table 2. We note that with 100,000 replications, the standard error 

of the estimates is 0.069%. As one might expect, all tests remained valid (that is, the true 

type I error rate did not exceed the nominal level of α = 0.05) under the normal error 

distribution.

In contrast, when the parent distribution was non-normal, the significance level of the usual 

parametric tests could be either inflated or deflated, and the differences appeared to be 

greatest in the case of heavy-tailed distributions, such as Cauchy and empirical SDMA 

distribution, as well as for low allele frequencies. For the lowest allele frequency setting (p = 

0.05), some rank tests (Kruskal-Wallis, Mann-Witney-Wilcoxon for the recessive model, 

and rank-based MAX3) tended to have a smaller actual significance level than the nominal 

value of 0.05, as the saymptotic approximation to the distribution of the test statistic may not 

be very accurate when one of the samples is small (n2 = 5). While such a conservative 

procedure maintains its validity, it may also be less powerful than other tests. Remarkably, 

tests based on INT seemed to maintain their nominal significance level in all situations: of 

the 60 estimates presented in Table 2, only 2 fell outside the approximate 95% two-sided 

confidence interval, which is in agreement with what would be expected by chance.

Figure 3 illustrates the empirical power of the model-based and model-free rank tests under 

different genetic models. (The results for parametric tests and tests based on the inverse 

normal transformation are similar and are provided in Supplementary tables.) One should 

bear in mind that a Monte-Carlo simulation with 100,000 replications implies that the 
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maximum standard error of each power estimate is 0.16%. As we would expect, for each 

genetic model, a test designed for that model achieves the highest power. A test designed for 

an additive model (MJT) has relatively high power to detect dominant effects for low to 

medium-frequency alleles (p < 0.3), but can perform poorly for more common alleles. On 

the other hand, when the true model is recessive, a test assuming an additive model has very 

low efficiency relative to robust tests (MAX3 and KW), unless the allele frequency is close 

to 0.5. The robust MAX3 test has intermediate performance between the model-free test 

(KW) and model-specific tests (MJT, FWDOM, and FWREC). At the same time, MAX3 has 

substantially lower power than the general 2 df test (KW) under a non-monotonic (umbrella) 

alternative.

Finally, Figure 4 displays the power of the MAX3 test based on untransformed data (U), 

usual ranks (R), and a rank-based inverse-normal transformation (N) under different error 

distributions. We focus here on the performance of the MAX3 test because it was shown to 

have relatively high power regardless of the genetic model. The results for model-based and 

2 df tests are similar (see Supplementary table 2). Not surprisingly, MAX3 based on the 

usual parametric F-tests and on the inverse normal transformation (normal scores) have 

almost identical power, when the error distribution is normal (Figure 4A). Notably, rank-

based MAX3 is only slightly less powerful than the parametric MAX3 under normality - a 

consequence of the well-known asymptotic performance results for the Mann-Whitney-

Wilcoxon test relative to the two-samlpe t-test (Lehmann, 1975). Under empirical SDMA 

distribution, both nonparametric approaches (based on ranks and the normal scores) have 

higher power than parametric MAX3. The performance of tests based on ranks and INT is 

almost indistinguishable, with the rank test having a slight advantage over the normal scores 

test (see Supplementary table 2 for numerical estimates).

Nonparametric tests exhibit an even larger increase in power over the normal theory test 

under the two distributions with the greatest departures from normality, the log-normal and 

the Cauchy. The test based on INT is preferable to the rank test under the log-normal 

distribution (which is positively skewed and has zero density for observations less than 

zero), while the rank test is more efficient under Cauchy distribution (which has extremely 

heavy tails and gross errors). These observations are consistent with the theoretical result of 

Hodges and Lehmann (1960).

4 Application to an Association Study of Symmetrical Dimethylarginine 

(SDMA)

To illustrate the utility of the proposed method we applied the tests discussed in this paper to 

an association study of SDMA levels in African American participants of the Dallas Heart 

Study (DHS) - a multiethnic population-based sample of Dallas County (Victor et al., 2004). 

Symmetrical dimethylarginine is a marker of renal function and has been shown to be an 

independent risk factor for adverse cardiovascular events (Bode-Böger et al., 2006; Wang et 

al., 2009). We focus on African Americans in this paper - the largest ethnic group 

represented in the DHS that has the highest prevalence of both chronic kidney and 

cardiovascular disease. Genotypes for more than 9000 SNPs across the genome and plasma 

levels of SDMA were obtained for 1,760 African American subjects. After removing SNPs 
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that were monomorphic in the study population, a total of 8,994 SNPs were tested for 

association with SDMA, including 7,141 SNPs for which all three genotypes were observed. 

