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Intracellular Pressure Dynamics in Blebbing Cells
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ABSTRACT Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimen-
sional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven
flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing
cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one
set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the
timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion.
To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the in-
teractions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the rela-
tionship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of
intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb
size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic
cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and
that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dy-
namics explain the apparent discrepancy in the interpretation of experimental results.
INTRODUCTION
Blebs are spherical membrane protrusions characterized by
a separation of the cell membrane from the actin cytoskel-
eton (1), and have been observed as leading-edge protru-
sions during cell migration over flat surfaces (2–4), in
confined channels (5), and in three-dimensional (3D) envi-
ronments (6,7). Bleb expansion is driven by intracellular
pressure generated by contractile stresses acting on the cyto-
skeleton. Blebs differ from other types of protrusions, such
as lamellipodia, in that their dynamics are primarily regu-
lated by mechanical rather than biochemical processes.
Therefore, blebs provide a good system to probe intracel-
lular mechanics.

In animal cells, the cortex is a thin layer of the cytoskel-
eton directly beneath the membrane (8). It is composed of a
dense meshwork of actin filaments rich in myosin molecular
motors and actin-binding proteins (9). Little is known about
the spatial organization of actin in the cortex, and it could
have different mechanical properties from the internal cyto-
skeleton (10). The cortex is attached to the membrane by
linker proteins such as ezrin, radixin, and moesin proteins
(8). Actomyosin contractility generates tension on the cor-
tex and leads to high intracellular pressure. Blebs are initi-
ated by local cortical rupture or by a local disruption in
the proteins that link the membrane to the cortex (6). In
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either scenario, pressure is locally decreased at the at the
bleb nucleation site, resulting in cytoplasmic flow that
locally expands the membrane. New cortex forms under-
neath the membrane in a bleb, and bleb retraction occurs af-
ter cortical actin and myosin are recruited to the cell
membrane. The intracellular pressure dynamics during
bleb expansion are determined by the rheological properties
of the cytoplasm, and cytoplasmic elasticity and perme-
ability have been hypothesized to effect blebbing dynamics
(11,12).

The interpretation of two recent experiments has led to
different hypotheses regarding intracellular pressure propa-
gation in blebbing cells. In Charras et al. (11), constitutively
blebbing cells were partially treated with drugs that inhibit
myosin, such as blebbistatin. Blebbing dynamics ceased in
the treated part of the cell, but continued as normal in the
untreated part of the cell. Based on experiments in Charras
et al. (11), the authors concluded that pressure does not
equilibrate throughout the cell because blebs in the un-
treated part of the cell were not affected. The authors pro-
posed a poroelastic model for the cytoplasm to support
their experimental data. In Tinevez et al. (12), the authors
nucleated two blebs via cortical ablation with a laser. The
second bleb was nucleated shortly after the first one at
different locations with respect to the first bleb. The second
bleb size was ~30% smaller than the size of the first bleb
regardless of its location with respect to the first bleb. The
interpretation of their experiment results was that pressure
equilibrated faster than the timescale of bleb expansion.
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FIGURE 1 Bleb model schematic. (Solid dots and open squares) Cell
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the vertices of the triangular grid. A bleb is initiated by removing adhesive

links between the membrane and the cortex.
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These interpretations appear to contradict each other, and
warrant further investigation into the pressure dynamics in
blebbing cells.

Mathematical modeling is one approach to investigate
intracellular pressure and blebbing dynamics. Previous
mathematical models have examined various aspects of
cellular blebbing. In the literature (13–15), the authors use
an elastic shell model to determine how the mechanics of
the membrane, cortex, and membrane/cortex adhesion influ-
ence the shape of blebbing. A particle-based model was
used to show that blebs are energetically favorable when
membrane area exceeds the cortex area in Spangler et al.
(16). These models focused on obtaining experimentally
observed blebbing cell shapes, but not on the dynamics of
blebbing. An agent-based model of a blebbing cell was
used to model cell motility (17,18). Although this model
took into account blebbing dynamics, the driving pressure
was assumed to be uniform in space, and is not appropriate
for investigating questions relating to cytoplasmic rheology.
Several recent models that take into account bleb dynamics
with cytoplasmic flow have been developed and used to
explore cell migration in a confined channel (5,19), circus
blebbing (20), and bleb expansion (21,22). All of these
models treated the cytoplasm as a viscous fluid, and would
need to be extended to model more complex cytoplasmic
rheology.

In our previous model of bleb expansion, the cytoplasm
was treated as a viscous fluid with a permeable cortex
(22). We found the timescale of bleb inflation was domi-
nated by intracellular drag and not fluid viscosity. In this
model, the only source of intracellular drag was cytosol
flowing throughout the permeable cortex. The model pre-
dicted a value of the drag coefficient that can only be
achieved with a cortical gap size that is an order-of-magni-
tude smaller than observed experimentally. These results
indicated that a viscous fluid model of the cytoplasm is inad-
equate to study pressure dynamics in blebbing cells, and
they point to the importance of drag throughout the cyto-
plasm in bleb dynamics.

