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Abstract

Purpose—To estimate k-space trajectory errors in non-Cartesian acquisitions and reconstruct 

distortion-free images, without trajectory measurements or gradient calibrations.

Theory and Methods—The Trajectory Auto-Corrected image Reconstruction (TrACR) method 

jointly estimates k-space trajectory errors and images, based on SENSE and SPIRiT parallel 

imaging reconstruction. The underlying idea is that parallel imaging and oversampling in the 

center of k-space provides data redundancy that can be exploited to simultaneously reconstruct 

images and correct trajectory errors. Trajectory errors are represented as weighted sums of 

trajectory-dependent error basis functions, the coefficients of which are estimated using gradient-

based optimization.

Results—TrACR was applied to reconstruct images and errors in golden angle radial, center-out 

radial, and spiral in vivo 7 Tesla brain acquisitions in 5 subjects. Compared to reconstructions 

using nominal trajectories, TrACR reconstructions contained considerably less blurring and 

streaking, and were of similar quality to images reconstructed using measured k-space trajectories 

in the center-out radial and spiral cases. Reconstruction cost function reductions and 

improvements in normalized image gradient squared were also similar to those for images 

reconstructed using measured trajectories.

Conclusion—TrACR enables non-Cartesian image reconstructions free from trajectory errors 

with-out the need for separate gradient calibrations or trajectory measurements.
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Introduction

Non-Cartesian k-space readout trajectories are used in several MRI applications, including 

functional brain imaging [1], cardiac imaging [2, 3], sodium imaging [4], and ultra-short 

echo time (UTE) imaging [5]. However, compared to Cartesian k-space readouts they are 

particularly sensitive to trajectory errors caused by gradient eddy currents, delays, and non-

ideal gradient amplifier characteristics, which can result in severe image distortions. Modern 

scanners use gradient coil shielding and waveform pre-emphasis to prospectively avoid 

significant trajectory deviations in typical MR acquisitions. However, those methods are 

limited in terms of the magnitude and temporal dynamics of the errors for which they can 

compensate, and non-Cartesian trajectory gradient waveforms can easily push past those 

limits. Consequently, much research has focused on developing methods to compensate for 

non-Cartesian trajectory errors retrospectively.

One approach to retrospective trajectory error correction is to measure or predict the 

erroneous trajectory waveforms and use them in place of the nominal trajectory for image 

reconstruction. Mason et al. [6] proposed an early gradient waveform measurement 

technique using a point phantom to localize and measure the phase progression of a set of 

spins. To eliminate the need for precise placement of a physical phantom, Duyn et al. [7] and 

Zhang et al. [8] proposed measuring the phase accrual of spins due to a gradient waveform 

of interest by performing slice selection along the same axis as the encoding gradient. 

Gurney et al. [9] later introduced a modification to Duyn’s method to additionally allow the 

measurement of B0 eddy currents. Magnetic field monitoring is another measurement 

approach that uses susceptibility-matched NMR probes placed around the imaging volume 

in the scanner, and has the advantage of flexibility, in that it can be performed concurrently 

with any scan protocol [10]. The primary disadvantage of this approach is that it requires 

specialized hardware to be situated inside the already-crowded magnet bore. All gradient 

measurement approaches share the disadvantage that they cannot be performed retroactively 

as a post-processing step, for example after attempts at image reconstruction without 

corrections reveal the presence of artifacts in previously-acquired data. Predictive methods 

have also been proposed based on the calibration of a gradient system model; subsequently 

this model may be applied to predict errors for new input waveforms that might differ in 

terms of the orientation of the imaging plane [11] or the trajectory itself [12–14]. All of 

these techniques require calibration scans that can lengthen overall examination time. Some 

require only one-time or periodic calibration, but do not predict transient gradient errors 

such as those caused by variations in the gradient system response with gradient coil 

temperature increases. Predictive methods are also fundamentally limited by the models on 

which they are based. For example, linear time-invariant models cannot predict errors due to 

gradient amplifier nonlinearity, and most do not account for concomitant gradient terms due 

to the difficulty in measuring them.

