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Abstract

The use of vocalizations to communicate information and elaborate social bonds is an adaptation 

seen in many vertebrate species. Human speech is an extreme version of this pervasive form of 

communication. Unlike the vocalizations exhibited by the majority of land vertebrates, speech is a 

learned behavior requiring early sensory exposure and auditory feedback for its development and 

maintenance. Studies in humans and a small number of other species have provided insights into 

the neural and genetic basis for learned vocal communication and are helping to delineate the roles 

of brain circuits across the cortex, basal ganglia and cerebellum in generating vocal behaviors. 

This Review provides an outline of the current knowledge about these circuits, the genes 

implicated in vocal communication, and a perspective on future research directions in this field.
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INTRODUCTION

The insights discussed in this Review have been largely attained through the study of 

developmental disorders affecting speech and analysis of neuronal circuits in songbirds and 

mice. Genetic screens of individuals with inherited forms of speech disorders, like verbal 

dyspraxia, stuttering and some types of autism, have allowed for the identification of a 

number of genes (FOXP2, CNTNAP2, FOXP1, GNPTAB, GNPTG, NAGPA) involved in 

speech and/or social-cognitive development that can now be studied using animal models 

(Konopka and Roberts, 2016; Lepp et al., 2013). Of these, the transcription factor FOXP2 

has been the most intensively studied. Mutations of FOXP2 in humans are associated with 

an inherited verbal dyspraxia, a speech disorder that results from difficulties in controlling 

orofacial muscles. The study of FOXP2 is now providing significant insights into the 

underpinnings of vocal motor learning and the development of neuronal circuits.
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Songbirds have long been the predominant model for studying the neural circuit 

mechanisms for vocal learning (Doupe and Kuhl, 1999; Mooney et al., 2008). Like human 

speech, birdsong is learned during a developmental sensitive period and requires early 

sensory exposure to a vocal model (song tutor) and auditory feedback for its normal 

development and maintenance. Studies in songbirds have revealed a well delineated neural 

circuit spanning from the cortex to the brainstem that is necessary for song learning and 

song production. The organization of this song circuit is similar to the core cortical and basal 

ganglia circuits involved in speech (Doupe and Kuhl, 1999; Jarvis, 2004). In addition, 

knockdown of the transcription factor FoxP2 in songbirds disrupts song development in a 

manner similar to disruptions seen in human speech development, indicating analogous 

circuit and gene regulatory mechanisms for song and speech (Fisher and Scharff, 2009; 

Haesler et al., 2007; Haesler et al., 2004; Lai et al., 2001; Murugan et al., 2013). Despite 

these important behavioral and neurobiological parallels between birdsong and speech, 

studies in songbirds have been limited by the lack of methods for efficiently and precisely 

editing the avian genome; however, the recent development of transgenic songbirds (Abe et 

al., 2015; Agate et al., 2009; Liu et al., 2015; Scott et al., 2010), advances in viral vector 

methods and gene editing tools (Betley and Sternson, 2011; Heidenreich and Zhang, 2016; 

Roberts et al., 2012; Roberts et al., 2010), and the sequencing of the avian genome (Warren 

et al., 2010; Zhang et al., 2014) all promise to enrich the continued use of songbirds in the 

study of speech disorders.

The genetic accessibility of mice and the wide range of molecular and genetic tools 

available for studying the mouse brain provides a powerful platform for examining how 

genetic disorders affect the central nervous system, and how genes implicated in speech and 

social/cognitive disorders impact neuronal circuit development and synaptic function. Mice 

exhibit both neonatal calls as well as adult vocalizations pertinent to social interactions 

(Scattoni et al., 2009). However, it should be appreciated that unlike speech and birdsong, 

vocal behaviors in mice are not learned from social models using auditory feedback. For 

instance, deaf mice can develop normal vocalizations (Portfors and Perkel, 2014). This lack 

of vocal learning limits the use of mice for modeling speech development. However, their 

vocalizations still allow studying motor and auditory brain circuits involved in vocal 

communication (Holy and Guo, 2005).

