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Aims/hypothesis:  Glucagon-like  peptide-1  (GLP-1)  is  an  incretin  hormone  derived  from  proglucagon,
which  is released  from  intestinal  L-cells  and  increases  insulin  secretion  in a glucose  dependent  man-
ner.  GPR119  is  a lipid  derivative  receptor  present  in  L-cells,  believed  to play  a  role  in  the detection  of
dietary  fat. This  study  aimed  to characterize  the responses  of  primary  murine  L-cells  to  GPR119  agonism
and  assess  the  importance  of  GPR119  for the  detection  of ingested  lipid.
Methods: GLP-1  secretion  was  measured  from  murine  primary  cell cultures  stimulated  with  a panel  of
GPR119  ligands.  Plasma  GLP-1  levels  were  measured  in  mice  lacking  GPR119  in  proglucagon-expressing
cells  and controls  after  lipid gavage.  Intracellular  cAMP  responses  to GPR119  agonists  were  measured  in
single  primary  L-cells  using  transgenic  mice  expressing  a cAMP  FRET  sensor  driven  by  the  proglucagon
promoter.
Results:  L-cell  specific  knockout  of  GPR119  dramatically  decreased  plasma  GLP-1  levels  after  a lipid  gav-
age.  GPR119  ligands  triggered  GLP-1  secretion  in  a  GPR119  dependent  manner  in  primary  epithelial
cultures  from  the  colon,  but  were  less  effective  in  the  upper  small  intestine.  GPR119  agonists  elevated

cAMP  in  ∼70%  of colonic  L-cells  and  50%  of small  intestinal  L-cells.
Conclusions/interpretation: GPR119  ligands  strongly  enhanced  GLP-1  release  from  colonic  cultures,  reflect-
ing  the  high  proportion  of  colonic  L-cells  that exhibited  cAMP  responses  to GPR119  agonists.  Less
GPR119-dependence  could  be demonstrated  in  the  upper  small  intestine.  In  vivo,  GPR119  in L-cells  plays
a  key  role  in  oral  lipid-triggered  GLP-1  secretion.

©  2015  The  Authors.  Published  by  Elsevier  Inc.  This  is an  open  access  article  under  the CC  BY  license
. Introduction

Glucagon-like peptide-1 (GLP-1) has multiple anti-diabetic

ffects, most notably enhancing insulin secretion, suppressing
lucagon release and slowing gastric emptying [1]. Current
ncretin-based therapies focus on preventing the breakdown of

Abbreviations: 2-OG, 2-oleoylglycerol; Fsk, forskolin; GLP-1, glucagon-
ike  peptide-1; IBMX, 3-isobutyl-1-methylxanthine; KO, knockout; OEA,
leoylethanolamide; PPAR, peroxisome-proliferator-activated receptor; WT,
ildtype.
∗ Corresponding authors.

E-mail addresses: fmg23@cam.ac.uk (F.M. Gribble), fr222@cam.ac.uk
F. Reimann).

ttp://dx.doi.org/10.1016/j.peptides.2015.06.012
196-9781/© 2015 The Authors. Published by Elsevier Inc. This is an open access article u
(http://creativecommons.org/licenses/by/4.0/).

GLP-1 by dipeptidyl peptidase-IV or administrating GLP-1 mimetics
[2]. The benefits of increasing endogenous GLP-1 secretion are cur-
rently under evaluation, supported by evidence that gastric bypass
surgery improves glucose tolerance, at least in part by increased
GLP-1 secretion [3].

GPR119  is one of a number of candidate G-protein cou-
pled receptors currently under investigation as a potential target
for elevating GLP-1 and insulin release. GLP-1 is secreted from
enteroendocrine L-cells in the intestinal epithelium, which express
a variety of receptors and transporters capable of detecting ingested

nutrients, including carbohydrates, lipids and proteins [4]. GPR119
is a G�s-coupled receptor, linked to the elevation of intracellular
cAMP concentrations [5–11]. Physiological GPR119 ligands include
oleoylethanolamide (OEA) [6], produced locally within tissues

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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12–14], and 2-oleoyl glycerol (2-OG) [15] generated by lumi-
al triacylglycerol digestion [16]. OEA as well as small molecule
PR119 agonists, increase GLP-1 and insulin release in rodent mod-
ls [9,17–19]. Indeed, GPR119 agonists were developed for human
tudies and taken into clinical trials in patients with type 2 dia-
etes, but were not found to improve metabolic control [20]. The
easons for the poor translatability remain uncertain, and the phys-
ological roles and therapeutic potential of GPR119 are still under
nvestigation.

