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Abstract

Purpose—To describe longitudinal changes in lens thickness in myopic children in the 

Correction of Myopia Evaluation Trial (COMET) and to investigate the association between these 

changes and myopia progression.

Methods—Four-hundred sixty-nine 6 to <12-year-old children with −1.25 to −4.50 D of myopia 

were enrolled in COMET, a clinical trial comparing single vision lenses (SVLs) versus progressive 

addition lenses (PALs) for slowing myopia. Children remained in their original lenses for 5 years 

and then could wear contact lenses, SVLs or PALs. Myopia by cycloplegic autorefraction (Nidek 

ARK 700A) and ocular components, including lens thickness, by A-scan ultrasound (Sonomed 

A2500) were measured annually over 11 years. Analyses of lens thickness were based on right eye 

data from 426 children with refractions fit with Gompertz functions. Longitudinal lens thickness 

measurements for each participant were fit with a third-degree polynomial function, and average 

polynomial functions were calculated for three groups of children previously identified based on 

Gompertz functions: 6–7 years at baseline (n = 40), ≥8 years with progressing myopia (n = 329), 

and ≥8 years with non-progressing myopia (n = 56). ANOVAs were used for comparing the lens 

curve-based parameters among the three groups. Associations between lens and Gompertz 

parameters were assessed using Pearson correlations.

Results—Overall, between 6 and 18 years the lenses thinned and then thickened, with the 

minimum value of 3.37 ± 0.15mm reached at 11.56 ± 2.04 years. The minimum lens thickness did 

not differ among the three myopia groups (p = 0.09), nor was it correlated with the amount of 

myopia at lens minimum or amount of final myopia (r's = −0.01 and −0.03, respectively, p's>0.05).

Conclusion—As a similar pattern of change in lens thickness with age was found in all children, 

whether their myopia progressed or not, these results suggest that the association of lens thinning 

and thickening with the course of myopia is coincidental rather than causal.

Keywords

Children's vision; lens; myopia

INTRODUCTION

It is well-documented that the lens in the adult eye gets thicker over time, adding 

approximately 20 microns per year from ages 18–75 years.1–5 Changes in lens thickness 

with age have also been reported in children, with the lens thinning up to the age of 

approximately 10–12 years and then thickening after that age.6–8 Early work was done by 

Larsen, who used ultrasonography to measure lens thickness in 80 newborns and 846 

children aged 6 months to 18 years.6 These cross-sectional data showed that much of the 

decrease in lens thickness occurred in the first year and a half, with smaller additional 

decreases until 11–13 years.
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It has been suggested that the pattern of lens thinning in children is related to myopia onset 

and progression. In a series of papers, Mutti, Zadnik and colleagues showed that lens 

thinning and thickening differed by the type of refractive error.9–13 The lens in hyperopes 

and emmetropes thinned until ~10 years of age and then thickened after that. In contrast, in 

myopic children the lens thinned between 6 and 10 years of age and stayed thin until at least 

15 years of age (the oldest age tested), with myopes having the thinnest lenses of all 

refractive groups.

Two recent studies showed a pattern of thinning followed by thickening of the lens in 

children in all refractive groups.7,8 In 6- to 10-year-old Singaporean children with at least 

three study visits over 5 years, the lens showed a U-shaped growth curve, with a minimum 

thickness at approximately 9 years of age in hyperopes and emmetropes, and at 10 years in 

myopes.7 Children with myopia at all visits had the thinnest lenses. Analysis of cross-

sectional data from Taiwanese children showed that the lens became thinner from 7 to 11 

years of age and then subsequently thickened in all refractive groups, with myopic eyes 

having the thinnest lenses.8

Different theories have been proposed to explain lens thinning and its possible association 

with refractive errors in children. The mechanical tension hypothesis proposed by Mutti and 

colleagues suggests that the lens thinning found during childhood is produced by mechanical 

tension, conducted to the edges of the lens from the ciliary muscle via the suspensory 

zonules.9,10,14 In this theory, the failure of coordination of the ocular components to 