Overall, it is important to note that comparing vocalizations among humans, songbirds and 

mice will always be challenging. While there is significant conservation of brain structures 

and genes among these divergent species, human language, characterized by speech and 

sign-based forms of communications in deaf communities, has a level of complexity and 

abstraction that may well be unique and thus difficult to model. Furthermore, vocal 

behaviors in mice and some species of songbirds are sexually dimorphic and sensitive to 

sex-steroids, further underscoring the different evolutionary trajectories associated with 

vocal communication. However, by focusing on brain structures associated with speech: the 

cortex, basal ganglia, and cerebellum, we here provide touchstones for comparing and 

integrating genetic and neural circuit data from songbirds and mice with data from humans.
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Cortex

The observation that brain lesions of the inferior frontal cortex lead to a disruption in speech 

production (expressive aphasia) in the late 1800s heralded the study of brain functions out of 

the dark ages of phrenology and provided one of the first insights into the brain mechanisms 

for vocal communication (Dronkers et al., 2007). This work by Paul Broca was soon 

followed by that of Karl Wernicke who found that lesions of the superior temporal gyrus 

(STG) led to a deficit in speech perception (receptive aphasia) (Mathews et al., 1994). These 

early descriptions, along with later accounts provided by the pioneering work of the 

neurosurgeon Wilder Penfield who carried out stimulation and recording of specific 

neocortical areas in awake patients (known as electrocorticography, ECoG, or intracranial 

electroencephalography, iEEG) (Penfield and Rasmussen, 1949), laid the basis for 

attributing neural mechanisms to speech and language. Modern approaches have 

additionally used non-invasive techniques such as magnetoencephalography (MEG), 

transcranical magnetic stimulation (TMS), and functional MRI (fMRI) to study speech in 

both patient and neuro-typical populations (for an in-depth discussion and primary 

references please see (Cattaneo, 2013; Chang et al., 2015; Devlin and Watkins, 2007; 

Poeppel, 2012; Price, 2010)).

The use of these techniques has revealed that the early divisions of speech production and 

perception into independent cortical regions were overly simplistic (see references in 

(Hickok et al., 2011)). For example, premotor cortex may modulate speech perception, and 

auditory areas (e.g. STG) are thought to influence speech production. The integration of 

these feedback loops among speech-related cortical areas permits ongoing learning, 

maintenance, and refinement of speech. Interestingly, a bilateral ECoG study directly 

demonstrated the existence of sensory-motor integration during speech and also provided 

evidence for bilateral neural activity in contrast to much of the work focusing on left 

hemisphere lateralization of language (Cogan et al., 2014).

Researchers have recently begun to parse the neuronal substrates for perceiving and 

producing the basic elements of speech. Application of ECoG allowed the determination of 

the neural responses to specific phonemes, or units of sound, during speech perception, 

showing that there are discrete and localized invariant responses to specific phonemes in the 

STG (Mesgarani et al., 2014). In addition, MEG of the cortex was recently used to identify 

the timescales of linguistic structure in a study of speech perception (Ding et al., 2015). 

Multi-electrode recordings have also recently helped map the spatial representation of 

phonetic features for speech production in the ventral sensorimotor cortex (adjacent to the 

so-called “Broca’s area” in the inferior frontal cortex) (Bouchard et al., 2013). Building 

upon over a century of work, these and other studies are redefining areas of the cortex 

important for speech.

These insights into speech production and comprehension are pertinent to the understanding 

of genetic and neuropsychiatric disorders that affect speech and language. Structural 

imaging of individuals with FOXP2 mutations have identified both increases and decreases 

in gray matter in several cortical regions associated with speech such as the STG and the 

inferior frontal gyrus (Belton et al., 2003; Watkins et al., 2002). fMRI studies of some of 

Konopka and Roberts Page 3

Cell. Author manuscript; available in PMC 2017 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



these individuals have also found decreases and/or alterations in cortical brain activity 

during word and non-word repetition paradigms (Liegeois et al., 2003; Liegeois et al., 

2011), suggesting that deficits in cortical function may be associated with language 

difficulties imposed by this mutation possibly as a consequence of altered cortico-cerebellar 

or cortico-striatal circuitry. Disruption of corollary discharge pathways linking motor and 

auditory cortical circuits are speculated to contribute to auditory hallucinations and 