The aim of this study was to investigate the physiological role
f GPR119, and the signaling events triggered by GPR119 agonists
n native murine L-cells. Using a fluorescent reporter providing a
eadout of cAMP concentrations in living native L-cells, we show
hat OEA, 2-OG, and a specific GPR119 agonist elevated cytoplasmic
AMP concentrations and enhanced GLP-1 secretion in primary cul-
ured L-cells. We further present a new conditional knockout (KO)

ouse model lacking GPR119 in proglucagon expressing cell pop-
lations including L-cells and alpha-cells. Oral oil tolerance tests in
ild type (WT) and KO mice revealed that lipid-triggered plasma
LP-1 excursions are highly dependent on activation of GPR119 in
-cells.

. Methods

.1. Animal models

The  flox Gpr119 mouse (Gpr119fl) was created using the
mbryonic stem cell method by AstraZeneca Transgenics and
omparative Genetics, Mölndal, Sweden. Genotyping for Gpr119fl

as performed using the primers: Forward, TGCAGAGAGGGAG-
AAATATCAGG; Reverse, TCTTGTTGTAACAAGCCTTCCAGG. Condi-
ional Gpr119 knockout mice were created by crossing homozygous
pr119fl with heterozygous GLUCre12 mice, which express Cre
ecombinase under proglucagon promoter control [21]. The mice
ere selectively bred to produce homozygous females or hemizy-

ous males (Gpr119 is located on the X-chromosome) for Gpr119fl .
ll mice were on a C57BL/6 background. Details of generation of
lu-Epac21 mice are described elsewhere [22]. Briefly, this is a

ransgenic strain in which the cAMP FRET sensor, Epac2-camps,
s expressed under control of the mouse glucagon receptor, using
he same starting BAC and technique as used previously to gen-
rate GLU-Venus mice [23]. The L-cell-specificity of Epac2-camps
xpression was confirmed by immunofluorescence staining of fixed
ntestinal tissue slices. Mice were kept in individually ventilated
ages according to UK Home Office regulations and the ‘Principles
f laboratory animal care.’ All procedures were approved by a local
thical review committee.

.2.  Primary murine intestinal cell culture

Mice aged six weeks to six months were killed by cervical dis-
ocation. Intestines were collected into ice-cold Leibovitz’s L-15

edium (PAA, Yeovil, UK) and primary intestinal culture performed
as as previously described [23]. Duodenum/jejunum was  taken as

 10 cm length distal to the pylorus; 10 cm of ileum was  taken prox-
mal to the ileocecal junction, and colon included all tissue distal to
he caecum. Minced tissue was digested with 0.4 mg/ml collagenase
I in Dulbecco’s Modified Eagle Medium (DMEM) containing 4.5 g/l
lucose. Crypts were pelleted at 100 g for 3 min  before resuspension
n DMEM containing 10% fetal bovine serum, 2 mmol/l L-glutamine,
00 units/ml penicillin, and 0.1 mg/mL  streptomycin. 10 �mol/l of

he Rho-associated, coiled-coil containing protein kinase (ROCK)
nhibitor Y27632 was added to small intestinal cultures. Cells

ere plated onto 24-well plates (secretion) or glass-bottom dishes
imaging) coated with a 1:100 dilution of Matrigel (BD Biosciences,
 77 (2016) 16–20 17

Oxford,  UK). Each 24-well culture plate contained crypt suspen-
sions from a single mouse. Cultures were incubated at 37 ◦C and 5%
CO2.

2.3. Intestinal cell secretion

Secretion  studies were carried out 20–24 h post-plating, as
described previously [23]. Total GLP-1 concentrations were ana-
lyzed in test solutions and cell lysates by immunoassay (MesoScale
Discovery, Gaithersburg, MD,  USA). Hormone levels in the test solu-
tion and cell lysate were summed to give the total well content.
GLP-1 secretion was expressed as a percentage of this total.

2.4.  Lipid gastric gavage

Mixed  male and female adult mice were used for the gavage
study, and the groups did not differ significantly in body weight.
GLP-1 levels were similar in the male and female mice, so data
were combined. Mice were fasted overnight (<16 h). Intragastric
gavage of a 1:1 mix  of olive:corn oils was administered (10 ml/kg
body weight). Control wild type mice received a gavage of phos-
phate buffered saline. 25 min  later, mice were anaesthetized with
isoflurane, and terminal blood samples taken at 30 min by car-
diac puncture. Plasma was  separated immediately and frozen. Total
GLP-1 in the plasma was measured by immunoassay (Mesoscale
Discovery).

2.5. cAMP Imaging

Single-cell measurements of cAMP levels were made using
the Förster resonance energy transfer (FRET)-based sensor Epac2-
camps, using tissues from Glu-Epac21 mice maintained in mixed
primary culture for 20-78 h. The use of Epac2-camps for monitor-
ing cAMP concentrations in GLP-1 expressing cell lines has been
described previously [24]. Maximum time-averaged CFP/YFP ratios,
representing [cAMP], were determined at baseline and following
test reagent application.