In Strychalski et al. (23), we extended our model from
Strychalski and Guy (22) to include a poroelastic descrip-
tion of the cytoplasm, and we showed that poroelasticity
significantly affected intracellular pressure dynamics. A po-
roelastic model of cytoplasm was posited in Charras et al.
(11) to explain experimental observations, but the model
was only used as part of scaling arguments to estimate the
length scale of pressure propagation across the cell. By
contrast, our model in Strychalski et al. (23) presents a
computational framework to simulate dynamics of variables
such as cell shape, pressure, and cytoplasmic velocity in
space and time in the changing geometry of the cell. In
Strychalski et al. (23) we develop the model and computa-
tional methods, but we did not thoroughly investigate the
relationship between cytoplasmic rheology and blebbing
dynamics.
In this article, we use our mathematical model developed
in Strychalski et al. (23) to systematically investigate pres-
sure and bleb expansion dynamics. We compare the pressure
dynamics in a blebbing cell with a viscous fluid cytoplasm
to the pressure dynamics in a cell with a poroelastic cyto-
plasm. Then we relate pressure dynamics to bleb expansion
time and quantify the effects of poroelastic parameters on
bleb expansion time. We simulate the two-bleb experiments
similar to biological experiments from Tinevez et al. (12),
and we find that pressure does not equilibrate on the time-
scale of bleb expansion for biologically relevant values of
cytoplasmic permeability. We show that the experimental
results from Tinevez et al. (12) are consistent with a poroe-
lastic model of the cytoplasm and conclude that pressure dy-
namics in blebbing cells are not determined by one single
long or short timescale as suggested in Charras et al. (11)
and Tinevez et al. (12), but by a combination of timescales
that are determined by the rheological properties of the
cytoplasm.
MATERIALS AND METHODS

Model formulation

Our model of the cell is a combined fluid-structure system with a poroelas-

tic cytoplasm, where the cytoplasm consists of a permeable, elastic cyto-

skeleton and liquid cytosol. Our model consists of the membrane, cortex,

membrane-cortex adhesion, internal cytoskeleton, and liquid cytosol (see

Fig. 1). The cell membrane is modeled as a neutrally buoyant elastic struc-

ture that moves with the fluid, and the cortex and the cytoskeleton are

modeled as permeable elastic materials. The cortex is modeled as a separate

structure from the internal cytoskeleton so that its mechanical properties,

such as actomyosin contractility, can be altered independently from the

properties of the internal cytoskeletal network. Our model of the cytoskel-

eton represents the mechanical contributions from the internal components

of the cytoskeleton, such as the internal actin network, microtubules, and

intermediate filaments. We model the cytoskeleton as a porous, isotropic

elastic material that is initially in an unstressed configuration. We do not

include stress relaxation due to cytoskeletal rearrangement in the model

because bleb expansion occurs on a shorter timescale (5–30 s) than actin

turnover (>1 min).
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TABLE 1 Model Parameters

Symbol Quantity Value Source

rmem cell radius 10 mm (12)

gmem membrane surface tension 40 pN/mm (12)

kmem membrane stiffness coefficient 1 pN/mm —

gcortex cortical tension 400 pN/mm (12)

kcortex cortical stiffness coefficient 100 pN/mm (22)

1170 Strychalski and Guy
In this article, we use a formulation of poroelasticity where the volume

fraction of the network (in this case the cytoskeleton) is negligible. It

was shown in Strychalski et al. (23) that the formulation used here is equiv-

alent to the standard model of poroelastic media given by Biot (24). The

structures experience internal elastic stresses and interact with each other

directly through coupling forces and indirectly through the response of

the cytosolic fluid to the mechanics and motion of the structures. We use

the framework of the immersed boundary method to handle the coupling

forces (25).

The model equations consist of force balances on the liquid cytosol, cell

cortex, and cytoskeleton. Because of the small length scale (a cell radius of

10 mm), inertial terms are negligible and the equations of motion take the

form of force balances. (Using a characteristic length of 10 mm, a charac-

teristic velocity of 1 mm, and the viscosity of water, the Reynolds number

is 10�5.) The membrane is a neutrally buoyant structure that moves with the

fluid. In the standard formulation of the immersed boundary method, forces

on such immersed structures act directly on the surrounding fluid (25). The

force balance on the fluid includes internal fluid forces (viscosity, pressure),

membrane forces (elasticity, membrane-cortex adhesion), and drag forces

due to the relative motion of the cortex and cytoskeleton, which leads to

the forced incompressible Stokes equations:

mDu� Vpþ fmem
elastic þ f

mem=cortex
adhesion þ f cortexdrag þ f cytodrag ¼ 0;

V$u ¼ 0;
(1)

where u represents the fluid velocity, p is the pressure, m is the dynamic vis-

cosity of the cytosol, and f i values represent forces densities arising from

the structures. The drag force in the fluid equation due to the cytoskeletal

drag is

f cytodrag ¼ m

k

�
ucyto � u

�
; (2)

where k is the permeability of the cytoplasm. The drag force on the cyto-

skeleton is equal and opposite to the force applied to the fluid and has

the form

Fcyto
drag ¼ �m

k

�
Ucyto � U

�
: (3)

Similarly, the fluid drag force on the cortex is

Fcortex
drag ¼ �xðUcortex � UÞ; (4)

where x is the drag coefficient of the cortex. Here we use the convention that

capital letters denote quantities located on structures (membrane, cortex,

and cytoskeleton) and use lower-case letters to denote quantities relating

to the fluid. We use a Lagrangian coordinate system to describe deforming

elastic structure and a fixed Eulerian coordinate system for modeling fluid

variables. Force densities have different scalings in the two coordinate sys-

tems (see the Supporting Material for more details).