“imaginary inner speech” in schizophrenia ((Heinks-Maldonado et al., 2007; Horga et al., 

2014) and references in (Hugdahl, 2015)). Deficits in vocal communication are also 

associated with autism spectrum disorders (ASD). Patients with ASD related syndromes or 

the more severe diagnosis of intellectual disability often have speech delay or can even be 

completely non-verbal. At the functional level, a reduction in left hemispheric lateralization 

of language has been observed in ASD patients as well as changes in prosody, verbal 

fluency and activation of non-typical language areas ((Kleinhans et al., 2008) and references 

in (Dichter, 2012)). Recent fMRI work has demonstrated hypoactivation of the STG in 

patients with ASD who exhibit language problems, suggesting that this fMRI signature 

could be used as a biomarker for ASD patients who will progress to poor outcomes and 

presenting an opportunity for therapeutic intervention (Lombardo et al., 2015).

Studies in songbirds have provided important insights into the architecture and function of 

cortical circuits for vocal communication. First, cortical song circuits involved in production 

of learned song are separable from those involved in vocal plasticity (Aronov et al., 2008; 

Brainard and Doupe, 2000; Charlesworth et al., 2012; Olveczky et al., 2005). Song-related 

cortical pathways associated with cortico-basal-ganglia-cortical loops are essential for 

feedback dependent changes in vocal behavior, like tutor song imitation in juvenile birds 

and the deterioration of song structure following the loss of hearing. Yet, lesions in cortical 

portions of this circuit do not disrupt the birds’ ability to produce previously learned vocal 

behaviors (Bottjer et al., 1984; Brainard and Doupe, 2000; Olveczky et al., 2005; Scharff et 

al., 2000). Second, researchers have identified the song premotor region HVC as a critical 

structure for encoding learned song and considerable research effort has begun to elucidate 

how stereotyped vocal sequences are organized and represented in HVC (Amador et al., 

2013; Hahnloser et al., 2002; Kosche et al., 2015; Long and Fee, 2008; Long et al., 2010; 

Markowitz et al., 2015; Okubo et al., 2015; Peh et al., 2015; Wang et al., 2008). Third, 

recent studies have revealed an essential role of song motor circuits, including HVC, in 

learning from sensory experience of a vocal model (Roberts et al., 2012) and indicate that 

sensory experience of the tutor and learning of vocal motor sequences both have a profound 

influence on shaping the functional organization of song motor programs during 

development (Adret et al., 2012; Bolhuis and Moorman, 2015; Mooney, 2014; Okubo et al., 

2015; Prather et al., 2010; Roberts et al., 2012; Roberts et al., 2010; Shank and Margoliash, 

2009; Vallentin et al., 2016). Songbirds have been intensively studied and we point the 

reader to a number of excellent reviews of songbird neurobiology (Bloomfield et al., 2011; 

Brainard and Doupe, 2002, 2013; Brawn and Margoliash, 2015; Doupe and Kuhl, 1999; 

Kuebrich and Sober, 2015; Mooney, 2014; Roberts and Mooney, 2013; Schneider and 

Mooney, 2015; Tschida and Mooney, 2012)

The role of the cortex in mouse vocalizations is less clear and mice genetically altered to 

lack large parts of the cortex still produce normal adult vocalizations (Hammerschmidt et al., 
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2015). However, it has recently been shown that alteration of the gene SRPX2 specifically in 

the cortex, results in changes to neonatal mouse pup vocalizations (Sia et al., 2013). SRPX2 

is of particular interest to the study of speech as it is associated with speech dyspraxia 

caused by rolandic seizures (Roll et al., 2006) and it is a transcriptional target of FOXP2 

(Roll et al., 2010). Therefore, further studies are required to determine whether other brain 

regions and circuits developmentally compensate for the function of cortex in mouse 

vocalizations and how specific genes are involved in cortical function and circuits that affect 

vocalizations.