2.6.  Solutions

Saline buffer contained (in mmol/l: 138 NaCl, 4.5 KCl, 4.2
NaHCO3, 1.2 NaH2PO4, 2.6 CaCl2, 1.2 MgCl2, 10 HEPES, pH 7.4 with
NaOH) supplemented with 0.1% bovine serum albumin (BSA). Solu-
tions for secretion studies included 10 mmol/l glucose and DMSO
at a final concentration of 0.1%. Unless stated, all reagents were
purchased from Sigma (Poole, UK). AR231453 was  synthesized by
AstraZeneca.

2.7. Data analysis

Data  were analyzed using Microsoft Excel and GraphPad Prism
v5.0 (Graphpad Software, San Diego, USA), using Student’s t-tests,
ANOVA and post-hoc Bonferroni tests, as indicated in the figure
legends.

3. Results

3.1. GPR119 involvement in lipid-sensing

The contribution of GPR119 to GLP-1 secretion in vivo was inves-
tigated by the administration of a lipid gastric gavage to Gpr119-KO
and WT  mice. In WT  mice, oil gavage triggered an approximate

3-fold elevation of plasma total GLP-1 concentrations at 30 min,
compared with control mice gavaged with saline (Fig. 1). GLP-1
after oil gavage was significantly lower in KO animals compared
to WT  controls (Fig. 1), indicating that GPR119 in L-cells plays
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lasma  GLP-1 (total) 30 min  after gavage of 10 �l/g olive and corn oil mix  (1:1) in
pr119 WT and KO mice, or of PBS in WT mice. Significance was tested by ANOVA
ith  post-hoc Bonferroni test; ***p < 0.001.

n important role in mediating the GLP-1 secretory response to
ngested triglyceride.
.2.  GPR119-dependent GLP-1 secretion in vitro

Colon cultures from Cre-negative/Gpr119fl and Cre-
ositive/Gpr119wt mice were treated with 10 �M forskolin
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ig. 2. L-cell knockout of gpr119 impairs lipid-triggered GLP-1 release in primary culture
A) Mice carrying only the floxed Gpr119 alleles (Cre-negative/Gpr119fl, white bars, n = 22

ice, black bars, n = 9 wells from 3 mice), did not differ in their responses to GPR119 ligan
0  �mol/l forskolin + 100 �mol/l IBMX (F/I), 2-oleoylglycerol (2-OG, 200 �mol/l), oleoyle
0 mM glucose. (B–D) Primary cultures from the duodenum/jejunum (WT  and KO: n = 9 w
C), or colon (WT: n = 22 wells from 7 mice. KO: n = 14–16 wells from 5 mice) (D) of WT (C
ere assessed for GPR119-dependent GLP-1 release as in A above. Bars represent means 

omparing (i) test agents vs basal control for the corresponding genotype (*p < 0.05, ***p <
   

plus 100 �mol/l 3-isobutyl-1-methylxanthine (IBMX) to
raise cAMP, the small molecule GPR119 agonist AR231453
(100 nmol/l) [19], 200 �mol/l 2-oleoylglycerol (2-OG), or 10 �mol/l
oleoylethanolamide (OEA). No difference in secretion was seen
between these genotypes, indicating that neither the Cre-allele
nor the Gpr119fl allele alone altered GLP-1 release (Fig. 2A).

The same ligands were then applied to cultures from Gpr119-
KO mice (Cre-positive/Gpr119fl) and Cre-negative/Gpr119fl mice
(henceforth called WT). Secretion was  measured separately from
the colon, ileum, and duodenum/jejunum (Fig. 2B–D). AR231453
significantly increased GLP-1 release 4.6-fold from the colon and
2.9-fold from the ileum of WT  mice; OEA significantly enhanced
GLP-1 release by 3.9-fold in the colon and 2.1-fold in the duode-
num/jejunum; 2-OG only increased secretion significantly in the
colon (2.1-fold). Secretory responses to all three GPR119 ligands
were significantly impaired in colonic cultures from Gpr119-KO
mice (Fig. 2D). In ileal cultures, the response to AR231453 was
reduced in Gpr119-KO tissue (Fig. 2C), whereas in duodenal/jejunal
cultures, the enhanced secretion triggered by OEA  was  not impaired
by Gpr119-KO (Fig. 2B).