maintain emmetropia occurs because lens thinning reaches a physical limit and then is no 

longer able to sustain coordination with the increases in axial length. An alternative 

hypothesis for myopia development suggests that during near work, children with large lags 

of accommodation experience hyperopic defocus that, similar to animal models, can 

stimulate the emmetropization mechanism to increase axial elongation.15,16

A recent randomized trial, the Study of Theories about Myopia Progression (STAMP), tested 

these two hypotheses.14 Children who were already myopic (−0.75 to −4.50 D) and had 

large lags of accommodation were randomized to either single vision lenses (SVLs) or 

progressive addition lenses (PALs) for 1 year, and then required to wear SVLs in the second 

year of the study.14 The conclusion of the paper was that the lack of a rebound effect in the 

PAL group after switching to SVLs was “consistent with the accommodative lag theory of 

hyperopic defocus causing myopia progression” and not consistent with the mechanical 

tension theory involving the lens and ciliary body.

Another theory to explain lens thinning in childhood is based on nuclear compaction.17–20 

Early work by Brown and colleagues showed that the nucleus of the lens in children with 

lamellar cataracts thinned during infancy, and further work by the same group led to the 

suggestion that nuclear compaction and cortical growth were balanced such that lens 

thickness did not change in childhood.17,18 More recently, based on an analysis of data from 

predominately myopic children in Singapore, Iribarren et al. suggested that a greater rate of 

nuclear compaction compared with slower cortical growth produced the lens thinning seen 

between birth and 10 years.20 They also found “limited evidence for active regulation of the 

changes in the lens in relation to axial elongation and refractive development”.20
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A further test of a possible active role for the lens in myopia after onset is whether there are 

systematic changes in lens thickness that are related to myopia progression and stabilization. 

None of the above studies followed individual myopic children for a sufficiently long time, 

through the period of rapid progression and eventual stabilization of myopia, to determine 

what happens to the lens during these phases. The present study was undertaken to 

investigate changes in lens thickness in children who participated in the Correction of 

Myopia Evaluation Trial (COMET) and the association of these changes with myopia 

progression and stabilization.

MATERIALS AND METHODS

Overview

Details of the study design and demographic characteristics of the study population have 

been presented previously21–23 and are briefly summarized here. Four clinical centers 

located at schools/colleges of optometry in Birmingham, Alabama; Boston, Massachusetts; 

Houston, Texas; and Philadelphia, Pennsylvania enrolled 469 children between September 

1997 and September 1998, and followed them up to 14 years. Children enrolled in COMET 

met specific inclusion criteria: age 6 to <12 years old, spherical equivalent between −1.25 

and −4.50 D in each eye, astigmatism ≤1.50 D in either eye, anisometropia ≤1.00 D SER, 

birth weight ≥1250 g, and visual acuity with distance correction of 0.20 LogMAR (20/32) or 

better. Children agreed to wear their randomly assigned COMET glasses (PALs: Varilux 

comfort with + 2.0 D add or SVLs) during all waking hours.

The children remained in their original lens assignments for 5 years at which point the 

clinical trial phase ended and COMET became an observational study of factors associated 

with myopia progression and stabilization. During this period, the children, in consultation 

with their study optometrist, were allowed to choose to wear contact lenses, SVLs or PALs. 

Switching to contact lenses had little impact on progression.24

The COMET study and protocols conformed to the tenets of the Declaration of Helsinki. 

The institutional review boards of each participating center approved the research protocols. 

Informed consent (parents) and assent (children) were obtained after verbal and written 

explanation of the nature and possible consequences of the study. When children turned 18 

years old, they were re-consented as adults.

Procedures

Cycloplegic autorefraction (Nidek ARK 700A) was used to measure progression of myopia, 

the primary outcome measure in COMET. However, non-cycloplegic autorefraction 

measurements were used in the Gompertz curve fits described below because they were 

taken every 6 months in contrast to the cycloplegic autorefraction which was done annually. 