Basal ganglia

The basal ganglia are a set of interconnected forebrain nuclei that are critically involved in 

the control of motor behaviors and learning. These brain regions include the striatum 

(caudate and putamen in primates), globus pallidus or pallidum, the subthalamic nucleus and 

the substantia nigra. The basal ganglia receive input from the cortex and provide feedback to 

the cortex via a series of pathways that loop through the thalamus. A number of excellent 

reviews of the general role of basal ganglia function in motor control, learning and disease 

states have been published (Enard, 2011; Graybiel, 2008; Gunaydin and Kreitzer, 2015; 

Nelson and Kreitzer, 2014; Redgrave et al., 2010; Shepherd, 2013; Tritsch and Sabatini, 

2012); here we briefly review the role of the basal ganglia in vocal control.

Basal ganglia circuits play a critical role in motor control and the learning of sequential 

motor behaviors, including speech production in humans (Watkins, 2011). Ischemic strokes 

affecting the caudate nucleus can result in language impairment and damage to thalamic 

nuclei linking the basal ganglia with the cortex are consistently linked with disruptions of 

speech (Barbas et al., 2013; Gronholm et al., 2015). Interestingly, stuttering is associated 

with functional abnormalities in the basal ganglia circuits, and other forms of inherited 

speech disorders have been linked to disruptions of the dorsal striatum (Alm, 2004; Belton et 

al., 2003; Craig-McQuaide et al., 2014; Watkins, 2011; Watkins et al., 2002). Further 

evidence for a role of the basal ganglia in speech comes from insights into diseases that 

disrupt the functioning of basal ganglia circuits, such as Huntington’s disease, which also 

affects the motor control of speech. Huntington’s disease results in cell death in the striatum 

and is characterized by progressive development of involuntary movements and can lead to 

problems with sequencing of motor movements for speech and problems swallowing. 

Although the vocal disruptions associated with Huntington’s disease have not yet been 

modeled in mice (Pouladi et al., 2013), transgenic songbirds expressing the human mutant 

Huntington gene have recently been shown to also develop disruptions in the vocal control 

of their learned song, including progressive disruptions in song sequencing, and stuttering 

(Liu et al., 2015).

Perhaps the greatest insights into the role of the basal ganglia for vocal control in mammals 

have emerged from the study of FOXP2. As previously mentioned, FoxP2 mutations results 

in deficits in coordinated movements required for speech. We point the reader to several 

reviews on FOXP2 (Enard, 2011; Fisher and Scharff, 2009; French and Fisher, 2014; 

Newbury and Monaco, 2010; Scharff and Petri, 2011) and we here highlight what has been 

gleaned about basal ganglia circuits from its study.

Konopka and Roberts Page 5

Cell. Author manuscript; available in PMC 2017 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FOXP2 is highly expressed in the human dorsal striatum during development, as well as the 

dorsal striatum of other mammals, songbirds and reptiles (Haesler et al., 2004; Teramitsu et 

al., 2004). Imaging studies have shown that the dorsal striatum is severely impacted in 

individuals with mutations of FOXP2, implicating both the dorsal striatum and FOXP2 in 

speech learning and production. Within the dorsal striatum, FoxP2 is highly expressed in 

medium spiny neurons (MSNs) (Schulz et al., 2010; Takahashi et al., 2003). Striatal MSNs 

integrate glutamatergic inputs from the cortex and dopaminergic inputs from the midbrain, 

and function in the control of motor behaviors, action selection and learning of motor 

sequences. Heterozygous Foxp2 mice exhibit decreased synaptic plasticity at corticostriatal 

synapses and increased levels of extracellular dopamine in the striatum. In contrast, 

expression of human FOXP2 in the mouse is associated with increased synaptic plasticity at 

corticostriatal synapses, decreased levels of extracellular dopamine, and enhanced 

transitions from declarative to procedural learning (Enard et al., 2009; Groszer et al., 2008; 

Schreiweis et al., 2014). These data are in line with the transcriptional program of human 

FOXP2 regulating genes involved in brain and craniofacial development (Konopka et al., 

2009).