Several recently-proposed methods for trajectory error correction do not require additional 

measurements, calibration scans or hardware [15–17], and focus on correcting errors in 

radial scans. These are iterative methods that estimate trajectory errors from the k-space data 

themselves, and work by exploiting a) data redundancy resulting from oversampling in the 

center of k-space, which is a universal characteristic of non-Cartesian trajectories in use 
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today, and b) data redundancy provided by parallel imaging. They are members of a broader 

class of methods that aim to jointly estimate both images and other quantities such as receive 

sensitivity maps [18] and off-resonance maps [19] from k-space data. Deshmane et al. [15] 

proposed a method that iteratively shifts data in k-space with the goal of finding the set of 

shifts that produces the highest sum-of-squares (SOS) signal; the set of best shifts is then 

used to update the k-space trajectory used for reconstruction. Wech et al. [17] proposed a 

method that iteratively shifts radial projections in k-space, choosing the direction of those 

shifts based on the concordance of the resulting k-space data with the remainder of the 

dataset. These methods have the advantage that transient gradient errors can be captured 

retrospectively without the need for additional measurements. However, they are limited in 

their range of potential applications because the need to select specified shift directions and 

magnitudes would make for a large and potentially intractable combinatorial solution space 

when applying them to trajectories other than radial.

We propose a more general method to reconstruct images free of trajectory errors, called 

TRajectory Auto-Corrected image Reconstruction (TrACR), that is based on the same basic 

idea as the aforementioned measurement-free methods but uses a flexible gradient-based 

trajectory optimization approach. The method jointly estimates images and k-space errors, 

can be adapted to multiple trajectories, and can be used with multiple existing non-Cartesian 

parallel imaging reconstruction techniques. The method is evaluated with in vivo 7 Tesla 

brain data from radial, center-out radial, and spiral acquisitions in five human subjects. 

Performance of the method is investigated as a function of k-space acceleration factor and 

the number of receive coils. Center-out radial and spiral trajectory error estimates are 

validated against trajectory measurements. A preliminary account of this work was given in 

a 2014 ISMRM Annual Meeting abstract [20].

Theory

Problem Formulations

The TrACR method is formulated as a joint estimation of images and k-space trajectory 

errors, using extensions of the cost functions for SENSE [21, 22] and SPIRiT [23] non-

Cartesian parallel imaging reconstruction to incorporate trajectory errors as additional 

variables. The cost function used for SENSE reconstruction is:

(1)

where f is a length-Ns vector of image samples to be reconstructed, Δk⃗ is a length-Nk vector 

of trajectory errors to be estimated, Nc is the number of receive coils, the dci are optional 

coil- and k-space location-dependent weights, yci is coil c’s ith k-space data sample, 

, k⃗i is the nominal ith k-space location, r⃗j is the jth spatial coordinate in the image, 

and scj is coil c’s receive sensitivity at r⃗j. In this work the dci are used to apply k-space 

density compensation to accelerate algorithm convergence. The cost function used for 

SPIRiT reconstruction is:
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(2)

where f is now a length-NsNc vector of images for all coils, and  is the SPIRiT 

regularization, where λ is a user-specified regularization parameter and S is the SPIRiT 

operator. Equation 2 is an extension of Eq. 10 in Ref. [23]. The individual coil images can be 

combined after SPIRiT reconstruction using any coil combination method [23]. In both the 

SENSE and SPIRiT cases we model the k-space trajectory errors Δk⃗i as a sum of weighted 

error basis functions:

(3)

where Nb is the number of error basis functions e⃗b. In order to minimize the required 

number of error basis functions, we construct them in a trajectory-dependent manner. Useful 

error basis construction approaches for radial, center-out radial, and spiral trajectories are 

described further in the Methods.