3.3.  cAMP imaging in primary cultured L-cells

s 77 (2016) 16–20 
cAMP concentrations in primary L-cells were imaged in
primary cultures from mice expressing a FRET-based cAMP sen-
sor in proglucagon-expressing cells. In colonic cultures, 2-OG
(200 �mol/l), OEA (10 �mol/l) and 100 nmol/l AR231453 triggered
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ds. GLP-1 secretion was measured under basal conditions (Con) and in response to
thanolamide (OEA, 10 �mol/l) or AR231453 (100 nmol/l). All conditions contained

ells from 3 mice each) (B), ileum (WT  and KO: n = 12–15 wells from 3 mice each)
re-negative/Gpr119fl, white bars) and Gpr119 KO (Cre-positive/Gpr119fl, grey bars)

+ SEM. Significance was  tested by one-way ANOVA, with post-hoc Bonferroni tests
 0.001), and (ii) WT vs KO for each condition (†  p <0 .05, †††  p < 0.001).
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xpressed specifically in the L-cell population. (B) Mean (+SEM) FRET responses o
olonic L-cell cAMP response to AR231453 (100 nmol/l) and F/I. (D) Mean (+SEM) res
n = 26), ileum (n = 11) and colon (n = 21). *p < 0.05, ***p < 0.001 vs basal, by one-sam

levations of L-cell cAMP (Fig. 3). Particularly in the upper intes-
ine, we observed that not all cells responded to test agents, and
ells were allocated as responders if they showed a change of the
RET signal of >2% above baseline. In the duodenum 50% of L-cells
13 out of 26) exhibited cAMP responses to AR231453, compared
ith 45% (5/11) of L-cells in the ileum and 71% (15/21) in the colon.

he mean amplitude of the cAMP response to AR231453 was not
ignificantly different across intestinal tissues (Fig. 3D).

.  Discussion

Following the de-orphanization of GPR119, small molecules
argeting this receptor were developed as potential new treat-

ents for diabetes that would increase secretion from intestinal
-cells [25]. Although subsequent trials have not yet demonstrated
hat metabolic improvements can be brought about by the use of
PR119 agonists in humans with type 2 diabetes [20], there is still

 high level of academic and commercial interest in GPR119 as a
otential drug target [26,27]. Our results show that L-cell GPR119

s a critical component of the sensing mechanism responsible for
LP-1 responses to ingested lipid, and that L-cells in the distal intes-

ine respond to GPR119 agonists with elevated cAMP and GLP-1
ecretion.

We show here that GPR119 ligands increase GLP-1 release from
rimary cultured ileal and colonic L-cells in a GPR119-dependent
anner. Of the three GPR119 agonists tested, OEA and AR231453
ere more effective than 2-OG. The magnitude of the secretory

esponse triggered by the different GPR119 ligands increased pro-
ressively from the upper small intestine to the colon. Indeed, L-cell
nockout of Gpr119 largely abolished responses to OEA, 2-OG and
R231453 in the colon. In the ileum, where the secretory response

as smaller, only OEA and AR231453 raised secretion in WT  tissues

bove that found in the Gpr119-KO, and in the duodenum/jejunum,
one of the ligands had a greater effect in WT  than KO cultures.
hile our results suggest that the small response to OEA in the
lonic L-cells to agonists applied as in A. (C) Sample trace showing representative
s to AR231453, measured as in C, for all L-cells tested from the duodenum/jejunum

udent’s t-test.

duodenum/jejunum of WT  tissue is independent of GPR119, we
cannot exclude the possibility that the proportion of L-cells under-
going Cre-dependent GPR119 excision differed between tissues and
that more residual L-cells expressed GPR119 in the upper intes-
tine. Arguing against this idea, however, AR231453 had little effect
on GLP-1 secretion in the WT  duodenum/jejunum, and OEA has
been reported to activate other pathways such as PPAR� that might
influence GLP-1 secretion even in the absence of Gpr119 [28].

The  GLU-Epac transgenic mouse enabled us to monitor cAMP
responses to GPR119 ligands in individual primary cultured L-cells.
Not all L-cells were found to be responsive to AR231453, suggesting
there may  be a subpopulation of L-cells that do not express func-
tional GPR119. There was a tendency for smaller and less frequent
cAMP responses to AR231453 in the small intestine compared
with the colon, although this did not reach statistical significance.
These results do, however, mirror the gradient of GLP-1 secre-
tory responses in cultures from the different regions. In line with
these findings, we  also reported previously that Gpr119 expression
appeared higher in colonic than small intestinal L-cells by qRT-PCR
[23].

Mice with targeted deletion of Gpr119 in L-cells exhibited a
marked reduction of plasma GLP-1 levels after gastric oil gavage.
This suggests that GPR119-dependent detection of luminally-
generated 2-monoacylglycerols or locally-released OEA plays a
major role in the post-prandial GLP-1 secretory response to
orally ingested triglycerides. While long chain free fatty acids
are also released during the luminal digestion of corn and
olive oils, and are sensed by GPR119-independent pathways,
likely involving GPR40 and GPR120 [4], our findings suggest
that these pathways play a relatively minor role compared with
GPR119 in mediating the GLP-1 secretory response to oral lipids.
While our data support the development of GPR119 agonists to
enhance GLP-1 secretion, the role of different intestinal regions

in post-prandial physiology and as drug targets deserves further
attention.
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