We used age and gender adjusted SDMA levels as a quantitative trait. Even after applying a 

logarithm or a Box-Cox transformation (Box and Cox, 1964), the residual SDMA 

distribution had longer tails and showed other deviations from normality (Figure 2). The 

analysis was performed using 4 different approaches: (1) raw (i.e., untransformed) trait 

values were adjusted for gender and age and the residuals tested for association with SNPs 

using parametric tests; (2) trait values were adjusted for gender and age after first applying a 

Box-Cox transformation (λ = 0.1) and the residuals were analyzed using parametric 

association tests; (3) the residuals from (2) were further transformed using an inverse normal 

transformation before applying parametric association tests; (4) the residuals from (2) were 

analyzed using rank tests.

Figure 5 summarizes the p-values from the association analysis using rank-based MAX3 test 

and parametric MAX3 applied to residual SDMA values after no transformation 

(untransformed), Box-Cox transformation and an inverse-normal transformation. The 

strongest association with SDMA was observed for a SNP in the gene AGXT2 (rs37369), 

recently shown to be associated with SDMA in a genome-wide association study of the 

methylarginine traits that included 5,110 individuals of European descent (Seppälä et al., 

2014). Notably, this SNP was not ranked as the top association by the usual parametric 

analysis applied to raw data, as illustrated in the top right panel of Figure 5. Although the 

remaining three methods identified this SNP at a genome-wide significance level (p < 

10 −8), the p-values for the two nonparametric tests (MAX3 Rank and MAX3 INT) were 

several orders of magnitude lower than the p-value for the MAX3 test based on Box-Cox 

transformed data. Finally, MAX3 based on ranks was slightly more significant than the test 

based on INT (Figure 5 and Table 3).

At the same time, parametric MAX3 test applied to raw data - and to a lesser degree Box-

Cox transformed data - produced several other results with p < 0.0001 that did not reach the 

same level of significance using nonparametric methods (Figure 5). Table 4 reports the 

proportion of tests reaching the nominal significance levels of 0.01 and 0.05, and 

demonstrates that parametric tests applied to raw and Box-Cox transformed data (especially 

the test optimal for the recessive model and MAX3) generated an excess of p-values below 

these levels of significance compared to what would be expected under the complete null 

hypothesis. Given that most SNPs tested in a genetic association study are expected to have 

no effect on the trait, these results likely represent false positive associations. A closer 

inspection of the data revealed that most of the SNPs with discordant p-values for the 

parametric and rank-based MAX3 tests were low-frequency alleles (p < 0.05) with the 

smallest p-value under a recessive model (data not shown). When the number of variant 

allele homozygotes is small (n2< 5) and the assumption of normally distributed residuals is 

violated, asymptotic results may not apply and the F-test comparing the means may be 

sensitive to the effect of outliers. Nonparametric tests are robust to outliers and produce 

more conservative results in this situation.
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5 Discussion

In this paper we have described a robust distribution-free method for quantitative trait 

association. The proposed method uses the maximum of three rank tests (MAX3) optimal 

for different genetic models as its test criterion and adjusts the significance level to account 

for the correlation among the corresponding tests. We find that the rank-based MAX3 test 

maintains good power and validity (correct type I error rate) across a wide range of 

distributions and genetic models. Specifically, the test is only slightly less powerful than its 

parametric counterpart when the data are normally distributed, but is far superior to the 

parametric test when there are outliers or other deviations from normality. The proposed 

method is computationally efficient and is easy to implement. Therefore, it can serve as a 

fast screening tool for large-scale (e.g., genome-wide) association studies of complex traits 

with non-normal distributions.

The method described here is based on the principles of efficiency robustness, used by 

Freidlin et al. (2002) to develop robust tests for case-control studies. By showing that the 

null correlations among rank tests optimal for different genetic models are identical to those 

derived for binary and normal data, we were able to apply the results from previous studies 

to develop a robust test for quantitative traits with non-normal distributions. In addition, we 

have examined the null correlations among test statistics optimal for different genetic 

models as a function of minor allele frequency and quantified the loss of efficiency due to 

model misspecification. Although previous studies provided some examples of the relative 

performance of different tests under selected allele frequencies, our analysis generalizes 

these results and provides an additional insight about the behavior of robust and model-

based tests. Both our simulations and analytical results (Figure 1) suggest that, compared to 

the conventional approach of using an additive model, robust tests offer the greatest gain in 

power for detecting dominant effects of common alleles (p > 0.3) and recessive effects at 

any allele frequency.

Many traits examined in genetic studies have distinctly non-normal distributions. 

Consequently, the assumption of normally distributed residuals is often violated and 

standard statistical tests that rely on normal theory may not maintain any good properties. 