Algorithm

TrACR is an iterative method based on an alternating minimization approach, in which one 

of the parameters f or Δk⃗ is kept fixed while the other is updated. Accordingly, the algorithm 

comprises an outer loop which in each iteration invokes an f update, followed by a Δk⃗ 

update. For fixed Δk⃗, the cost functions in Eqs. 1 and 2 reduce to the original non-Cartesian 

SENSE and SPIRiT reconstruction problems and are typically minimized with respect to f 
using the Conjugate Gradient (CG) algorithm [24]. To update the k-space error weights w in 

Eq. 3 for fixed f, a nonlinear Polak-Ribière CG algorithm is used [24]. Each iteration of that 

algorithm requires the derivatives of the cost function with respect to w, in order to calculate 

the next search direction. Since by Eq. 3 each error weight wb affects all k-space trajectory 

dimensions, the total derivative for each weight will comprise a sum over the k-space 

dimensions. For the SENSE reconstruction problem, the contribution to the derivative of wb 

from the kx-dimension is:

(4)

where ℜ denotes the real part of the complex number in the braces, * indicates a complex 

conjugate, and rci is the residual:
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(5)

Once the derivatives for each k-space dimension are computed, they are summed to obtain 

the total derivative for each weight, and the gradient vector of collected derivatives for all 

weights is returned to the CG algorithm. The derivatives of the SPIRiT cost function are 

obtained by replacing scjfj with fcj in Eqs. 4 and 5. The TrACR algorithm alternates between 

image and k-space error weight updates until a stopping criterion is met.

Methods

Algorithm Implementation

The TrACR algorithm was implemented in MATLAB 2014a (The Mathworks, Natick, MA, 

USA) on a desktop PC with an Intel Xeon E3-1240 3.4 GHz CPU (Intel Corporation, Santa 

Clara, CA, USA) and 16 GB of RAM. Image updates were initialized with zeros each outer 

iteration to avoid noise amplification. Except where otherwise noted, all images were 

reconstructed using MAT-LAB’s lsqr function, with a fixed tolerance of 10−2, both inside 

and outside the TrACR algorithm. This allowed the number of CG image iterations in each 

image update step to vary as needed; typically 2 to 10 iterations were used. All non-uniform 

discrete Fourier transforms were computed using a non-uniform fast Fourier transform 

(NUFFT) algorithm [25]. Density compensation weights (dci in Eqs. 1 and 2) were 

calculated using the method of Zwart et al. [26] using the nominal trajectories. For SPIRiT 

image reconstructions, the regularization parameter λ (Eq. 2) was fixed to 10% of the 

median of the absolute value of the k-space data. To enable direct comparison of SENSE and 

SPIRiT reconstructions, the SPIRiT kernel was calibrated using images obtained by 

applying the receive sensitivities measured for SENSE to a sum-of-squares Cartesian 

reconstruction. The CG algorithm for the k-space updates used a maximum of 5 iterations 

and a backtracking line search ([27], p. 464) with a maximum allowed trajectory change in 

one CG iteration of 1/FOV, where FOV is the reconstructed field-of-view. The outer loop of 

the TrACR algorithm was stopped when the k-space backtracking line search returned a zero 

step size in its first iteration. MATLAB code to implement the algorithm and a 

demonstration with an in vivo radial dataset are available at https://bitbucket.org/wgrissom/

tracr/downloads.

Experiments

In vivo experiments were performed at 7 Tesla (Philips Achieva, Philips Healthcare, Best, 

Netherlands) using a quadrature volume coil for excitation and a 32-channel head coil (Nova 

Medical, Wilmington, MA, USA) for reception. Scans were performed in 5 healthy 

volunteers with approval from the Institutional Review Board of Vanderbilt University. Data 

were collected using 3 non-Cartesian trajectories: golden-angle (GA) radial, center-out 

radial, and multi-shot spiral, detailed further below. Cartesian scans were also collected and 

used to synthesize a body coil image and an estimate of the sum-of-squares receive 

sensitivity using a polynomial fit; the receive sensitivity was divided out of the reconstructed 
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non-Cartesian images. Coil sensitivity measurements were collected for SENSE 

reconstructions. All scans were gradient echo sequences with repetition time and echo time 

matched for all trajectories, at 200 ms and 7.9 ms, respectively, and with 2.5 mm slice 

thickness. Center-out radial and spiral trajectory measurements for validation were collected 

in a spherical phantom for each scan session using a modified Duyn method [7, 9]. 

Trajectory measurements began 1 ms prior to the expected start of the gradient waveforms in 

order to capture components generated by the scanner’s gradient pre-emphasis.

The GA radial trajectory comprised 201 projections, each containing 256 sample points. 