As in our previous models (22,23), the drag force on the cortex is

balanced by elastic forces within the cortex and adhesion between the mem-

brane and cytoskeleton. Similarly, the drag force on the cytoskeleton is

balanced by elasticity and adhesion between the cytoskeleton and the cor-

tex. The force balances are given by

Fcortex
drag þ Fcortex

elastic þ F
cortex=mem
adhesion þ F

cortex=cyto
adhesion ¼ 0; (5)

Fcyto þ Fcyto þ F
cyto=cortex ¼ 0: (6)
 G cytoskeletal bulk modulus 500–1500 kPa (26)

m cytosolic viscosity 0.01 Pa-s (12,26,27)

x cortical drag coefficient 10 pN-s/mm3 (22)

k cytoskeletal permeability 5� 10�5 � 10�2mm2 (26,28)
drag elastic adhesion

The velocities of the porous cortex and cytoskeleton are determined by the

above force balances and Eqs. 3 and 4:
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Ucortex ¼ 1

x

�
Fcortex

elastic þ F
cortex=mem
adhesion þ F

cortex=cyto
adhesion

�
þ U; (7)

Ucyto ¼ k �
Fcyto þ F

cyto=cortex
�
þ U: (8)
m elastic adhesion

The cell membrane moves with the velocity of the cytosol, denoted by U.

Constitutive laws for elasticity and other modeling details are provided in

the Supporting Material and Strychalski et al. (23).

Values for model parameters and sources (when available) are located in

Table 1. The cortex is modeled as an elastic object that resists stretching,

and it includes a resting tension that pressurizes the cell. We attribute the

resting tension to actomyosin contraction of the cortex, represented by the

parameter gcortex in Table 1. We use a value of cortical tension consistent

with experimentalmeasurements fromTinevezet al. (12).Thevalue of cortical

stiffness in Table 1 is taken from Strychalski and Guy (22), where we varied

cortical and membrane stiffness over several orders of magnitude and deter-

mined the effect of these parameters on bleb shape. This value is similar to

the cortical elastic modulus of the cortex reported in Tinevez et al. (12).Mem-

brane stiffness in Table 1 was chosen to be small enough so that bleb growth

was limited by cytoplasmic and notmembrane elasticity;we use a largermem-

brane stiffness value when the cytoplasm is modeled as a fluid.

We are particularly interested in quantifying the effects of cytoplasmic

rheology on blebbing dynamics, and in the values of parameters that affect

the poroelasticity of the cytoplasm: the bulk elastic modulus G and the

permeability k. Values for the bulk modulus of the cytoplasm vary in the

literature, depending on the cytoplasmic model, experimental procedure,

and cell type. Reported values range are from 300 to 2000 Pa in the litera-

ture (12,26,27). Permeability of the cytoplasm also varies over several

orders of magnitude in the literature. For example, the range of

10�5 � 10�4mm2 was reported in blebbing cells in Charras et al. (11,26).

Permeability in the lamellipodium of a keratocyte was estimated to be

10�3mm2 in Keren et al. (28). Because of the variability in these parameters,

we simulate over a range of values forG and k in the Results. We related the

cortical drag coefficient to pore size in Strychalski and Guy (22), and use a

value consistent with experimental measurements of cortical gap size in

Charras et al. (29) (details are in the Supporting Material). Other model pa-

rameters are reported and discussed in the Supporting Material.
RESULTS

We begin with computational experiments of a cell with a
single expanding bleb. To initiate a bleb, membrane-cortex
adhesion is removed in a small region of length 5.6 mm on
the right side of the cell. Initially the cell is pressurized
due to high cortical tension. When the membrane-cortex
adhesion is locally disrupted, cortical tension is no longer
transmitted to the membrane, resulting in decreased intra-
cellular pressure at the bleb nucleation site. The cytosol
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flows from high to low pressure, and the bleb expands. First
we quantify the effects of poroelasticity on pressure dy-
namics and bleb expansion time. Then we simulate two-
bleb experiments and measure bleb sizes over time and
intracellular pressure. For the two-bleb simulations, the
nucleation site of the second bleb was taken to be the
same size as for the one bleb simulations. We conclude by
showing that a poroelastic model of the cytoplasm is consis-
tent with the experimental results of both Charras et al. (11)
and Tinevez et al. (12).
Elastic response of cytoskeleton relieves
pressure during blebbing and limits bleb size

We begin by comparing the intracellular pressure dynamics
during bleb expansion using two different rheological de-
scriptions of the cytoplasm: the poroelastic model presented
here and the viscous fluid model used in our previous
modeling (22). Fig. 2 shows snapshots of the spatial distri-
bution of pressure at different time points after the initiation
of a single bleb on the right side of the cell for the two
models of cytoplasm. Bleb nucleation size and other model
parameters are identical in the two simulations (see Table 1)
with the exception of fluid viscosity. In the fluid model, the
fluid viscosity is 10 times larger than in the poroelastic
model. The viscosity was elevated so that the bleb expansion
occurs on roughly the same timescale in the two models. For
both models of the cytoplasm, we increased the membrane
stiffness to 100 pN/mm to limit bleb size in the fluid model.

There are two notable differences in the pressure
dynamics in the two models. First, the pressure gradient
in the poroelastic model propagates across the cell body
FIGURE 2 Membrane position and pressure in the bleb model at several time

izontal pressure profile across the center of the cell (when the vertical axis ¼ 15

the cytoplasm (c) and poroelastic model (d) when permeability k ¼ 10�3mm2 a

mediate time values for (c) are 1 and 2 s. The intermediate values for (d) are 2
over the timescale of bleb expansion, but in the fluid model
the pressure gradient remains localized near the bleb
(Fig. 2 a). In the fluid model, the only source of intracellular
drag is the cortex, which leads to steplike pressure profile
where the pressure is almost constant in the cell body and
varies only in a small region near the bleb before approach-
ing equilibrium (Fig. 2 c). In contrast, in the poroelastic
model, there is intracellular drag throughout the cell body
from the presence of the cytoskeleton. Fig. 2 d shows a pres-
sure gradient that extends across the length of the cell and is
sustained as the bleb expands. The pressure at the back of
the cell remains close to its initial value for ~1/2 s before
decreasing and approaching a spatially uniform equilibrium
value.