Comparison of non-cycloplegic and cycloplegic measures showed mean (SD) differences of 

0.19 (0.22) D at baseline21 and 0.23 (0.27) D on average throughout the 11-year follow-up 

period reported here,25 with non-cycloplegic measurements more myopic than cycloplegic 

ones. Following cycloplegic autorefraction, ocular components (anterior chamber depth, lens 

thickness, vitreous chamber depth, and overall axial length) were measured by Sonomed 
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A-2500 ultrasonography. Lens thickness is presented as the average of three to five reliable 

measurements.

Myopia Curve Fitting (Gompertz Function)—To evaluate the course of myopia for 

each participant, the spherical equivalent refractions at each visit were fit with a double-

exponential Gompertz function that was used to estimate the age and amount of myopia at 

stabilization and the age at which the slowing of myopia progression was at its maximum 

(the second inflection point of the Gompertz function).25 Right eye data were fit to 

individual Gompertz functions in participants with at least 6 years of follow-up and at least 

seven refraction measurements over 11 years. Four-hundred twenty-six of the 469 

participants had valid curve fits. As reported previously,25 the participants were classified 

into three categories: (1) children who were 6–7 years of age at baseline, (2) children ≥8 

years of age at baseline with progressing myopia and (3) children ≥8 years old at baseline 

with myopia that did not progress.

Lens Thickness Curve Fitting (Polynomial Function)—The observed longitudinal 

lens thickness values from the COMET cohort demonstrated a general pattern of lens 

thinning in the early school years until reaching a nadir at a specific age, after which the lens 

began to thicken. Different modeling approaches were evaluated to determine which one 

provided the best fit for this pattern of changes in the lens with age. Although the Gompertz 

function, which has a pattern of rapid acceleration followed by slowing and stabilization, 

was used to model the course of myopia, this function could not be applied to the 

longitudinal lens data with its pattern of thinning and thickening. Therefore, the approaches 

that were evaluated included a linear model,10 2nd degree polynomial modeling and 3rd 

degree polynomial functions. Two fitting indices, Akaike's Information Criterion and 

Bayesian Information Criterion, were used to compare the quality of the model fits for the 

three different modeling approaches. The 3rd degree polynomial function was selected as the 

modeling approach for these analyses because it showed the best fitting indices in 99% 

(422/426) of the participants' curves. For each subject, the 3rd degree polynomial function 

was specified as follows:

where age is the actual age (in decimal years) for each subject, LT represents the lens 

thickness value in mm at each age, and a, b, c, d are polynomial coefficients to be estimated. 

Polynomial coefficients were estimated using the “MIXED” procedure in SAS version 9.2 

(SAS institute, Cary, NC) and within-subject correlations were adjusted using the 

autoregressive model. Two curve-based parameters, (1) minimum lens thickness value (a 

local minimum) and (2) age at minimum lens thickness value, were calculated based on 

estimated individual polynomial coefficients using the first derivative of the 3rd degree 

polynomial function: b+2c * age + 3d * age2. After the age at minimum lens thickness was 

identified, the corresponding level of myopia at minimum lens thickness was calculated 

using the fitted Gompertz function described above. For children ≥8 years old at baseline 

with myopia that did not progress, their baseline myopia was used for the amount of myopia 

at minimum lens thickness.
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To ensure comparability of lens fits for participants of all ages, the lens curves were 

truncated at the age of 18 years, the maximum age with data for the youngest participants. 

Of the 426 lens curves, only five were affected by the truncation, i.e. their ages at minimum 

lens thickness were older than 18 years. However, their ages and lens thickness values at 

lens minimum with truncation at 18 years did not differ significantly from their values using 

all available data (p>0.50), so their truncated values were used for data analysis.