Trajectory-specific acquisition parameters were: readout duration 0.46 ms, maximum 

gradient amplitude 16.1 mT/m and maximum gradient slew rate 7.9 T/m/s, water/fat shift 

0.741 pixels. The center-out radial trajectory comprised 402 projections, each containing 

170 sample points. Trajectory-specific acquisition parameters were: readout duration 0.34 

ms, maximum gradient amplitude 25.5 mT/m, maximum gradient slew rate 114 T/m/s. The 

spiral trajectory comprised 16 shots of length 5.7 ms. Maximum gradient amplitude was 

14.3 mT/m and the maximum gradient slew rate was 70 T/m/s. The trajectory was designed 

using Brian Hargreaves’ spiral design toolbox [28]. The resolution of each trajectory 

matched that of the 128 × 128 reconstruction grid. The reconstructed field of view was 25.6 

cm and all trajectories were designed to sample k-space to a maximum frequency of ±2.5 

cycles/cm. Where indicated, the data were coil-compressed prior to image reconstruction 

using singular value truncation [29].

Error Basis Generation

Golden-Angle Radial—Data sampling occurs only during the flat parts of the trapezoids 

in conventional and golden angle radial acquisitions, so the majority of trajectory errors can 

be captured by linear translations of the radial lines in k-space [15]. This leads to a 

straightforward trajectory error basis matrix construction E⃗ = (Ex Ey), as:

(6)

(7)

where INproj is an Nproj × Nproj identity matrix in which Nproj is the number of radial 

projections, ⊗ represents a Kronecker product, 1Nsamp×1 is a length-Nsamp vector of ones 

with Nsamp being the number of sample points per projection, and 0NprojNsamp×Nproj is a 

matrix of zeros.

Center-Out Radial and Spiral—In ramp-sampled center-out radial and spiral 

acquisitions, data are acquired while the gradients change amplitudes. The majority of 

trajectory errors are the result of eddy currents generated on conducting structures in the 

scanner which produce gradient field errors. These gradient field errors are typically 

modeled as a weighted linear combination of terms of the form ([30], p. 320):
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(8)

where each term has a different value of the time constant τ, t is time, G(t) is the nominal 

gradient waveform, and H(t) is the Heaviside step function. For a given center-out radial or 

spiral readout gradient waveform G(t), this model was used to calculate error basis vectors 

by generating functions ge(t, τ) for 1000 time constants spaced linearly between 1 μs and 2 

ms, and sampled with the same dwell time as the measured k-space data. The functions were 

integrated to arrive at a k-space error basis set, then compressed down to six linearly-

independent waveforms by stacking them into a matrix Ge, calculating its singular value 

decomposition (SVD) Ge = USV′, and taking the first six columns of the matrix U 
(corresponding to the six largest singular values) as the error basis for that input gradient 

waveform. For the center-out radial case, the compressed error basis matrix was calculated 

for a single trapezoid and was rotated for each projection, forming the final error basis 

matrix E⃗ = (Ex, Ey) as:

(9)

(10)

where G̃ is the SVD-compressed error basis matrix. For the spiral case, compressed error 

basis matrices were calculated for the Gx(t) and Gy(t) waveforms for one of the 16 shots. 

These were then rotated to form the final error basis matrix E⃗ = (Ex, Ey) as:

(11)
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(12)

In total, 6 error weights were fit in the center-out radial case and 12 in the spiral case. The 

definitions in Eqs. 9–12 are based on the empirical observation that the trajectory errors 

were very similar for the x and y gradient channels, so a single set of error coefficients can 

be estimated that applies to all shots/projections. For non-axial slice planes, it may be more 

accurate to estimate separate error coefficients for each gradient channel. Finally, on our 

scanner, the vendor’s gradient pre-emphasis on our scanner resulted in a temporal gradient 

delay that was found to be constant between scans, subjects, and trajectories; this shift was 

measured and applied to the nominal gradient waveforms provided to our algorithm. 

Alternatively, one could disable waveform pre-emphasis for such acquisitions.