The second difference between the twomodels of the cyto-
plasm is that there is significantly more pressure relieved by
the inflation of the bleb in the poroelastic model. In the fluid
model of the cytoplasm, the pressure drops from an initial
pressure of 45 Pa to a final pressure of 42 Pa (~7%), while
in the poroelastic model the final pressure is ~29 Pa, which
constitutes a 36% drop. The additional pressure relief in the
poroelastic model results from the elastic compression of
the cytoskeleton on the interior. The total volume of the
cell (area in two dimensions) is conserved, and so as the
bleb expands, the interior of the cell is compressed.

The deformation of the cytoskeleton results in an outward
expansive force that partially balances the cortical contrac-
tion and relieves pressure. The additional pressure relief re-
sults in the smaller bleb size seen in Fig. 2 b compared to
Fig. 2 a. In Fig. S2, we quantify the expansive pressure re-
sulting from the compression of the elastic cytoskeleton for
the data in Fig. 2 b. We found compression of the
values for both the fluid cytoplasm (a) and poroelastic cytoplasm (b). Hor-

mm in a and b). Pressure profile at several time values for the fluid model of

nd G ¼ 500 Pa. (Shaded region) Initial pressure across the cell. The inter-

and 4 s. To see this figure in color, go online.
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1172 Strychalski and Guy
cytoskeleton accounts for the majority of the pressure relief
during bleb expansion.

In the model of Tinevez et al. (12), it was estimated that
membrane surface tension alone could not balance high intra-
cellular pressure in blebbing cells, and the pressure relief pro-
vided by cytoplasmic elasticity was hypothesized to be the
key factor limiting bleb growth. We reduced the membrane
stiffness from 100 to 40 pN/mm, and we observed uncon-
trolled bleb growth in the pure fluid cytoplasm model
(Fig. 3 a), while the bleb stops growing and reaches a
steady-state size in the poroelastic model (Fig. 3 b). The hor-
izontal pressure profiles for the fluid cytoplasm show signif-
icantly lower pressure in the bleb than in the cell body, which
will continue to drive bleb expansion (Fig. 3 c). In the poroe-
lastic model, the driving pressure decreases over time, and
eventually pressure in the bleb approaches the value of pres-
sure in the cell body (Fig. 3 d). For a purely viscous fluid cyto-
plasm, membrane tension and membrane elasticity can limit
bleb growth if they are sufficiently strong, as illustrated pre-
viously in Fig. 2. We use the value of 1 pN/mm for the mem-
brane stiffness in the poroelastic model for the remainder of
the article to be in the regime where cytoplasmic elasticity
limits bleb growth. In the poroelastic model, we found that
the membrane stiffness has a mild effect on the final bleb
size, but it does not affect the timescale of bleb expansion.
Pressure equilibration and bleb expansion occur
on the same timescale, but pressure propagates
across the cell on a faster timescale

In Charras et al. (11), the authors relate the timescale of bleb
inflation to the time it takes other parts of the cell to feel the
FIGURE 3 Membrane position and pressure in the bleb model at several time

the membrane stiffness was decreased to 40 pN/mm. Horizontal pressure profile a

model (d) when permeability k ¼ 10�3mm2 andG¼ 500 Pa. (Shaded region) Init

The intermediate values for (d) are 2 and 5 s. To see this figure in color, go on
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pressure disturbance resulting from the bleb. Here we use
our computational model to determine the relationship be-
tween bleb expansion dynamics and pressure propagation
across the cell.

To quantify bleb expansion dynamics, we measure bleb
size over time. Bleb size is measured as follows. We identify
points that define the neck of the bleb (black circles in
Fig. 4 a), compute themidpoint of these twopoints, and calcu-
late the distance from the bleb neck midpoint to the point on
the membrane that has the largest displacement. Initially, this
distance is nonzero and small (~0.4 mm), and we therefore
subtract this initial distance from its value over time to obtain
bleb size. Fig. 4 b shows bleb size increasing and approaching
a steady-state value of 3.49 mm after ~30 s.

To quantify intracellular pressure propagation over time,
we examine the relative pressure difference across the cell,
which we define as the pressure at the rear of the cell minus
the pressure at the front of the cell divided by the initial
pressure inside the cell (front and rear locations are the
triangular points illustrated in the last panel of Fig. 4 a).
Fig. 4 c shows the relative pressure difference across the
cell when k ¼ 10�3mm2 andG¼ 500 Pa. The corresponding
horizontal pressure profiles for several time values enumer-
ated by I–IV are shown in Fig. 4 d. The graph of the relative
pressure difference quickly rises to a peak value at ~1/2 s
(denoted by time I in Fig. 4 c), then slowly decays.
Comparing the relative pressure difference to horizontal
pressure profiles at several time values, we observe that
the peak pressure difference occurs right before pressure
at the cell rear begins to decrease. We interpret this time
to be when the rear of the cell feels the effects of pressure
relief from bleb expansion at the front of the cell.
values for both the fluid cytoplasm (a) and poroelastic cytoplasm (b) when

t several time values for the fluid model of the cytoplasm (c) and poroelastic

ial pressure across the cell. The intermediate time values for (c) are 1 and 5 s.

line.
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However, pressure equilibration occurs on a much longer
timescale. By 20 s after bleb initiation (Fig. 4 c, IV), the rela-
tive pressure difference across the cell has dropped to ~0.02
and slowly decays to zero beyond this time. The correspond-
ing pressure profile in Fig. 4 d shows a shallow gradient.
At the same time value, bleb size is within 4% of its
steady-state value. Altogether, bleb expansion and pressure
approach their equilibrium values on the same timescale
(~30 s for this parameter set).