Following the completion of the curve fitting for each participant's longitudinal lens values, 

lens curve-based parameters were summarized across all curves using means and standard 

deviations. Group curves then were estimated for each of the three Gompertz fit myopia 

groups (children 6–7 years of age at baseline, children ≥8 years of age at baseline with 

progressing myopia, and children ≥8 years old at baseline with myopia that did not progress) 

by averaging the polynomial coefficients from all participants' curves. An overall 

comparison of the three subgroup curves was performed using the MANOVA model to 

compare the four polynomial coefficients which control the shape of the curves. Summary 

statistics were also calculated for baseline characteristic categories (e.g. gender, ethnicity 

and treatment groups). In addition, ANOVA models were used for overall and pair-wise 

comparisons of the lens curve-based parameters between the three myopia subgroups and 

baseline characteristic categories. Associations between the lens curve-based parameters 

(e.g. age at minimum lens thickness and minimum lens thickness values) and the Gompertz 

curve-based parameters (e.g. age at peak deceleration, age at stabilization, and the amount of 

myopia at stabilization) were assessed using Pearson correlations. For all of the above 

analyses, p values less than 0.05 were considered statistically significant. P values based on 

the ANOVA pair-wise comparisons between Gompertz fit subgroups and baseline 

characteristic categories were adjusted by the Bonferroni correction.

Definition of Minimal or No Change in Lens Thickness: During the curve fitting process, 

a few participants were observed to have minimal or no change in lens thickness during 

follow-up. To establish a definition of no change in lens thickness, measurement variability 

was evaluated using cross-sectional and longitudinal analyses. First, within-subject 

variability was considered at baseline26 and at each of the 11 follow-up visits. At baseline, 

the average within-subject variability was 0.06 mm based on five repeated measures of lens 

thickness.26 At each of the 11 follow-up visits, within-subject variability of the five repeated 

lens measures was calculated for each participant. The variability at each visit ranged from 

0.03 to 0.05 mm. Second, for each participant, longitudinal within-subject variability was 

calculated as the standard deviation of the longitudinal curve-based change in lens thickness 

from baseline age to 18 years old, resulting in an average longitudinal within-subject 

variability across all participants of 0.07 mm. Third, between-subject variability of the 

maximum changes in lens thickness over time was determined using the maximum curve-

based change in lens thickness for each participant (maximum minus minimum lens 

thickness values) between the baseline age and 18 years and calculating the standard 

deviation of the maximum changes across all participants, also resulting in a standard 

deviation of the maximum changes of 0.07 mm. Based on these measurement variability 

results, to be conservative, a cutoff point of 0.06 mm or less was selected to classify 

participants as “no change” or “change” in lens thickness. For the 14% (61/426) of 
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participants classified as “no change” in lens thickness, their baseline values were used for 

their minimum lens thickness, similar to what was done previously to define myopia for the 

group with no progression.25

RESULTS

Baseline characteristics of all participants (n = 426) with Gompertz curve fits and lens 

thickness data, whether there was a change in thickness or not, are presented in Table 1. The 

distribution of ethnicity in the three Gompertz curve fit groups is significantly different (p = 

0.007), with more African-Americans in the group having no myopia progression after 

baseline, as reported previously.25 The gender distribution did not vary by group (p = 0.46).

Table 2 presents comparisons at baseline and at lens minimum. Overall, the lens reached a 

mean minimum value of 3.37 ± 0.15mm at 11.56 ± 2.04 years. As shown in the table, the 

mean baseline lens thickness in the 6–7 year olds (3.50 mm) was significantly greater than in 

either of the other two groups (≥8 years old with progressing myopia and ≥8 years old with 

myopia that did not progress), in which both had a mean baseline lens thickness of 3.40 mm 

(overall p = 0.0009). The age at which the minimum lens thickness occurred was 

significantly different across the three groups (p = 0.007), with the 6–7 year olds younger 

than the other two groups when the lens reached its minimum thickness. However, the values 

of the minimum lens thickness were similar across the three groups and not significantly 

different from each other (p = 0.09). The 6–7 year group, which was shown previously to 

have a faster rate of myopia progression (and an earlier age of myopia stabilization with 

more myopia) than the other groups,25 had significantly more myopia at the lens minimum 

(mean ± SD: −4.55D± 1.82) compared to the other two groups: −3.26D± 1.36 for the group 

≥8 years at baseline with progressing myopia and −2.52D± 0.72 for the group ≥8 years at 

baseline with myopia that did not progress, p<0.0001. The largest difference in the amount 

of myopia at the minimum lens thickness was between the younger group and the older 

group with no progression (approximately 2.0 D, p<0.0001). The other pairwise 

comparisons were also statistically significant, as shown in Table 2. However, there were no 

significant differences in any of these values by ethnicity, gender or treatment group.