Results

Figure 1 illustrates the accuracy with which the generated error basis functions can be fit to 

the measured trajectory errors in the center-out radial and spiral cases. This was investigated 

by directly fitting (by least-squares, without the TrACR algorithm) the error basis functions 

to the measured errors for the first projection/shot, while varying the size of the SVD-

compressed error bases. Figure 1a plots the root-mean-square (RMS) error in fitting the 

measured trajectory errors, as a function of the number of basis functions used. For both 

trajectories, as the size of the SVD-compressed basis set increased, the error monotonically 

decreased to a minimum value and then flattened out. Figure 1b plots least-squares fits of 2, 

3 and 6 basis functions to the error measured for the first projection of the center-out radial 

trajectory. For 6 basis functions, the measured and fit curves nearly coincide. Figure 1c plots 

least-squares fits of 4, 6 and 12 basis functions to the error measured for the first shot of the 

spiral trajectory (only the kx error waveform is shown). For 12 basis functions, the measured 

and fit curves nearly coincide. These results support the use of 6 basis functions for the 

center-out radial TrACR reconstructions that follow, and 12 basis functions for the spiral 

TrACR reconstructions.

Figures 2–4 show golden angle radial, center-out radial, and spiral images reconstructed 

using the nominal trajectories, the measured trajectories (center-out radial and spiral only) 

and the trajectories estimated using TrACR with SENSE and SPIRiT, in the same subject 

and slice. For each case, the displayed image was formed as a sum-of-squares combination 

of the individual coil images reconstructed by CG using the final trajectory. Before running 

TrACR, the 32-channel coil data was compressed to 15 channels. In all cases, the 

uncorrected image contains considerable intensity modulations and blurring across the brain, 

which are removed in both SENSE and SPIRiT TrACR reconstructions. The difference 

images are similar in all cases, indicating that both TrACR-SENSE and -SPIRiT were 

effective in estimating the corrected trajectories, and (in the center-out radial and spiral 

cases) yielded similar image reconstructions as the measured trajectories. Across subjects, 
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the mean number of TrACR iterations was: 27 (golden angle radial), 779 (center-out radial), 

and 205 (spiral). The mean compute time was: 8.7 minutes (golden angle radial), 2.7 hours 

(center-out radial), and 1.1 hours (spiral). The TrACR-SPIRiT reconstructions required 

between 10–40% more iterations/longer compute times.

Figure 5 illustrates the estimated trajectories and errors for the subject shown in Figs. 2–4. 

Figure 5a shows the center of the nominal golden angle radial trajectory and the trajectories 

estimated by TrACR-SENSE and -SPIRiT. The TrACR-SENSE and -SPIRiT trajectories are 

indistinguishable on this plot, and differ considerably from the nominal trajectory. Figure 5b 

plots the measured and estimated k-space errors for a single projection of the center-out 

radial trajectory, as a function of time. While both trajectory estimates fit the measured error 

well at the beginning of the projection in the center of k-space, at higher spatial frequencies 

near the end of the projection the TrACR-SENSE estimate is closer to the measured error. 

The higher accuracy achieved at low spatial frequencies reflects the fact that the MR signal 

amplitude is much higher in the center of k-space, so the algorithm favors minimizing 

trajectory errors there. Figure 5c shows an analogous result for the spiral case: the error 

estimates are very close to the measured trajectory near the center of k-space, and diverge 

somewhat with increasing time/spatial frequency, and the TrACR-SENSE estimate comes 

closer to the measured trajectory than does TrACR-SPIRiT. Although the trajectories 

estimated by TrACR-SENSE and TrACR-SPIRiT differ in the high spatial frequencies in the 

center-out radial and spiral cases, those differences did not result in significant differences in 

the final reconstructed images in Figures 3 and 4.

To investigate the dependence of the trajectory error on k-space acceleration and the number 

of receive channels, the golden angle radial TrACR-SENSE reconstructions in this subject 

were repeated for acceleration factors between 1 and 8, and for numbers of receive channels 

between 1 and 32. Acceleration was realized by uniformly dropping projections, and the 

number of channels was varied using SVD coil compression. Figure 6a shows fully-sampled 

and 4x-accelerated (50 projection) image reconstructions using CG-SENSE and the final 

TrACR trajectories (in this case images were reconstructed using lsqr with a stopping 

tolerance of 10−1). With 4× acceleration, there is an apparent loss of SNR but no noticeable 

aliasing artifacts. The same figure also plots the root-mean-square (RMS) trajectory error for 

each acceleration factor, referenced to the fully-sampled 32-channel TrACR-SENSE result. 