These results point to more than one timescale in pressure
dynamics in blebbing cells. On a relatively short timescale,
pressure disturbances are felt by other parts of the cell. For
example, before time I in Fig. 4, pressure at the back of the
cell stays close to its initial value. After this time, pressure at
the back of the cell slowly begins to lower as the bleb ex-
pands. We observe pressure slowly equilibrating on a longer
G = 1500 Pa,  Bleb Size = 1.56 m
G = 1000 Pa,  Bleb Size = 2.10 m
G = 500 Pa,  Bleb Size = 3.48 m
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timescale of tens of seconds, and a shallow pressure gradient
on these longer timescales. Fig. 4 d show a very shallow
pressure gradient 20 s after bleb nucleation.
Cytoplasmic permeability and elasticity establish
the bleb expansion timescale

Next, we quantify the effects of varying both the perme-
ability and stiffness of the cytoplasm on bleb expansion
time. We define bleb expansion time (and pressure equili-
bration) to be when bleb size achieves 90% of its steady-
state value. For the data in Fig. 4 b, this occurs at t ¼
12.85 s, enumerated by III.

Fig. 5 a shows the bleb expansion time as a function of
permeability for different elastic moduli. These data show
that bleb expansion can occur on biologically relevant
7

bility  ( m2)

10 3

FIGURE 5 The relationship between bleb

expansion time and poroelastic properties of the

cytoplasm. (a) Bleb expansion time for different

values of cytoplasmic bulk modulus and perme-

ability, and (b) bleb expansion time multiplied by

the bulk modulus G as a function of permeability.

The scaling relationship shows that bleb expansion

time is approximately inversely proportional to the

product Gk.

Biophysical Journal 110(5) 1168–1179



1174 Strychalski and Guy
timescales (5–30 s) for a wide range of values of cyto-
plasmic permeability and stiffness. Fig. 5 b shows that the
product of expansion time and the elastic modulus collapses
to a single curve (fit with G t ¼ 7:843k�0:87). Thus the bleb
timescale is inversely proportional to the product of the
permeability and elastic stiffness.

In Charras et al. (11), the authors propose a poroelastic
model of the cytoplasm in which intracellular pressure effec-
tively diffuses through the cytoplasm with a diffusion coeffi-
cient proportional to both cytoplasmic permeability and
stiffness, D � Gk. They use scaling arguments to argue
that the characteristic length of pressure propagation at
time T is proportional to

ffiffiffiffiffiffi
Gk

p
. Using the same scaling rela-

tionship D � Gk, and noting that a diffusion coefficient
has units length squared per time (L2/T) and k has units
L2, the characteristic time for bleb expansion time is
T � L2ðGkÞ�1. Our result that bleb timescale is inversely
proportional to both cytoplasmic permeability and elasticity
is consistent with the scaling arguments in Charras et al. (11).
The model in Charras et al. (11) was developed to interpret
experimental observations of bleb dynamics in cells with
multiple blebs, which we model in the next section.
Multiple bleb simulations

Information about the spatial profile of the intracellular
pressure has been inferred using experiments on cells with
multiple blebs by examining the effect of one bleb on the
dynamics of other blebs at different locations on the cell.
Interpretations of two different experiments on cells with
multiple blebs have led to conflicting hypotheses regarding
intracellular pressure equilibration. Charras et al. (11) used
cells that were continually blebbing all over the membrane
surface. They locally treated regions of the cell with drugs
that disrupted blebbing and observed that for some of these
treatments, bleb dynamics proceeded relatively unchanged
in the untreated regions. The authors argued that based on
a poroelastic model of the cytoplasm, the length scale for
pressure changes occurring on the timescale of blebbing dy-
namics was longer than the diameter of the cell, and there-
fore the spatial distribution of pressure was far from
equilibrium during bleb expansion. Tinevez et al. (12) put
cells in a state of high tension and initiated two different
blebs one after the other at different locations of the cell
by locally ablating the cortex. They observed that the second
bleb was ~30% smaller than the first bleb independent of its
location with respect to the first one. Based on these exper-
iments, they argue that the pressure is equilibrated on the
timescale of blebbing. For both experiments, the relevant
timescale for blebbing was estimated to be between 5 and
30 s. After this time, the cortex reforms in the bleb, and it
begins to retract.

In this section, we use our model to perform a computa-
tional experiment similar to the two-bleb experiments in Ti-
nevez et al. (12) to address these conflicting ideas about
Biophysical Journal 110(5) 1168–1179
pressure propagation and equilibration. Our results show
that the pressure is not equilibrated on a timescale of
5–30 s for relevant values of permeability, and this lack of
equilibration is essential to explain the results from Tinevez
et al. (12). Our results are in agreement with the ideas from
Charras et al. (11), but unlike Charras et al. (11), we show
that even when the pressure is far from equilibrium, this
does not mean that the effects of blebbing are highly local-
ized in space.

In our simulations, the first bleb was initiated at the right
side of the cell. The second bleb was nucleated at two
different locations: near the first bleb (at an angle of 90�

with respect to the first bleb) and across the cell from the
first bleb (at an angle of 180� with respect to the first
bleb). The second bleb was initiated 5 s after the first. It
was reported in Tinevez et al. (12) that the second bleb
was initiated <30 s after the first. The typical time delay
between the two bleb initiation times was ~7 s (J. Roensch,
personal communication). We use a permeability of 10�4mm
and a bulk modulus of 500 Pa for these experiments to
be consistent with the values reported in Charras et al.
(11,26). For these parameters, bleb expansion time was
computed to be ~100 s in Fig. 5. We consider other param-
eters in the next section.