Additional analyses showed that the minimum lens thickness in each child was not 

correlated with the amount of myopia at the lens minimum or the amount of final myopia (r 
=−0.01 and −0.03, respectively, both p values >0.05).

Lens thickness by age for the three myopia groups is shown graphically in Figure 1. In all 

three groups, the lenses thinned and then thickened, with the minimum overall value 

observed at a mean ± SD age of 11.56 ± 2.04 years. For the first two curves shown in Figure 

1(A and B), the mean age at lens minimum is within a year of the age of the second 

inflection point of the Gompertz function fit to the myopia progression data. As described 

previously,27 the second inflection is the age at which myopia progression slows most 

strongly, suggesting the presence of biological influences that foreshadow myopia cessation. 

As the third curve shown in Figure 1(C) presents lens thickness in eyes with myopia that did 

not progress, it has an earlier age of myopia stabilization compared to the other two, and 

does not show an age for a second inflection point, which is related to progression. For 
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myopia progression curves with a second inflection point (i.e. those shown in Figure 1A and 

B), there was a low but significant correlation (r = 0.18, p = 0.0004) between the age at 

minimum lens thickness and age at the second inflection point.

Overall, the annual thickening rate for the lens is 0.012 mm/year from 11.5 to 18 years of 

age. For the three myopia groups, the rates are 0.015 mm/year, 0.012 mm/year and 0.011 

mm/year, respectively, with no significant difference between the groups.

Eighty-six percent of the group had a change in lens thickness over the observation period, 

while 14% did not, using 0.06 mm or less to classify participants as “no change”. When 

analyses were done based only on the subgroup with a change in lens thickness, results were 

the same as those based on all available data presented above. There was a significant 

difference in the amount of myopia progression from baseline to stabilization between these 

two groups: the mean (±SD) myopia progression in participants with no change in lens 

thickness was −2.00 ± 1.73 D, which was significantly less than the mean myopia 

progression of −2.54 ± 1.81 D in the group with a change in lens thickness (p = 0.03).

DISCUSSION

The main result from the analysis of changes in lens thickness over the course of 11 years of 

myopia progression and stabilization in the COMET cohort was that the pattern of lens 

thinning followed by thickening was the same whether myopia progressed or not. For the 

overall cohort, the lens reached a minimum thickness at an average age of 11.56 years and 

then subsequently thickened. Additional analyses showed that the minimum lens thickness 

in each child was not correlated with the amount of myopia at the lens minimum or the 

amount of final myopia. These results suggest that the change in lens thickness is not related 

to the course of myopia, but instead varies with age.

The pattern of lens thinning followed by thickening found in the eyes of the COMET cohort 

with a range of myopia from low to high (final spherical equivalent from −1.8 to −13.6 D) 

agrees with data from two studies of Chinese children having a range of refractive errors 

from hyperopia to myopia. The data from Wong et al. showed a two phase process in the 

growth of the lens in all refractive groups, with the lens thinning in the early school years, 

reaching a minimum thickness at 10 years in myopes, and getting thicker after that age.7 

However, that study only followed children until the age of 12 years. Using cross-sectional 

data, Shih et al. also showed that the lens thinned (until about the age of 11 years in myopes) 

and then grew thicker, but the lack of longitudinal data was a limitation.8 A common finding 

is that the eyes of myopic children first showed a pattern of lens thinning, with the lens 

reaching its thinnest value between 10 and 11.5 years of age, and then grew thicker up to the 

age of 18 years, after which it is known that the lens continues to thicken from 18 to 75 

years.1–5

A different pattern in myopic eyes was reported in a series of papers by Mutti, Zadnik and 

colleagues: the lens in myopic children thinned between 6 and 10 years of age, with little 

change in the subsequent 5 years,9–13 lending support for the mechanical tension theory of 

myopia. However, the current data and those from the Study of Theories about Myopia 
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Progression do not support this theory.14 Possible reasons for the different results in these 

studies include the use of different methods for measuring and analyzing lens thickness, as 

well as shorter lengths of follow-up in all studies prior to COMET, resulting in datasets with 

limited data from each participant.

