Skip to main content
. Author manuscript; available in PMC: 2016 Mar 11.
Published in final edited form as: Proc Int Conf Data Eng. 2015 Apr;2015:1035–1046. doi: 10.1109/ICDE.2015.7113354

Algorithm 1 Sampling-based Candidate Pruning

Input:
Candidate k-Sequences Ck; Sample Database dbk; Privacy Budget ε4;
Threshold θ; Maximal Length Constraint lmax;
Output:
Potentially Frequent k-Sequences PF;
1: dbk ← Transform sample database dbk; \\ see Sec. V-A
2: θ′ ←- Relax threshold θ; \\ see Sec. V-B
3: PFdiscover_potentially_frequent_sequences (Ck, dbk, ε4, θ′);
4: return PF;