Fig. 6, a and b, shows the spatial profile of pressure at
several times for the two different placements of the second
bleb. These plots show that the spatial arrangement of the
blebs affects the spatiotemporal dynamics of intracellular
pressure. When two blebs are relatively close, the pressure
gradient across the cell is generally larger (for example,
compare pressure at 20 s in Fig. 6, a and b).

Fig. 6 c shows the bleb sizes as a function of time for
these experiments from the time the first bleb is initiated
at t¼ 0 s until 300 s. This plot shows that the size of the sec-
ond bleb is always smaller than the first, independent of the
placement of the second bleb, even at times well beyond the
expansion timescale of 100 s. Despite the differences in
the intracellular pressure gradients resulting from the ar-
rangements of the two blebs, the time course of the expan-
sion for the first and second blebs is insensitive to the
placement of the second bleb.

After the initial inflation of both blebs, our two bleb ex-
periments show that the second bleb is roughly 20% smaller
than the first, independent of the location of the second bleb.
This result is consistent with the results from Tinevez et al.
(12). However, this does not mean that the pressure is equil-
ibrated, as claimed in Tinevez et al. (12). We observe that
the pressure is far from equilibrium on the bleb inflation
timescale, consistent with the predictions in Charras et al.
(11). One can observe in Fig. 6 c that on a long timescale
(>200 s) the two blebs approach the same size as the pres-
sure approaches the spatially uniform equilibrium.

Pressure is the driving force of bleb expansion, and thus if
the blebs feel the same pressure, they will be the same size.
Fig. 6 d shows that if the two blebs are nucleated at the same



FIGURE 6 Pressure and membrane position at several time values when the second bleb is initiated (a) close to the first bleb (at a 90� angle), and (b) across
the cell from the first bleb (at a 180� angle). Bleb size over time when the second bleb is initiated 5 s after the first one (c), and when both blebs are initiated at

the same time (d). All parameters for these simulations are identical. In particular, the bulk modulus of the cytoplasm is 500 Pa and permeability is 10�4 mm2.

To see this figure in color, go online.
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time, they will be the same size, independent of the spatial
arrangement of the two blebs. Thus, the small delay in the
initiation of the second bleb is a key to obtaining blebs of
different sizes.
Two timescales are relevant for bleb expansion
dynamics and affected by poroelastic parameters

Here we repeat the two-bleb experiments for a range of per-
meabilities with fixed elastic stiffness to determine how the
results of the previous section depend on the timescale of
pressure propagation. We use a bulk modulus of 500 Pa
and vary the permeability from 5� 10�5 � 10�3mm2. For
these parameters the bleb expansion time for a single bleb
ranges from roughly 10–100 s (see Fig. 5). The first column
of Fig. 7 shows the sizes of the blebs in the two-bleb exper-
iment as a function of time along with the size of a single
bleb for the same permeability. All sizes have normalized
by the maximum size of the single bleb experiment. The
second column shows the ratio of the size of the second
bleb to the first bleb as a function of time.
In the two bleb experiments, we observe two timescales,
both of which are affected by the permeability. Within the
first few seconds after the second bleb is initiated, the ratio
of the bleb sizes changes rapidly. This period is followed by
a much longer period characterized by slow change in both
bleb sizes and their size ratios. As in our single bleb exper-
iments presented in Fig. 4, the short timescale corresponds
to the time for pressure changes to propagate across the
cell, and the long timescale corresponds to the time of pres-
sure equilibration.

At high permeabilities (5� 10�4 and 10�3), we observe
the first bleb steadily shrinks as the second bleb expands
on the long timescale. As the pressure approaches the
spatially uniform equilibrium, the two blebs approach the
same size. For all permeabilities, we see that the size ratio
is approaching one on the long timescale. This long time-
scale on which we see the size ratios changing slowly corre-
sponds to the slow approach to equilibrium pressure. The
timescale of the approach to equilibrium is well beyond
the bleb expansion timescale for the range of permeabilities
used in our experiments.
Biophysical Journal 110(5) 1168–1179
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FIGURE 7 (a–e) Quantifying bleb sizes as a func-

tion of cytoplasmic permeability for a second bleb

initiated close to (90�) and across the cell (180�)
from the first bleb. (I) Bleb size over time divided

by the maximum bleb size of one single right bleb.

(II) Second bleb size (left/top) divided by the first

bleb size (right) over time. In all of the simulations,

the bulk modulus of the cytoskeleton was G ¼
500 Pa, and the second bleb was initiated 5 s after

the first. To see this figure in color, go online.
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Our results on pressure equilibration are consistent with
the argument presented in Charras et al. (11) that the poroe-
lastic rheology of the cytoplasm is responsible for pressure
being far from equilibrium on the bleb expansion timescale.
In Charras et al. (11), the authors argue that for poroelastic
cytoplasm, pressure changes resulting from a bleb’s expan-
sion do not affect the pressure in other regions of the cell on
the timescale of 5–30 s. However, we observe that the two
blebs influence each other on this shorter timescale. The
Biophysical Journal 110(5) 1168–1179
size of the first bleb deviates from the size of the single
bleb within the first 5 s after the second bleb is initiated
because the second bleb relieves some of the driving pres-
sure expanding the first bleb. Similarly, the second bleb ex-
periences an initial lower driving pressure because the first
bleb relieves some pressure. This results in a smaller second
bleb size on the long-time approach to equilibrium.