Other evidence from the COMET cohort for the lack of an association between myopia 

progression and change in lens thickness is found in the fact that eyes with lenses that 

maintained the same thickness over the course of the study (14% of the group) had myopia 

that progressed an average of 2.00 D from baseline to stabilization. These data agree with 

those from a study of 7–9-year-old myopic children in Singapore followed for 3 years in 

which myopia progression was not associated with the rate of change in lens thickness.28 An 

additional piece of evidence comes from data collected by the COMET study group from a 

sample of 204 young adult non-myopes matched by age, gender and ethnicity to the 

COMET myopic cohort in year 12 of the study (unpublished data). The mean lens thickness 

(3.57 ± 0.20 mm) in these non-myopes at a mean age of 21.4 years did not differ 

significantly from the lens thickness of 3.54 ± 0.19 mm in the COMET group at the same 

mean age (p = 0.17), even though one group included only non-myopes and the other only 

myopes with data at that age (n = 361). All these results, taken together, suggest that age is a 

more relevant factor than refractive error in changes in lens thickness.

The data from human eyes showing that changes in lens thickness are not related to myopia 

progression are similar to what has been reported in animal models of eye growth. A review 

paper on the role of the lens in refractive development concluded that “its participation is 

non-existent or minimal at best”.29 This agrees with the finding of no association between 

refractive error and lens thickness in 210 rhesus monkeys,30 although it should be noted that 

most of the monkeys were younger than the children tested in the current study even when 

age was adjusted for the difference between monkey and human years. Another caveat is that 

most of the experiments using animals lasted for relatively short periods of time and changes 

in the lens may take longer to appear.31 Therefore, while the current results and most of the 

animal data suggest a developmental process for changes in the lens, a possible 

environmental influence cannot be ruled out.

CONCLUSIONS

In conclusion, the pattern of change in lens thickness appears to vary with age and does not 

appear to be related to the course of myopia. As a similar lens pattern was found in children 

with myopia that progressed and in those with myopia that did not progress over 11 years of 

follow-up, the lens thinning/thickening that occurs during myopia progression may be 

coincidental rather than causal.
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FIGURE 1. 
Estimated average curves for longitudinal lens thickness for three myopia groups. (A) 6–7 

Years old at baseline, (B) 8 to <12 years old at baseline with myopia progression and (C) 8 

to <12 years old at baseline with no myopia progression. Note that age at the 2nd inflection 

point is not presented for the 8+ year olds with no myopia progression because without 

progression there is no 2nd inflection point.
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TABLE 1

Characteristics of COMET participants with Gompertz curve fits (N= 426).

Age at baseline

≥8 Years

Overall (N= 426)
6–7 Years progressing 

myopia post baseline (group 

A) (N=40
a
)

Progressing myopia post 
baseline (group B) (N= 329)

No myopia progression post 
baseline (group C) (N= 56)

Ethnicity
b n (%) n (%) n (%) n (%)

 African American 112 (26.3) 11 (27.5) 72 (21.9) 28 (50.0)

 Asian 33 (7.8) 2 (5.0) 29 (8.8) 2 (3.6)

 Hispanic 62 (14.6) 6 (15.0) 49 (14.9) 7 (12.5)

 Mixed race 21 (4.9) 2 (5.0) 18 (5.5) 1 (1.8)

 White 198 (46.5) 19 (47.5) 161 (48.9) 18 (32.1)

Gender
b

 Male 198 (46.5) 15 (37.5) 157 (47.7) 25 (44.6)

 Female 228 (53.5) 25 (62.5) 172 (52.3) 31 (55.4)

Refractive error
c Mean (SD)