The errors were calculated after subtracting off the mean k-space trajectory shift, and were 

low for all acceleration factors, increasing only slightly with acceleration. Figure 6b plots 

the trajectory errors across numbers of receive channels, referenced to the fully-sampled 32-

channel TrACR-SENSE result. As the number of coils used for reconstruction increased, the 

trajectory error decreased for both acceleration factors. For less than 10 coils, the error was 

higher with both full sampling and 4× acceleration than it was at any acceleration factor with 

15 coils, indicating that in the golden angle radial case the trajectory error depends more on 

the number of coils than on the acceleration factor.

Figure 7 shows the evolution of the k-space error estimates and images over TrACR outer 

loop iterations, for center-out radial TrACR-SENSE. Images are shown on top, with center-

out radial k-space estimates shown at the same TrACR iteration numbers on the bottom and 

the measured trajectory error provided for reference. The image improves rapidly with early 
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TrACR iterations as the lower k-space locations are corrected, whereas high frequency 

corrections build up more slowly.

Figure 8 summarizes the performance of TrACR across the 5 subjects, 3 trajectories, and 

SENSE and SPIRiT formulations. Figure 8a shows how much lower (in percent; higher 

numbers are better) the final TrACR trajectories’ cost functions (Eqs. 1 and 2) were, 

compared to no correction. All instances of TrACR significantly reduced the uncorrected 

image cost, with a median cost reduction across subjects and trajectories of 76%. The same 

figure also shows the SENSE and SPIRiT cost reductions for the measured trajectories, 

which in all cases were not markedly higher than the TrACR cost reductions. Figure 8b 

shows the increase in normalized image gradient squared for each case, compared to the 

uncorrected images. The normalized image gradient squared is an image quality metric that 

has been reported as having a high correlation with observer image quality rating [31]. It 

was calculated from the final SENSE and SPIRiT image reconstructions. All reconstructions 

resulted in increased normalized image gradient squared, which were comparable to values 

for images reconstructed using the measured k-space trajectories.

Lastly, Fig. S1 of the Supporting Information shows that the TrACR-SPIRiT reconstructions 

are relatively insensitive to the SPIRiT regularization parameter λ, at least over two orders 

of magnitude for each trajectory. Figure S2 of the Supporting Information shows that a 

measured off-resonance map can be incorporated into the signal model for TrACR 

reconstruction. This may be desirable in body imaging where the range of off-resonances 

can be larger than in the brain, which may result in blurring that confounds trajectory error 

estimation. The spiral trajectory had the longest readout duration, and incorporating the 

measured map resulted in marked signal recovery in the front of the brain, but did not 

significantly affect the trajectory error estimate.

Discussion

In vivo experiments demonstrated TrACR’s ability to correct image artifacts caused by k-

space trajectory errors in non-Cartesian acquisitions. TrACR corrections made significant 

visible improvements (reduced streaking and blurring, and enhancement of fine details) to 

the reconstructed images in the in vivo experiments, with comparable image quality to 

images reconstructed using measured k-space trajectories. Golden angle radial 

reconstructions across acceleration factors demonstrated that TrACR-estimated trajectories 

were less accurate at higher radial acceleration factors; however, the errors remained 

relatively low across acceleration factors due to the large signal magnitude and oversampling 

at the center of k-space even with sub-Nyquist radial sampling. The golden angle radial 

reconstructions with varying numbers of coils demonstrated that the method benefits from 

parallel imaging due to the data redundancy it provides, since error increased as the number 

of coils decreased. The algorithm performed consistently across five subjects, in terms of the 

amount by which the SENSE and SPIRiT cost functions were reduced, and in terms of the 

increase in normalized image gradient squared.

TrACR reconstructions were able to correct most of the measured errors in the center-out 

radial and spiral trajectories, as shown in Fig. 5. Due to the higher signal and higher 
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sampling density in the center of k-space, the algorithm preferentially corrected trajectory 

errors there, and converged with somewhat higher residual errors at the higher spatial 

frequencies. Though it was not observed in our reconstructions, it is possible that the 

TrACR-estimated trajectory will have higher error than the uncorrected trajectory at the high 

spatial frequencies. This potential problem could be mitigated by multiplying the error basis 

functions with a window that decreases to zero at the high frequencies. We have tested this 

approach with the spiral reconstructions (results not shown) and found that it performed 

similarly to the unwindowed reconstructions, with negligible image differences when the 

windows truncated the error functions at approximately 75% of the maximum k-space 

radius. Windowing the error basis may also accelerate algorithm convergence, since (as 

demonstrated in Fig. 7) the low frequencies are fitted early in the TrACR iterations.