Both the short and long timescales are relevant for un-
derstanding the size difference observed in the two-bleb
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experiments of Tinevez et al. (12). If pressure equilibrates
on the timescale of bleb expansion as stated in Tinevez
et al. (12), both blebs would approach the same size on
the timescale of 5–30 s. Alternatively, if pressure changes
were localized to the site where the bleb is initiated, as re-
ported in Charras et al. (11), then the second bleb expan-
sion dynamics would be the same as those for the first
bleb (and also the same as those for the single bleb).
Although we find that pressure equilibrates on a timescale
comparable or longer to bleb expansion time, pressure
changes propagate on a timescale much shorter than bleb
expansion.
DISCUSSION

Despite the many proposed rheological descriptions, dy-
namic models of blebbing cells have assumed that the cyto-
plasm is a viscous fluid (13,17,19,22). These models ignored
the elastic stresses within the cytoskeleton and the friction
between the fluid and the cytoskeleton. In our previous
model, we modeled the cytoplasm as a viscous fluid (22).
We showed that bleb growth was limited by membrane elas-
ticity, and that drag between the cytoskeleton and the
cytosol was the force that set the timescale of bleb expan-
sion. The only component of the cytoskeleton in this model
was the cortex. As a result, the cortical drag coefficient that
resulted in bleb expansion times of 5–30 s corresponded to a
cortical pore size that was significantly smaller than values
measured from scanning electron micrographs (29). The
conclusion was that drag throughout the cytoplasm contrib-
utes to blebbing dynamics, and this was the motivation to
extend our model to include drag throughout the cytoplasm.

By comparing our previous model of a blebbing cell with
a viscous fluid cytoplasm to the model presented here with a
poroelastic model of the cytoplasm, we show that poroelas-
ticity is important as a source of intracellular drag and for
pressure relief. The values for permeability in our computa-
tional model that correspond to biological bleb expansion
times agree with previously reported values of permeability,
and also are consistent with experimentally measured pore
sizes of the cytoplasm (26). These results support our hy-
pothesis that intracellular drag significantly contributes to
bleb dynamics. Elastic stress in the cytoskeleton is impor-
tant for pressure relief. When the cytoplasm is compressed
during bleb expansion, an elastic-restoring force leads to a
significantly larger intracellular pressure decrease after
bleb expansion. We found that the decrease in pressure
can limit bleb expansion, which is in agreement with Tine-
vez et al. (12).

Charras and co-workers (11,26,27,30) have proposed a
poroelastic model of the cytoplasm, where intracellular
pressure effectively diffuses through the poroelastic cyto-
plasm over a length proportional to

ffiffiffiffiffi
Dt

p
, where D is a diffu-

sion constant proportional to both cytoplasmic permeability
and stiffness. We compute bleb expansion times with our
model for a range of values for cytoplasmic permeability
and elasticity, and found that 1) bleb expansion times over
much of this range matched the experimentally observed
timescale for bleb expansion of 5–30 s, and 2) bleb expan-
sion time is inversely proportional to the product Gk,
which is in agreement with the previously reported scaling
relationship.

The poroelastic model has been supported through
various experiments, such as pharmacological manipulation
of blebbing cells (11), rapid indentation of cells (27),
and exposing cells to hyperosmotic solution to measure
effective pore size (26). The results of these experiments
are consistent with intracellular pressure diffusing through
cytoplasm with an effective diffusion coefficient
D ¼ Gk=m (11,26,27,30,31). The value for the diffusion
coefficient was calculated from experimental data to be
Dz50 mm2 s�1 (27). The values of D that we compute
from the data in Fig. 5 are in good agreement with these
values, ranging from 5 to 300 mm2 s�1. The lower value
corresponds to a softer cytoplasm with lower permeability
(G¼ 500 Pa and k ¼ 1� 10�4 mm2), while the higher value
corresponds to a more stiff cytoplasm with higher perme-
ability, G ¼ 1500 Pa and k ¼ 2� 10�3 mm2). Our model
results are in good agreement with previous models and
experiments when comparing poroelastic parameters, bleb
expansion times, and diffusion coefficients.

Charras et al. (11) use a scaling argument to claim that in
a poroelastic cytoplasm, pressure disturbances from blebs
on opposite sides of the cell are effectively isolated from
each other on the timescale of seconds. They compute a
length scale for pressure diffusion of 15–30 mm, meaning
that pressure can be nonequilibrated on a timescales of
10 s. This claim was called into question by Tinevez et al.
(12). The authors measured bleb size dynamics in two
bleb experiments when the second bleb was initiated shortly
after the first bleb. After both blebs inflated, the second bleb
was slightly smaller than the first bleb regardless of whether
it was initiated close or across the cell from the first bleb.
The interpretation of these experiments was that pressure
equilibrated quickly across the cell, and in particular, faster
than the timescale of bleb expansion.

We use our computational model to simulate the experi-
ments of Tinevez et al. (12) to determine whether pressure
is equilibrated in the multibleb experiments. Our results
show that pressure is not equilibrated in the two bleb exper-
iments for a range of values of cytoplasmic permeability.
We find that nonequilibrated pressure and a short time delay
in nucleating the second bleb are necessary to match the
experimental results from Tinevez et al. (12). We measure
bleb sizes and find that the second bleb is always smaller
than the first bleb. Our results are in agreement with Charras
et al. (11), in that the timescale of pressure equilibration is
beyond the timescale of bleb inflation. However, we do
not observe that pressure changes were highly localized in
space, as claimed in Charras et al. (11).
Biophysical Journal 110(5) 1168–1179
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We observe three regimes of bleb size dynamics in multi-
bleb experiments that depend on poroelastic parameters. At
low permeability, bleb expansion dynamics and pressure
equilibrates on a longer timescale. However, even at the
value of k ¼ 5� 10�5 mm2, which is small relative to other
values of permeability given in Charras et al. (26), pressure
relief from the second bleb causes the first bleb to be smaller
in size than in the case of a single bleb. In the limit of cyto-
plasmic permeability approaching zero, pressure will be iso-
lated as claimed in Charras et al. (11), but this regime
corresponds to unphysical permeability values.