 Baseline  −2.39 (0.83)  −2.37 (0.78)  −2.40 (0.85)  −2.52 (0.72)

 Final  −5.37 (2.01)  −7.35 (2.29)  −5.54 (1.74)  −3.02 (1.72)

a
Excludes one participant without progression after baseline.

b
p Values based on chi-square tests comparing proportions for ethnicity and gender across the three myopia groups are 0.007 and 0.46, respectively.

c
p Values based on ANOVA for comparing baseline and final refractive error among three myopia groups are 0.58 and <0.0001, respectively.
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TABLE 2

Baseline values and values at minimum lens thickness (age, lens thickness, myopia) by baseline characteristics 

(N= 426).

Baseline values Values at minimum lens thickness

Lens thickness (mm) Age (years)
a

Lens thickness
a
 (mm) Myopia (D)

N Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Overall 426 3.41 (0.16) 11.56 (2.04) 3.37 (0.15) −3.28 (1.42)

Baseline age and progression status group

 6–7 Years progressing myopia (group A) 40
b 3.50 (0.17) 10.69 (2.64) 3.42 (0.17) −4.55 (1.82)

 ≥8 Years progressing myopia (group B) 329 3.40 (0.16) 11.58 (1.92) 3.36 (0.15) −3.26 (1.36)

 ≥8 Years no myopia progression (group C) 56 3.40 (0.18) 11.97 (1.90) 3.37 (0.17) −2.52 (0.72)

 p Value
c
 (overall) 0.0009 0.007 0.09 <0.0001

Pair-wise comparisons
d

 A versus B: mean difference (SE) 0.10 (0.03) −0.89 (0.33) 0.06 (0.03) −1.29 (0.23)

 p Value 0.0002 
d 0.008 0.03 <0.0001

d

 A versus C: mean difference (SE) 0.10 (0.03) −1.28 (0.41) 0.05 (0.03) −2.03 (0.28)

 p Value 0.004 0.002 
d 0.14 <0.0001

d

 B versus C: mean difference (SE) 0.00 (0.02) −0.39 (0.29) −0.01 (0.02) −0.74 (0.19)

 p Value 0.90 0.18 0.70 0.0002 
d

Ethnicity

 African American 112 3.40 (0.17) 11.67 (2.09) 3.37 (0.17) −3.32 (1.26)

 Asian 33 3.40 (0.14) 11.68 (2.27) 3.35 (0.11) −3.76 (1.68)

 Hispanic 62 3.44 (0.17) 11.56 (1.69) 3.39 (0.15) −3.15 (1.49)

 Mixed 21 3.38 (0.13) 11.65 (1.67) 3.34 (0.13) −3.51 (1.71)

 White 198 3.41 (0.16) 11.48 (2.11) 3.36 (0.16) −3.20 (1.41)

 p Value
c
 (overall) 0.55 0.94 0.58 0.23

Gender

 Male 198 3.40 (0.17) 11.57 (2.04) 3.35 (0.16) −3.34 (1.41)

 Female 228 3.42 (0.16) 11.55 (2.04) 3.38 (0.15) −3.22 (1.45)

 p Value
e 0.20 0.91 0.12 0.38

Treatment Group

 PVL 211 3.42 (0.15) 11.48 (1.95) 3.38 (0.14) −3.26 (1.39)

 SVL 215 3.40 (0.18) 11.64 (2.12) 3.36 (0.16) −3.31 (1.46)

 p Value
e 0.23 0.42 0.17 0.69

a
For the 61 participants without lens thickness changes, curve-based baseline values were used for minimum lens thickness values.

b
Excludes one participant without progression after baseline.

c
Main effects were tested based on ANOVA models comparing the above categories (e.g. three myopia groups, and ethnicity groups). Bolded p 

values are significant (p<0.05).
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d
Pairwise comparisons were tested based on post-hoc t-tests from ANOVA models. Bolded p values remained significant after the Bonferroni 

adjustment for multiple comparisons (the significance level is p<0.05/15 = 0.003).

e
Based on two sample t-tests.
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