The most common approach to deal with non-normal data is to perform a transformation, 

such as a logarithm transformation, prior to analysis to achieve more normally distributed 

residuals. Many genetic studies have used this approach, however few report whether the 

assumption of normally distributed residuals is satisfied after the transformation. Here we 

show that even a modest residual departure from normality can lead to reduced power and 

an inflated type I error rate, especially for low-frequency alleles. The MAX3 approach 

described in this paper is based on ranks and is not sensitive to outliers or other departures 

from normality. The method could be especially useful for large-scale association studies 

that look at multiple traits, such as eQTL mapping or metabolomic studies (Illig et al. 2010; 

Suhre et al., 2011). In such situations, it may be difficult to assess the distribution of each 

trait and find a suitable transformation, therefore tests that do not rely on a particular shape 

of a distribution are desirable.
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An alternative approach to analyze non-normal traits, that has recently gained acceptance in 

genetic research, is to perform an inverse normal transformation of the data before applying 

standard parametric tests of association (Scuteri et al., 2007; O’Donnell et al., 2011; 

Kettunen et al., 2012; Seppälä et al., 2014). This approach ensures that the data resemble the 

normal distribution as closely as possible, and has the desirable property of being at least as 

efficient as the normal theory tests (ARE ≥ 1) for all distributions (Chernoff and Savage, 

1958). Despite the widespread use of INTs and their desirable theoretical properties, no 

large simulation study has investigated the performance of parametric tests based on the INT 

in the context of genetic studies, as Beasley et al. (2009) point out. Here we have examined 

the performance of the tests based on INT relative to the usual parametric tests and rank 

tests using a simulation study with different distributions, genetic models, and minor allele 

frequencies. We demonstrate that the method maintains its favorable properties in a variety 

of situations and therefore presents an attractive alternative for quantitative trait association. 

One additional advantage of the method is that existing software packages, such as PLINK 

(Purcell et al., 2007), can be readily applied to calculate model-based statistics once the 

transformation of the data has been performed. Relative to the rank tests, the method may 

have an advantage when the underlying distribution is skewed or has a density that drops 

discontinuously to zero at one extreme, such as the log-normal or exponential distribution 

(Hodges and Lehmann, 1960). On the other hand, rank tests may be preferable in the case of 

approximately symmetric heavy-tailed distributions, with outliers at both extremes of the 

distribution.

Instead of taking a maximum over three specified genetic models, a more general approach 

is to maximize the trend test over all possible monotonic alternatives consistent with a 

genotype-trait relationship. Wang and Sheffield (2005) considered such an approach and 

developed a constrained likelihood ratio test (CLRT) under non-overdominance constraint. 

They mentioned that CLRT could be viewed as a two-sided version of a test for order-

restricted alternatives (Barlow et al., 1972). A rank-based analogue of the order-restricted 

test has been described in statistical literature (Chacko, 1963; Shorack, 1964) and could be 

applied to genetic association studies. Based on the results of Wang and Sheffield (2005) 

and Zheng and Chen (2005), however, we expect that CLRT and MAX3 would have similar 

performance. At the same time, MAX3 is conceptually simpler and does not require special 

software to implement. Therefore, we focus on the maximum of three rank-based 

association tests in the current study.

GWAS have successfully identified hundreds of loci that contribute to common disease 

traits, yet all of the variants discovered to date explain only a small proportion of 

interindividual variation in these traits (Maher, 2008; Manolio et al., 2009). The remaining 

“missing heritability” has been attributed in part to the effects of rare genetic variants that 

were not screened by the typical GWAS. Yet, it is also possible that genetic variants with 

non-additive effects account for part of the unexplained variability. While there are a few 

examples of studies that have used a robust combination approach similar to the one 

described in this paper (WTCCC, 2007; Sladek et al., 2007), the vast majority of GWAS 

rely on the conventional approach or testing the association under an additive genetic model, 

and thus could miss variants with non-additive effects. Adopting robust association tests as 
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part of the routine analysis of GWAS could help uncover additional variants that influence 

complex traits non-additively.

Another possible explanation for missing heritability lies in the existence of genetic 

interactions (epistasis) among loci (Maher, 2008; Manolio et al., 2009; Zuk et al., 2012). 

One limitation of the rank tests described in this paper is that they are restricted to a one-way 

layout and do not lend themselves to multi-locus analysis. However, generalizations of rank 

tests for multi-way layouts have been developed in statistical literature (for example, in 

Akritas et al., 1997) and these could potentially be used to extend the present methods to 

multi-locus analysis allowing for gene-gene interactions. At the same time, we note that tests 

based on normal scores (INTs) rely on standard parametric models, and could, therefore, be 

incorporated into existing methods (reviewed in Cordell, 2009) to investigate the role of 

gene-gene interactions, after the initial GWAS analysis has been performed. This question 

deserves further investigation.