For larger values of cytoplasmic permeability, pressure
propagates relatively quickly. Pressure relief from the sec-
ond bleb causes the first bleb size to decrease on the time-
scale of a single bleb’s expansion. We also observe
shrinking of the first bleb in two bleb experiments with a
viscous fluid cytoplasm (Fig. S3), which corresponds to
the case of infinite permeability. Because the decrease in
the first bleb’s size as the second bleb expands has not
been observed experimentally, we conclude that cyto-
plasmic permeability is smaller than k ¼ 10�3 mm2.

For intermediate values of cytoplasmic permeability
ð2� 5� 10�4mm2Þ, we find that both blebs appear to be
fully inflated before slowly approaching the same size on
a long timescale as pressure equilibrates. The long timescale
where the blebs approach the same size cannot be observed
in experiments because cortical reformation and bleb retrac-
tion occur in cells after ~30 s. In this parameter regime,
pressure is not equilibrated on a timescale of 30 s, which
is in agreement with Charras et al. (11), and the second
bleb is smaller than the first bleb with size dynamics that
are independent of its location, which agrees with Tinevez
et al. (12). The results of both experiments are consistent
with a poroelastic model of the cytoplasm. Additionally,
these values of cytoplasmic permeability are consistent
with values reported in Charras et al. (11,26).

In single bleb experiments, we showed that a pressure
disturbance from bleb initiation propagates across the cell
on a relatively short timescale (<1 s) before equilibrating
on a longer timescale (~10 s). These timescales are evident
in Fig. 4, c and d. The pressure disturbance propagates
across the cell by time t ¼ 0.63 s (indicated by I), which
is ~5% of bleb expansion time (t ¼ 12:85 s, denoted
by III). The pressure profiles at times II–IV show the pres-
sure approaching equilibrium on the 10–20 s timescale. In
our two-bleb experiments, the second bleb is initiated on
the shorter of these two timescales. This means that pressure
disturbances are propagated across the cell on a shorter
timescale than the pressure equilibration timescale, and
the nucleation of the second bleb will affect the expansion
dynamics of the first bleb on this shorter timescale.

To understand the multiple timescales of pressure dy-
namics in a poroelastic medium, we consider a reduced
model consisting of a cylinder of contractile poroelastic ma-
terial held fixed at one end and open at the other end. In the
Biophysical Journal 110(5) 1168–1179
Supporting Material, we show that the displacement of
the network in the axial direction satisfies a diffusion equa-
tion, and the resulting diffusion coefficient has the same
form previously reported by Charras and coworkers
(11,26,27,30). We express the solution for the displacement
as an infinite series of decaying sinusoidal functions of
decreasing wavelength that scale with the poroelastic diffu-
sion coefficient. All decay rates scale with this effective
diffusion coefficient. The longest wavelength solution de-
cays most slowly, and it dominates the long-time behavior
of equilibration across the whole cell. Bleb initiation creates
localized, short wavelength changes in the pressure, which
propagate quickly across the cell. The long timescale is
identical to the timescale of pressure equilibration previ-
ously reported in Charras et al. (11). In contrast to previous
work, we find that smaller wavelength terms in the solution
are nonnegligible on short timescales and lead to fast prop-
agation of local disturbances. For example, we find the pres-
sure at one side of the cylinder drops by as much as 5% on a
timescale that is an order-of-magnitude smaller than the
pressure equilibration timescale. Therefore, multiple time-
scales contribute to the propagation of pressure distur-
bances, such as blebs, across a poroelastic material.

Our work constitutes a major advance toward understand-
ing the significance of cytoplasmic rheology in protrusion
dynamics because our dynamic model allows us to obtain
pressure data over a range of timescales. Using our model,
we identified the significance of the fast timescale of pres-
sure propagation in blebbing cells. In the case of multibleb
experiments, the short timescale of pressure propagation
across the cell, the time delay in initiating the second
bleb, and the long timescale for pressure equilibration can
explain the difference in bleb sizes from the experiments
in Tinevez et al. (12). The advantage of our model is that
we are able to isolate and study intracellular pressure dy-
namics, which cannot be isolated in vivo. Other models of
blebbing cells have ignored the poroelasticity of the cyto-
plasm (5,13,16,20–22), which could limit our understanding
of pressure-driven protrusions in migrating cells.

An in-depth knowledge of the rheology and pressure dy-
namics of the cytoplasm is important for understanding how
cells migrate in 3D, especially for the case when cells do not
use specific adhesion to the substrate. Frictional contacts
may be important for pushing through gaps in interstitial tis-
sue (6,32). If a pressure-driven protrusion, such as a bleb, is
pushed into a gap in the extracellular matrix, the rheology
of the cytoplasm can be an important contributing factor
for establishing traction forces exerted on the substrate. To
model cell migration in this context, our blebbing model
would need to include events that occur after the timescale
of bleb inflation, such as cortical reformation (occurs after
~30 s) and bleb retraction (occurs after ~1 min). Future
modeling efforts will involve incorporating these longer
timescale events to understand the coordination of the
mechanical processes involved in 3D cell migration.
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