The center-out radial and spiral results suggest that accurate corrections at high spatial 

frequencies may be precluded for cases in which there is a long separation in time between 

sampling the center of k-space and the end of the trajectory. The algorithm’s success also 

depends on the provision of a suitable error basis. In this work, error bases for spiral and 

center-out radial trajectories were derived from eddy current models, and this construction 

approach can be applied to any existing readout trajectory. However, error basis functions 

derived from eddy current models may not be effective in capturing other sources of error, 

such as errors due to gradient amplifier non-linearity and long-time constant eddy currents 

that persist between TRs. Developing suitable error bases in those cases may require the 

incorporation of hysteresis models (for amplifier non-linearity) and whole-sequence eddy 

current modeling (for long-time constant eddy currents). Furthermore, while an eddy current 

error basis can be constructed for any trajectory, properties of the trajectory itself may still 

preclude effective corrections. Specifically, we expect that TrACR would not be broadly 

effective in correcting errors in Cartesian readouts, since every line does not cross the center 

of k-space and the lines may not be spaced close enough together. However, with the 

exception of echo planar imaging, eddy currents are relatively benign in Cartesian readouts.

An important consideration in the TrACR-SPIRiT reconstruction is the choice of images 

used to calibrate the SPIRiT operator. We have found that in many cases the algorithm will 

converge to an acceptable solution if the operator is initially calibrated using low-resolution 

images reconstructed with the nominal trajectory, and is periodically re-calibrated during the 

TrACR iterations using the latest trajectory error estimate (results not shown). However, due 

to model inconsistencies inherent in that approach, it is possible for the iterations to diverge 

or converge to an unacceptable solution. Therefore a more cautious alternative is to calibrate 

the operator using Cartesian images of the same geometry, as described in [23]. This is the 

approach that was used here. Another consideration that may affect both TrACR-SENSE and 

-SPIRiT performance is the density compensation. In this work, density compensation 

weights for all TrACR reconstructions were calculated using the nominal trajectory, and 

were held fixed over the iterations. The weights were then updated using the TrACR error 

estimate for the final image reconstruction. Slightly better trajectory estimates may be 

possible by either periodically updating the density compensation, or by not using density 

compensation at all, which would require increasing the number of iterations used in each 

image update.
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The computation times for the algorithm were shortest for golden-angle radial, and longest 

for center-out radial. This result was expected since the golden-angle radial trajectory error 

basis functions were uniform across each projection, so determining their weights could 

likely be performed using only the center of k-space, and it was found that the algorithm 

preferentially corrected trajectory errors there first. The large difference between the 

computation times for the spiral and center-out radial trajectories is likely due to the fact that 

the initial center-out radial RMS trajectory errors neared 1/FOV, or the Nyquist sample 

spacing, whereas the spiral and golden angle radial trajectory errors were about half as large. 

Overall, the reported computation times of several minutes (golden angle radial) to a few 

hours (center-out radial) were not compatible with online use. However, in the current 

implementation the TrACR algorithm was stopped when the backtracking line search 

returned a zero step size in the first iteration. The motivation for this stopping criterion was 

to demonstrate the very best possible trajectory correction with the algorithm. In practice we 

have found that the reconstructed images stop changing significantly well before this 

stopping criterion is satisfied, and that a more practical criterion that is predictive of this 

may be to stop the algorithm when the difference between consecutive cost function values 

falls below 0.1% of the current cost. Using this criterion resulted in approximately 75% 

shorter computation times/fewer iterations, with worse trajectory errors at high spatial 

frequencies compared to measurements in the center-out radial and spiral cases, but with 

negligible final image differences (results not shown). The algorithm’s computations could 

be accelerated using parallel computing [32, 33], and its convergence may be accelerated by 

jointly (rather than alternately) updating the images and trajectory errors each iteration. The 

alternating update approach used here was chosen primarily for its flexibility in decoupling 

the k-space error and image update codes. While CG is widely accepted as an efficient 

method for MR image reconstruction, algorithms other than CG may work better for the k-

space error updates, such as Newton or Gauss-Newton methods. These could accelerate 

convergence at the cost of increased computational cost per iteration compared to CG.