In summary, we have described a robust method for quantitative trait association that is not 

affected by deviations from both an assumed genetic model and an assumed distribution. 

The proposed method could be a useful screening tool for large-scale association studies 

when neither the inheritance mode, nor the distribution of the trait is known in advance.
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Appendix A

We note that the unstandardized association statistics are in the form , where 

ci = (xi−x̄), , are known constants. Hence, under H0, E(T) = 0, Var(T) = σ2 Σi 

ni(xi−x̄)2, and . Therefore, the correlation coefficient 

under H0 of two test statistics with scores xi and  is given by (2). Further, since  is a 

consistent estimator of σ2, the correlation coefficient between two regression statistics of the 

form (1) is asymptotically equivalent to (2). For the three test statistics based on scores xADD 

= (0, 1, 2), xDOM = (0, 1, 1), and xREC = (0, 0, 1), the correlation coefficients are derived as 

follows.
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Using the shortcut formulas for the variance, , and covariance, 

, we calculate:

and

Finally, dividing covariances by the variance terms, we obtain the correlations:

Appendix B

The means and (co-)variances of the rank-based k-sample trend tests under the null 

hypothesis can be calculated from the moments of two-sample Mann-Whitney statistics (see 

Tryon, 1972):

Also, recalling that Wij is the number of times an observation from the jth sample exceeds 

one from the ith sample, it follows that Wij +Wil = Wi(j+l), where Wi(j+l) is the Mann-Whitney 

statistic comparing the combined data from the jth and lth samples to the ith sample.
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The mean and variance of the modified Jonckheere statistic 

are given by:

and

In the case of k = 3, the above expressions reduce to:

Appendix C

The robust association test is based on the standardized versions of

Note that MJT can be alternatively expressed as

Hence,
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Similarly

and

Now, we can obtain the correlations,

The above correlation coefficients are equivalent to those derived for regression based 

statistics.
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Figure 1. 
Pairwise asymptotic relative efficiency of association statistics for the three genetic models 

as a function of allele frequency.

Kozlitina and Schucany Page 23

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Normal quantile-quantile plots of symmetric dimethylarginine (SDMA) levels in the Dallas 

Heart Study. Left panel shows the distribution of the raw data; right panel shows the 

distribution of the data after a logarithm transformation. Both distributions were 

standardized to have mean 0 and variance of 1.
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Figure 3. 
Power of rank-based association tests under normal error distribution and different genetic 

models. The parameters of data generating model are shown in the upper left corner. KW - 

Kruskal-Wallis test; MJT - modified Jonckheere-Terpstra test; FW - Fligner-Wolfe test for 

the dominant (DOM) and recessive (REC) models; MAX3 - rank-based maximum test.
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Figure 4. 
Power of the maximum (MAX3) test under the additive genetic model and different error 

distributions. The alternative hypotheses are indicated in the upper left corner of each panel.
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Figure 5. 
Summary of significance results from association analysis of symmetric dimethylarginine 

(SDMA) levels in the Dallas Heart Study. Top left panel: quantile-quantile plot of -log10 p-

values. The strongest association result refers to the rs37369 SNP in AGXT2. Top right - 

bottom right panels: scatters plot of p-values for the MAX3 test based on ranks against 

parametric MAX3 applied to raw data (MAX3 F, top right), to Box-Cox transformed data 

(bottom left, MAX3 BC), and to inverse-normal transformed data (bottom right, MAX3 

INT).
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Table 1

Distributions used for the error term in the simulation study

Distribution Standard deviation Skewness Kurtosis

Normal 1 0 0

Log-normal 2.2 6.2 110.9

Cauchya - - -

Empirical SDMA distributionb 1 6.4 78.3

a
The variance and higher moments do not exist.

b
Distribution was standardized to have a mean 0 and variance 1.
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Table 3

Comparison of significance levels for AGXT2 rs37369 by the examined tests

Test

Tested Model

ADD DOM REC MAX3

F-test (Y) 2.1 × 10−5 5.7 × 10−4 4.4 × 10−4 5.9 × 10−5

F-test (Box-Cox) 7.6 × 10−11 1.5 × 10−7 7.2 × 10−8 1.1 × 10−10

F-test (INT) 9.2 × 10−14 2.6 × 10−9 5.3 × 10−10 1.1 × 10−13

Rank 2.0 × 10−14 1.1 × 10−9 1.4 × 10−10 4.5 × 10−14

Bold face indicates the most significant result across all tests. Italicized P-values do not meet the Bonferroni-corrected significance threshold based 
on the number of tests performed.
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