In songbirds a specific region of the dorsal striatum, termed Area X, plays a dedicated and 

exclusive role in song learning. Lesions to Area X during the sensitive period for vocal 

learning prevent accurate vocal imitation of a tutor’s song and the normal development of 

stereotyped vocalizations by adulthood (Scharff and Nottebohm, 1991). FoxP2 is strongly 

expressed in Area X, and knockdown (KD) of FoxP2 in Area X of young zebra finches, 

using hairpins against FoxP2 mRNA, causes an increase in vocal variability and prevents 

birds from accurately copying the song of their tutor (Haesler et al., 2007). The disruption in 

vocal learning and vocal-motor variability in songbirds following FoxP2-KD is reminiscent 

of the orofacial motor disruptions seen in humans carrying a nonfunctional FOXP2 allele 

(Haesler et al., 2007; Murugan et al., 2013). Moreover, KD of FoxP2 in Area X of zebra 

finches renders MSNs insensitive to dopamine receptor (DR1) agonists or antagonists 

(Murugan et al., 2013), and leads to decreased spine density on MSNs (Schulz et al., 2010). 

Male zebra finches produce a song with less trial-by-trial variability when singing directly to 

a female bird than when practicing their song in isolation or singing in the presence of male 

birds. This context-dependent ability of male birds to sing more stereotyped song in the 

presence of a female is abolished following infusion of a D1R antagonist into Area X or 

following FoxP2-KD in Area X (Haesler et al., 2007; Leblois and Perkel, 2012; Leblois et 

al., 2010; Murugan et al., 2013). This effect on song production is thought to result from a 

disruption in the timing of information flow through the basal ganglia and D1R antagonists 

and FoxP2-KD both result in shortening of synaptic delays through the basal ganglia circuits 

(Murugan et al., 2013). These data indicate that FoxP2 impacts vocal behavior by regulating 

postsynaptic dopaminergic signaling, synaptic plasticity, and the flow of signals through the 

striatum.

The highly homologous gene FOXP1 is among the group of 71 significant recurrent de novo 

mutations associated with ASD (Sanders et al., 2015). In the mouse, Foxp1 is one of the 100 

most abundant striatal-enriched genes, and therefore, its dysfunction is likely to have a 

significant impact on that structure (Heiman et al., 2008). Brain-wide deletion of Foxp1 in 
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mouse results in autism-relevant behaviors (Bacon et al., 2014), and patient-relevant 

haploinsuffienct Foxp1 mice exhibit altered vocal communication, dysregulation of known 

ASD and Foxp2 target genes in the striatum, and changes in medium spiny neuron 

excitability (Araujo et al., 2015). Future studies that dissect out the distinct and overlapping 

contributions of FoxP1 and FoxP2 to basal ganglia function should be informative for 

understanding vocal communication.

Cerebellum

The cerebellum functions at multiple levels of sensorimotor integration including sensory 

acquisition, processing timing information and prediction of motor output (Manto et al., 

2012). The role of the cerebellum in sensorimotor integration has been known for decades 

based on lesions and degenerative disorders in patients (see references in (Murdoch, 2010)). 

However, there has been relatively less research into sensorimotor integration in the 

cerebellum as it pertains to speech and language (compared to the cortex or basal ganglia), 

and this is surprising given a centuries old literature of patients with cerebellar lesions 

having speech alterations (Holmes, 1917; Murdoch, 2010). In patients with FOXP2 

mutations, one of the areas of the brain with significantly altered amounts of grey matter is 

indeed the cerebellum (Watkins et al., 2002).

We refer the reader to a recent consensus paper on the role of the cerebellum in language 

(Marien et al., 2014), but outline some key points from that consensus here. Similar to the 

cortex, the cerebellum is involved in speech perception and participates in parsing phonetic 

information. In particular, the evaluation of timing information from incoming signals 

appears to require cerebellar function. The cerebellum is also important for speech 

production and is involved in the rate of production, particularly at the phonological level. 

The coordination of the vocal tract in speech is also at least partly dependent on cerebellar 

input. Another critical facet of the cerebellum is the differential functional localization of 

speech attributes at a regional level. For example, specific lobules and specific medial-

lateral portions of lobules can be dissected into those contributing to sensorimotor control 

versus those involved in other cerebellar functions.