Conclusions

The TrACR approach to auto-correct non-Cartesian images for k-space trajectory errors was 

described and validated in vivo for three non-Cartesian trajectories. It is a more general 

formulation than existing methods, and can be extended to any non-Cartesian trajectory for 

which a suitable trajectory error basis can be derived. It does not require trajectory 

measurements or prior calibration data and exploits data redundancy provided by 

oversampling in non-Cartesian acquisitions and parallel imaging. The method can be used in 

conjunction with multiple parallel imaging reconstruction techniques.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Investigation of the number of SVD-compressed error basis functions necessary to 

accurately model trajectory errors. (a) Residual error for direct least-squares fits of basis 

functions to the measured trajectory error for the center-out radial and spiral trajectories 

versus the number of independent basis functions used. (b) Direct least-squares fits of 2, 3, 

or 6 independent basis functions to the measured error for one projection of the center-out 

radial trajectory. (c) Direct least-squares fits of 4, 6, or 12 independent basis functions to the 

measured error for one shot of the spiral trajectory in the kx dimension.
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Figure 2. 
Final CG image reconstructions on nominal (uncorrected), TrACR-SENSE, and TrACR-

SPIRiT trajectories for the golden angle radial dataset in one subject. The second row shows 

intensity differences between the TrACR reconstructions and the uncorrected image.
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Figure 3. 
Final CG image reconstructions on nominal, TrACR-SENSE, TrACR-SPIRiT, and measured 

k-space trajectories for the center-out radial dataset in one subject. The second row shows 

intensity differences between the corrected reconstructions and the uncorrected image.
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Figure 4. 
Final CG image reconstructions on nominal, TrACR-SENSE, TrACR-SPIRiT, and measured 

k-space trajectories for the spiral dataset in one subject. The second row shows intensity 

differences between the corrected reconstructions and the uncorrected image.
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Figure 5. 
Trajectory errors for the image reconstructions in Figs 1–3. (a) A subset of nominal golden 

angle radial projections and their corresponding TrACR-SENSE and TrACR-SPIRiT 

projections in the center of k-space. The TrACR-SENSE and TrACR-SPIRiT projections 

coincide. (b) Measured, TrACR-SENSE and TrACR-SPIRiT center-out radial k-space 

trajectory error curves as a function of time, for one projection. (c) The same curves in (b) 

for the kx(t) waveform of one shot of the spiral trajectory. Trajectories and errors are plotted 

in units of multiples of 1/FOV.
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Figure 6. 
Error vs. radial acceleration. (a) TrACR-SENSE corrected CG-SENSE reconstructions for 

full sampling and 4× acceleration. (b) RMS k-Space trajectory error versus radial 

acceleration factor for GA radial TrACR-SENSE reconstructions with 15 coils. (c) Error 

versus number of coils used for TrACR-SENSE, for full sampling and 4× acceleration. All 

errors are expressed as multiples of 1/FOV and are referenced to the fully-sampled 32-

channel TrACR-SENSE trajectory estimate.
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Figure 7. 
Evolution of TrACR-SENSE images and trajectory error estimates versus TrACR outer loop 

iteration, for a center-out radial reconstruction. (a) Images and magnitude differences 

between the TrACR image and an image reconstructed using a measured k-space trajectory, 

versus number of TrACR iterations. (b) Corresponding k-space error estimates, plotted with 

the final TrACR trajectory error estimate and the measured trajectory error.
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Figure 8. 
Numerical TrACR-SENSE and -SPIRiT results across 5 subjects and the three trajectories. 

(a) Cost function (Eqs. 1 and 2) reduction as a percentage of the uncorrected (initial) cost. 

(b) Percentage increase in the normalized image gradient squared, versus no correction. 

Metrics for reconstructions using measured trajectories are also shown for the center-out 

radial and spiral cases.
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