Beyond sensorimotor control, the cerebellum is also important for the higher order 

components of speech and language, as there is growing evidence for cerebellar involvement 

in cognition and affect (Stoodley and Schmahmann, 2010) with functional connectivity 

studies supporting connections between the cerebellum and cortical areas (Habas et al., 

2009; Krienen and Buckner, 2009). Such evidence fits with disruption in cerebellar function 

in numerous neuropsychiatric diseases. For example, the cerebellum has been increasingly 

recognized as a key brain region in ASD pathophysiology (see references in (Becker and 

Stoodley, 2013; Hampson and Blatt, 2015; Mosconi et al., 2015)). In particular, Purkinje 

neurons, which are the sole motor output of the cerebellum, appear to be particularly 

vulnerable in ASD and relevant to vocal production. Of note, FOXP2 expression in the 

cerebellum is limited to the Purkinje neurons and mouse models of Foxp2 exhibit striking 

cerebellar defects as well as altered vocal behavior (see references in (Usui et al., 2014)). 

The ASD-related gene Tsc1 has also been specifically deleted in Purkinje neurons in mice 

leading to ASD-relevant behaviors including changes in vocalizations (Tsai et al., 2012). It 
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remains to be seen if the other cell types in cerebellum, like granule cells for example, are 

vulnerable in disorders impacting speech or if Purkinje neurons play a particularly 

privileged role. Together, these data support an important role for the cerebellum in speech 

across numerous levels from genes to neural activity to circuits. Interestingly, the role of the 

cerebellum in birdsong learning and song motor control is underexplored and a research area 

requiring more attention given the behavioral findings in humans and mice.

Future Directions

With only a handful of genes studied to date and a limited understanding of the brain circuits 

contributing to specific aspects of speech, there have nonetheless been significant inroads 

made toward understanding the genetic and neural basis of speech. However, there is clearly 

a need for the identification of additional genes and further use of model systems to better 

understand the neural circuits underlying vocal communication.

The use of human patients with damage in speech-related brain areas has served as both a 

historical and modern basis for understanding brain regions, circuits and neural functions 

underlying speech. More recently, studies of patients undergoing surgery for epilepsy have 

allowed a more detailed understanding of the neural substrates of speech. However, such 

invasive procedures will always be limited to patient populations, and there is a need to 

increase the resolution of non-invasive approaches such as MEG and fMRI to study speech 

in neuro-typical populations. For example, recent fMRI work has been able to extricate 

overlapping sets of neural activity in the auditory cortex to identify distinct responses to 

either speech or music (Norman-Haignere et al., 2015). Furthermore, correlations between 

resting-state fMRI and gene expression have also recently been uncovered (Hawrylycz et al., 

2015; Richiardi et al., 2015; Wang et al., 2015), but future studies that combine such 

approaches with speech-related task-based imaging, including investigations beyond 

traditional areas of speech and language (Blank et al., 2015) should provide insights into 

genomic correlates of speech and a deeper understanding of speech-related brain networks.

There are ongoing efforts to identify additional genes important for speech through genome 

wide association studies of both endophenotypes in patient populations and neuro-typical 

populations. While the majority of these studies have been underpowered in terms of 

numbers of samples, a few hits have been observed that might make sense in terms of brain 

expression or function such as SCN11A or ROBO2 (see references in (Graham and Fisher, 

2015)). As has been seen in other fields, additional large-scale studies will need to be carried 

out to definitively identify other relevant genes. Once the gene list is in hand, the field will 

be able to dissect out the requirements for these genes at the neuronal and circuit level. 

There is also still much to be learned about FOXP2, 15 years after its initial association with 

speech. The use of animal models will be critical for the continuation of these studies and 

will likely require introduction of advanced genetic methods in songbirds and other species 

that exhibit complex vocal behaviors. For example, the study of vocal circuits in non-human 

primates, including the particularly social marmoset monkeys, is a burgeoning field. Indeed, 

recent studies in marmosets have shown that normal vocal development can be influenced 

by parental feedback (Takahashi et al., 2015). With the help of a ten year Brain/MINDS 

(Brain Mapping by Integrated Neurotechnologies for Disease Studies) project in Japan 
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focused on marmoset research (Okano et al., 2015), these small monkeys might play an 

important role in the future of neuroscience research aimed at better understanding neural 

circuits for vocal development.
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